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Abstract—Few studies have addressed the robustness of 

flexible spacecraft (FS) systems in the presence of input 

magnitudes and rate saturations. Thus, the present work is 

conducted to provide more information in this field and to 

propose a linear matrix inequality (LMI)-based H∞  controller 

for a class of flexible spacecraft systems described by the two 

nonlinear dynamic models. First, a standard state-space 

representation is obtained by analyzing the characteristics of the 

rotation angle. Then, based on the assumption that the input 

constraints are negligible, a sufficient condition is derived by 

applying the definition of the H∞  controller and exponential 

stability. In addition, a constrained controller is developed to 

ensure the saturation of the input magnitude and rate using an 

invariant set. Finally, two simulations with various conditions 

are carried out to evaluate the performance of the proposed 

methodology. 

 

Index Terms—flexible spacecraft system, input magnitude 

saturation, rate saturation, H∞  control, LMI 

 

I. INTRODUCTION 

HERE are many flexible structures that have attracted 

widely attention recently for their light weight, high 

efficiency, low energy requirement, and cost-effectiveness
 

compared with the traditional structures [1]
 
. In aerospace 

engineering applications, flexible structures have been used in 

spacecraft systems [2]–[3]
 
, that involve a central rigid body. 

To absorb more energy from solar radiation, the attitude of the 

flexible appendages must be changed according to the angle 

of intersection between the spacecraft and the sun. However, 
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due to the flexibility of structure, the external disturbances 

cause the irregular propagation of elastic oscillations. 

Moreover, the constraints of controller also impact the 

dynamic property and even cause system instability. Hence, a 

constrained controller should be designed for flexible 

spacecraft systems to ensure robustness and solve the 

high-precision attitude problem. 

Researchers have proposed many control strategies for 

different models of FS. Hu [4] proposed a sliding 

mode–based discontinuous controller to address the vibration 

problem. To solve the problem of actuator nonlinearity and 

uncertainties, a fault-tolerant tracking method was proposed 

in Ref. [5], which combined Neural networks and 

sliding-mode controller. Zhong et al. [6] proposed a 

disturbance compensator-based controller using the internal 

model principle to ensure system robustness. Dong et al. [7] 

proposed a high-precision attitude controller combining a 

nonlinear predictor and a sliding-mode method to enhance 

stabilization of a networked FS system with uncertainties and 

induced delays. For the controller design of flexible structures, 

it is a key problem that can decrease the disturbances 

associated with the dynamic characteristics between the 

different components. 

Actuator saturation is a typical problem in practical control 

systems. The inherent nonlinear characteristics of flexible 

spacecraft can have a significant impact on different control 

systems. Many methods can be used to treat the stabilization 

problem of constrained systems, such as invariant set 

approach [8], anti-windup method [9], barrier Lyapunov 

functions approach [10], and predictive control method [11]. 

The state of a system approaches zero according to the 

definition of the stabilization, implying a relationship 

between the Lyapunov function and the actuator saturation 

[12]. The design of an appropriate invariant set for different 

controller formulations is difficult. The anti-windup method 

[13] is usually used for a constrained system to decrease the 

impact of saturation and improve system stability. But the 

system with an anti-windup compensator increases the 

complexity, which reduces the ability to implement it in 

practical engineering. Each initial condition for a class of 

nonlinear systems yields different sets on the barrier 

Lyapunov function [14]. But choosing a relevant function is a 

difficult problem, especially for a complex system. The 

predictive controller [15] can provide the optimal input every 

time using the optimal online strategy and yields a high 

computational burden. To date, few studies have been 

conducted on accurate robustness performance index of 

constrained systems. 
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Furthermore, the  rate saturation is an important constraint 

for the safe operation of flexible spacecraft systems [16]–[17]. 

Zou et al. [18] proposed a tracking controller to stabilize the 

augmented model using a smooth tangent function by 

combining the back stepping, robust and adaptive methods. 

To estimate  external disturbance, Liu et al. [19] proposed a 

disturbance observer to stabilize the original nonlinear model 

using a framework of linear matrix inequality (LMI). 

Moreover, an integral state controller with a linear quadratic 

regulator was proposed by Moghimi Rad et al. [20] to 

overcome the problem of actuator constraints for an 

autonomous aerial vehicle by employing an anti-windup 

compensator. Currently, there is no common method to treat 

the rate saturation problem, which is difficult for the 

controller designing of a flexible spacecraft system. 

To address the problem of such system with bounded 

external disturbances, input magnitude saturation and rate 

saturation, a constrained controller is proposed in this study 

using the H  norm, exponential stability theory, invariant set 

approach, and the LMI. Compared with previous studies, 

potential contributions can be summarized as follows:  

 Unlike other H  controllers for a flexible spacecraft 

[21]–[22], an original model with input magnitude and 

rate saturations has been considered. The proposed 

controller, based on the linearized state-space 

representation, can deal with more general actuator 

constraints by applying the Lyapunov method, invariant 

set theory and H  norm.  

 In contrast to other anti-interference control methods 

[2],[19] an LMI-based optimization problem is 

analytically proposed to obtain an optimal control gain 

that can improve the performance of interference 

suppression under the given constraints. 

The subsequent content of the manuscript is organized as 

follows. First, the nonlinear model of a FS system is designed 

and transformed into a standard state-space representation. 

Second, a sufficient parameter of the H  controller is 

presented and placed within the LMI constraints. Third, two 

numerical simulations for different conditions are provided to 

demonstrate the proposed methodology’s property. Finally, 

the conclusions are proposed.  

Notation: 
n denotes the set of Euclidean space; I  stands 

for the identity matrix; T  refer to the transpose operation; the 

symbol * means the ellipsis in matrix. 

 

II. MODEL DESCRIPTION 

This study focuses on a class of FS that rotates around a 

single axis. The FS has a rigid body and uniform flexible 

appendages (Fig. 1).  

To describe the dynamical characteristics, we can place the 

flexible spacecraft on the different coordinate system. Hence, 

we can describe the model of FS [19]  as follows: 

        0

TJ t F q t u t d t   
   

(1) 

         0q t Tq t Sq t F t            (2) 

where   nt   is the rotation angle of the body-fixed 

frame on the coordinate system; nJ   refers to inertia 

moment;  0

nd t   means the bounded external 

disturbance torques, such as space environmental torques; 

  nq t   means the modal coordinate vector ; nF   

represents the coupling matrix between different dynamics; 

 1 12 , 2 n n

n nT diag        and  2 2

1 , nS diag    

refer to the damping and stiffness matrices; n  refers to 

natural frequency, n  means damping ratio;   nu t   

denotes the control torque. 

Rigid body

Flexible appendage

Fig. 1.  Diagram of a FS system 

 

Evidently, the dynamic characteristics of the FS can be 

described by models (1) and (2), which are high-dimensional. 

The high-dimensional characteristics can be ignored to 

simplify the controller design. Hence, applying the modal 

truncation method can give the low-dimensional model, 

capturing the dominant characteristics for vibration 

suppression. Only the first two modes are considered in this 

study with stable generality. By denoting 

     
T

x t t t     , we can express the nonlinear models 

(1) and (2) as follows: 

        x t Ax t Bu t B t  
       

    (3) 

where 
0

0 0

I
A

 
  
 

, 
 

1

0

T
B

J FF


 
 

  

 and 

        0t d t F Tq t Cq t    . To describe the global 

performance, the output equation can be defined as 

    y t Cx t                   (4) 

where C  is the output vector. 

The objective is to design an H  controller, subject to the 

bounded external disturbance  
2

max 20

t

t dt   , input 

magnitude   maxu t u  and rate constraint   maxu t v . For 

the whole initial conditions, the stabilization and robustness 

of such system can be satisfied. 

 

III. CONSTRAINED H∞ CONTROLLER DESIGN 

To reach the aforementioned aim, this paper used the H   

norm to suppress external disturbances. Subsequently, a 

constrained controller is proposed under condition of the 

relevant constraints. Defining the control gain K , the input 

can be expressed as 
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    u t Kx t                  (5) 

Substituting formula (5) into (3), the closed-loop state 

equation of the FS without the above two constraints can be 

transformed as follows: 

        x t Ax t BKx t B t             (6) 

Hence, the following theorems can be obtained: 

Theorem 1: Considering the closed-loop systems described 

by formula (4) and (6), if there exists a parameter 0  and 

matrices 0X  , with Y  satisfying 

 
2

* 2

* 0 0

* *

TAX BY X XC B

I

I





   
 

  
       

  (7) 

then the closed-loop system of flexible spacecraft is 

exponentially stable with the decay rate   and H  gain 

from  t  to  y t  is  . In this case, the control gain matrix 

K  is given by 

 1K YX                     (8) 

 

Proof. We first consider the following function  

      TV t x t Px t              (9) 

Considering the time derivative of  V t  along the 

trajectory of the system, we obtain 

 

         

        

        

   
 

 

*

* 0

T T

T

T

T T

V t x t Px t x t Px t

Ax t BKx t B t Px t

x t P Ax t BKx t B t

x tPA PBK PB
x t t

t








 

  

  

   
     

   

    

(10)

 

Subsequently, we introduce the exponential stability as 

follows: 

    2 0V t V t              (11) 

Multiplying (11) by 2 te   yields 

    
  2

2 22 0

t

t t
d e V t

e V t e V t
dt



     
    

(12) 

By integrating (12) in  0 t , the following equation can 

be obtained 

 

  
   

       

2

2

0

2

0

0 0 0

t
t

t

t T T

d e V t
dt e V t V

dt

e x t Px t x Px







 

  

  (13) 

Herein, the relationship between  x t  and  0x  can be 

described as follows: 

    
2 22 0tx t e x             (14) 

Evidently,  x t  converges to zero with   and the 

sufficient condition on matrix inequality can be expressed as 

   
* 2

0
* 0

PA PBK P PB
V t V t




   
   

    

(15) 

From the view of the mathematics, it is impossible to obtain 

a feasible solution because there is zero in the principal minor. 

Thus, the definition of H  norm is introduced as follows: 

            22 0T TV t V t y t y t t t        (16)  

Substituting (4) and (15) into (16), the inequality holds: 

 
2

* 2
0

*

TPA PBK P C C PB

I





    
 

 
     (17) 

Applying the Schur Complement lemma, (17) is 

transformed as 

 
2

* 2

* 0 0

* *

TPA PBK P C PB

I

I





   
 

  
      

  (18) 

However, the above bilinear matrix inequality cannot be 

solved due to its non-convex characteristics. Pre- and 

post-multiplying (18) with matrix  1diag P I I  yields 

 

1 1 1 1

2

* 2

* 0 0

* *

TAP BKP P P C B

I

I





      
 

  
      

(19) 

By defining 1X P  and 1Y KP , (7) can be obtained. 

The aforementioned analysis proposes a sufficient 

condition (7) on the H  norm of such system. We usually 

minimize the H  gain but increase the control gain K , 

which maximizes the input. To keep balance between the 

input constraints and high-property index, the theorem 2 is 

presented. 

Theorem 2: Consider the closed-loop flexible spacecraft 

systems (4) and (6) with the input saturation   maxu t u  and 

the rate constraint   maxu t v . If defined positive scalars 

 and  exist, as well as  undefined positive scalar  , 

matrix 0X   and vector Y , there exists an LMI optimization 

question as follows： 

 
0, 0,
min

X Y


 
                 (20) 

Subject to (7) and 

 
1 2

max

*
0

X

Y u 

 
 

 
             (21) 

 

2 2

max max *
0

v u X

AX BY X

 
 

 
          (22) 

 
2 2

max max *
0

v u I

B X

 
 

 
           (23) 

 
 

2

max *
0

0

W

x X

  
 

 
          (24) 

 
 

2

max max0.5 *
0

0

W W

x X

   
 

 

       (25) 

The H  controller of FS can be expressed as 

    1u t YX x t              (26) 

which satisfies the given input saturation maxu  and rate 

constraint maxv . 

Proof: First, let us analyze the relationship between  u t  and 

 V t . Applying the Schur Complement lemma, (21) 
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transforms into
1 2

max

TK K u P  . Thus, we have the 

following inequality 

 
   

 

2

1 2 1 2 2

max max max

T T T

T

u t Kx Kx x K Kx

u x Px u V t u  

 

        
(27) 

Hence, (27) means  1 1V t   . By integrating (16) 

within  0 t , the association of  0V  and  V t   can be 

expressed as follows: 

          2 2

max
0

0 0
t

TV t V t t dt V W         
(28) 

where    max
0

t
TW t t dt   . Herein, the invariant set can 

be rewritten as 

    1 1 2

max0 0 1Tx Px W            (29) 

Using the Schur Complement lemma once again,  (29) is 

expressed as follows: 

 
 2

max

1

0
0

*

W x

P

 


 
 

 
         (30) 

By denoting 1X P , (24) can be obtained. Furthermore, 

the problem of rate constraint, that is,   maxu t v , is 

discussed. The rate of input can be expressed as 

           u t Kx t K Ax t BKx t B t   
    

(31) 

Based on the assumption that 

     2 2

max max

T
A BK P A BK v u P  

    
  (32) 

 
2 2

max max

TB PB v u I              (33) 

the rate constraint is rewritten as 

 

     

      

   

      

   

   

   

      

2

1 2

max

1 2

max

1 2

max

1 2

max

1 2

max

2

2

2

2

2

2

2

T T

TT T

T T T

TT

T T

T

T

T

u t Ax BKx B K K Ax BKx B

x t A BK K K A BK x t

t B K KB t

u x t A BK P A BK x t

u t B PB t

v x t Px t

v t t

v V t t t

 

 



  



  

  











    

  



  







 

 (34) 

Hence, we have 

 

       

   

   

1 1 2 1

max

1 1 2 1

max max max

1 1 2 1

max max

2 0 0 2 2

2 0 0 2 2

2 0 0 2 2

1

T T

T T

T

x Px W t t

x Px W

x Px W W

     

     

   

  

  

  

 

  

  



 (35) 

Moreover, (35) can be expressed as 

     2

max max0 0 0.5Tx Px W W           (36) 

Application of Schur complement lemma to (36) gives the 

following matrix inequality: 

 
 

2

max max

1

0.5 *
0

0

W W

x P

 


  
 

 

        (37) 

By denoting 1X P , (25) can be held. Using a similar 

procedure, (32) and (33) can be transformed into 

 

2 2

max max

1

*
0

v u P

A BK P

 
 

 
            (38) 

 
2 2

max max

1

*
0

v u I

B P

 
 

 
            (39) 

Pre- and post-multiplying (38) and (39) with the block 

diagonal matrix  1diag P I  yields (22). 

 

IV. SIMULATION 

To evaluate the property of the proposed controller (5) in 

term of optimization problem (20), the simulation is carried 

out for a model of FS. For comparison, the same controller 

with different constraints can be substituted into the model of 

the FS. The moment of inertia and coupling matrix can be 

defined as follows [2]: 

2

350 3 4

* 280 10  kg m

* * 190

J

 
 

 
 
  

 

1 2 2 2

6.4564 1.2782 2.1563

1.2582 0.9176 1.6726  kg m s

1.1169 2.4890 0.8367

F

 
 

   
 
  

 

TABLE I gives the first three natural frequencies of the FS. 
TABLE I 

NATURAL FREQUENCY AND DAMPING RATIO OF THE FS 

Parameter DESCRIPTION Value 

1  
Natural frequency（NF） of the first 

mode 
0.7681 rad s  

2  NF of the second mode 1.1038 rad s  

3  NF of the third mode 1.873 rad s  

1  
Damping ratio (DR) of the first 

mode 0.0336  

2  DR of the second mode 0.0516  

3  DR of the third mode 0.078  

 

Furthermore, the external disturbance  0d t  of this system 

is assumed to be 

 

   

   

   

01

0 02

03

0.002 cos 0.03 2sin 0.06 1  N m

0.002 sin 0.03 2cos 0.06 1  N m

0.002 cos 0.03 2cos 0.06 1  N m

d t t

d t d t t

d t t

      


        


      

 

The initial rotation angle   is defined as 

   0 6 6 6
T

    , and the initial angular velocity is 

assumed to be    0 0 0 0
T

  . The initial modal 

coordinate vector is also defined as 

       0 0.1sin 0.1 0.1sin 0.2 0.2sin 0.5
T

q t t t    . 

The aforementioned parameters can be substituted into (1) 

and (2), whose dynamic characteristics can be obtained using 

MATLAB. Subsequently, the H  control gain can be 

obtained using the input constraints. Based on the assumption 

that the input saturation maxu  is 100 N m , rate saturation 

maxv  is 100 , decay rate   is 0.1 , output vector C  is 
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 1 1 1 1 1 1 , and positive scalar   is 18 , application 

of the LMI toolbox can give the numerical solution to the 

optimization problem (20). Thus, we can obtain 0.0208  , 

X  and Y . 

Using (26), the constrained H  control gain can be 

obtained as 

19.1702 14.6240 13.8875

14.8976 18.5508 14.2374

18.5762 18.6693 21.0550

69.0007 6.5204 1.7820

13.4795 67.1374 10.4546

47.9423 49.2091 83.0097

K

  


   

  

   


  

   

.

 

Thus, the dynamic characteristics of this system are 

obtained. The trajectories of rotation angles, angular velocity 

and output can reflect the proposed H  controller 

performance (Fig. 2–Fig. 4). Due to external disturbances and 

due to strict constraints, it is difficult for the state variable 

 x t  to approach zero. The control of torques and rates 

illustrates that the inputs can also satisfy the requirement of 

the constraints (Fig. 5, 6). 

 
Fig. 2.  Trajectories of rotation angles using the H

 controller at input 

saturation 
max 100u   and rate saturation 

max 100v   

 

 
Fig. 3.  Trajectories of angular velocity using the H

 controller at input 

saturation 
max 100u   and rate saturation 

max 100v   

 

 
Fig. 4.  Trajectory of output using the H

 controller at input saturation 

max 100u   and rate saturation 
max 100v   

 

 
Fig. 5.  Control torques of H

 controller at input saturation 
max 100u   and 

rate saturation 
max 100v   

 

 
Fig. 6.  Control rates of H

 controller at input saturation 
max 100u   and 

rate saturation 
max 100v   
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However, the input constraints degrade the dynamical 

characteristics of the system because of a balance between the 

high-property index and system constraints. Strictly speaking, 

the rotation angle and angular velocity have relatively large 

fluctuations, which are not suitable for the normal operation 

of a FS. Although the proposed methodology can enhance the 

stability of such system, the constraints of the actuators may 

produce an output that cannot satisfy the dynamic 

characteristics. To evaluate the effectiveness of such 

controller, we define max 500u  , max 500v   and 3  . 

Application of the LMI toolbox can also give
41.028 10   , 

X  and Y . 

Similarly, the new H  control gain can be obtained as 

66.2283 61.8393 61.5609

64.4642 68.2859 64.3768

92.5959 92.7907 95.4631

162.9145 100.3534 96.4840

105.6966 160.2164 104.5284 .

154.4290 157.1433 195.0540

K

  


   

  

   


  

   

 

Subsequently, the rotation angles and the output of the 

flexible spacecraft (Fig. 7–Fig. 9) can be determined. The 

comparison of the dynamic characteristics of the system at 

different input constraints, that is, 
max max 100u v   and 

max max 500u v  , shows that the time of the transient state 

decreases by a large amount. This comparison also shows that 

the performance of interference suppression is enhanced 

which is indicated by the robust performance index  .  

Furthermore, the control torques and rates are investigated 

under the given constraints (Fig. 10–Fig. 11). Evidently, the 

proposed H  controller can effectively restrict the inputs. 

However, the input cannot approach the maximum value 

because the redundant control will be applied to respond to 

the unknown external disturbances (Fig. 5, 6, 10, 11). 

Therefore, the simulation results verified the performance of 

that controller from different perspectives of the closed-loop 

model. 

 
Fig. 7.  Trajectories of rotation angles using H

 controller at input 

saturation 
max 500u   and rate saturation 

max 500v   

 

 
Fig. 8.  Trajectories of angular velocity using H

 controller at input 

saturation 
max 500u   and rate saturation 

max 500v   

 

 
Fig. 9.  Trajectory of output using H

 controller at input saturation 

max 500u   and rate saturation 
max 500v   

 

 
Fig. 10.  Control torques of H

 controller at input saturation 
max 500u   

and rate saturation 
max 500v   
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Fig. 11.  Control rates of H

 controller at input saturation 
max 500u   and 

rate saturation 
max 500v   

V. CONCLUSIONS 

This study investigates the robust control problem for a 

typical FS system subject to bounded outer disturbance, input 

magnitude saturation, and rate saturation. A constrained H  

state feedback control is established to ensure the stabilization 

of a closed-loop system and suppress the outer disturbances. 

The nonlinear model of the FS is transformed as a typical 

state-space equation with nonlinear external disturbances. 

Based on the definition of norm and exponential stability, a 

sufficient condition is obtained based on LMI approach. 

Application of the invariant set theory can also limit the 

manipulated input based on input saturation and rate 

limitation. The control gain can be determined based on 

treating convex problem so as to enhance the property of the 

closed-loop system. The simulation results reflect that the 

performance of the proposed methodology can meet the 

requirement. Future research will extend the present results to 

the flexible spacecraft model described by nonlinear partial 

differential equations.  
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