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Abstract—This paper contains the finding of some upper
bound estimates for the maximal modulus of a lacunary
polynomial of degree n on a circle of radius 0 < r ≤ R ≤ k
under the assumption that the polynomial has no zero in a disk
of radius k, k > 0. Our result extends some known inequalities
concerning derivative of a polynomial into integral analogues
and it further generalizes as well as sharpens some other results
in this direction.

Index Terms—polynomial, zero, integral inequality, maxi-
mum modulus.

I. INTRODUCTION

Let p(z) be a polynomial of degree n. We define

‖p‖γ =

{
1

2π

∫ 2π

0

|p(eiθ)|γdθ
} 1
γ

, 0 < γ <∞. (1)

If we let γ →∞ in the above equality and make use of the
well-known fact from analysis [21] that

lim
γ→∞

{
1

2π

∫ 2π

0

|p(eiθ)|γdθ
} 1
γ

= max
|z|=1

|p(z)|,

we can suitably denote

‖p‖∞ = max
|z|=1

|p(z)|.

Similarly, one can define
‖p‖0 = exp

{
1
2π

∫ 2π

0
log|p(eiθ)|dθ

}
and show that

lim
γ→0+

‖p‖γ = ‖p‖0. It would be of further interest that by

taking limits as γ → 0+ that the stated results holding for
γ > 0, hold for γ = 0 as well.

For r > 0, we denote M(p, r) = max
|z|=r

|p(z)|.
A famous result due to Bernstein [16], [22] states that if

p(z) is a polynomial of degree n, then

‖p
′
‖∞ ≤ n‖p‖∞. (2)

Inequality (2) can be obtained by letting γ → ∞ in the
inequality

‖p
′
‖γ ≤ n‖p‖γ , γ > 0. (3)

Inequality (3) for γ ≥ 1 is due to Zygmund [23] and Arestov
[1] proved that it remains valid for 0 < γ < 1 as well.
If we restrict ourselves to the class of polynomials having
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no zero in |z| < 1, then inequalities (2) and (3) can be
respectively improved by

‖p
′
‖∞ ≤

n

2
‖p‖∞ (4)

and
‖p
′
‖γ ≤

n

‖1 + z‖γ
‖p‖γ , γ > 0. (5)

Inequality (4) was conjectured by Erdös and later verified by
Lax [14] , whereas, inequality (5) was proved by de-Bruijn
[9] for γ ≥ 1. Rahman and Schmeisser [19] showed that (5)
remains true for 0 < γ < 1. As a generalization of (4), Malik
[15] proved that if p(z) does not vanish in |z| < k, k ≥ 1,
then

‖p
′
‖∞ ≤

n

1 + k
‖p‖∞. (6)

Under the same assumptions, Qazi [18, Lemma 1] improved
the bound (6) by proving

‖p
′
‖∞ ≤

n

1 +
(
n|a0|kµ+1+µ|aµ|k2µ
n|a0|+µ|aµ|kµ+1

)‖p‖∞. (7)

Under the same hypotheses of the polynomial p(z), Govil
and Rahman [13] extended inequality (6) to Lγ norm by
showing that

‖p
′
‖γ ≤

n

‖k + z‖γ
‖p‖γ , γ ≥ 1. (8)

It was shown by Gardner and Weems [12] and independently
by Rather [20] that (8) also holds for 0 < γ < 1.

While Lγ analogue of (7) was given for γ ≥ 1 by Dewan
et al. [10] and independently by Chanam [6] for γ > 0.

‖p
′
‖γ ≤

n

‖A+ z‖γ
‖p‖γ , (9)

where A =
n|a0|kµ+1+µ|aµ|k2µ
n|a0|+µ|aµ|kµ+1 .

Further, as a generalization of (6) Bidkham and Dewan [5]
proved that

‖p
′
(rz)‖∞ ≤

n(r + k)n−1

(1 + k)n
‖p‖∞, for 1 ≤ r ≤ k. (10)

As a generalization of (10), Aziz and Zargar [4] proved that if

p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree

n having no zero in |z| < k, k ≥ 1 then for 0 < r ≤ R ≤ k,

‖p
′
(Rz)‖∞ ≤

nRµ−1(Rµ + kµ)
n
µ−1

(rµ + kµ)
n
µ

‖p(rz)‖∞. (11)

Equality holds in (11) for p(z) = (zµ + kµ)
n
µ where n is a

multiple of µ.
Moreover, as an improvement and generalization of (10),

Aziz and Shah [3] proved that
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if p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of de-

gree n having no zero in |z| < k, k > 0, then for
0 < r ≤ R ≤ k,

‖p
′
(Rz)‖∞ ≤

nRµ−1(Rµ + kµ)
n
µ−1

(rµ + kµ)
n
µ

{‖p(rz)‖∞ −m} ,

(12)
The result is best possible and equality in (12) holds for
p(z) = (zµ + kµ)

n
µ where n is a multiple of µ.

Further, Chanam and Dewan [7] improved (12) by involv-
ing certain coefficients of the polynomial. In fact, they proved

Theorem 1. If p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k,

‖p
′
(Rz)‖∞ ≤

n


µ
n
|aµ|
|a0|−mk

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1Rµ + k2µR)

×
exp

n
∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)

dt


{‖p(rz)‖∞ −m} . (13)

where m = min
|z|=k

|p(z)|.

Inequality (13) is sharp for p(z) = (zµ + kµ)
n
µ where n

is a multiple of µ.
Mir and Dar [17] proved the following inequality for the
same class of polynomials by involving some more parame-
ters, which they claimed that their result was a generalization
and refinement of Theorem 1. But if we analyse closely, it
is noticed that their result is just a weak generalization of
Theorem 1.

Theorem 2. If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for every l > 1, 0 < r ≤ R ≤ k and 0 ≤ λ ≤ 1,

‖p(lRz)− p(Rz)‖∞ ≤

(ln − 1)
{(

lµ−1
ln−1

)
|aµ|

|a0|−λmk
µ+1Rµ +Rµ+1

}
Rµ+1 + kµ+1 +

(
lµ−1
ln−1

)
|aµ|

|a0|−λm (kµ+1Rµ + k2µR)
×

exp

n
∫ R

r

µ
n

|aµ|
|a0|−λmk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n

|aµ|
|a0|−λm (kµ+1tµ + k2µt)

dt


{‖p(rz)‖∞ − λm} , (14)

where m = min
|z|=k

|p(z)|.

Dividing both sides of (14) by R(l− 1) and making limit
as l→ 1, inequality (14) reduces to

‖p
′
(Rz)‖∞ ≤

n

µ
n

|aµ|
|a0|−λmk

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n

|aµ|
|a0|−λm (kµ+1Rµ + k2µR)

×

exp

n
∫ R

r

µ
n

|aµ|
|a0|−λmk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n

|aµ|
|a0|−λm (kµ+1tµ + k2µt)

dt


{‖p(rz)‖∞ − λm} , (15)

where 0 ≤ λ ≤ 1.
For λ = 1, inequality (15) immediately assumes (13) of
Theorem 1. For each λ ∈ (0, 1), inequality (15) does not set
to any significant result having implications to the related
existing results. For example, for λ = 1

3 , it is obvious from
Lemma 5 that the first two factors in it are respectively less
than or equal to that of inequality (13) of Theorem 1, whereas
in the last factors, the situation is reverse. That is,

‖p(rz)‖γ −
m

3
≥ ‖p(rz)‖γ −m.

Hence, as mentioned earlier, inequality (14) of Theorem 2 is
just a weak generalization. Thus it would have been better
for the authors [17] to set λ = 1 in the proof of Theorem 2
in order not to arise these ambiguities.

Extensions of (11) and (12) into Lγ norm were done very
recently by Chanam et al. [8] by proving the following two
results.

Theorem 3. If p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k, and γ > 0,

‖p
′
(Rz)‖γ ≤

n

R
Fγ×[∫ 2π

0

{
|p(reiθ)|+

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt

}γ
dθ

] 1
γ

(16)

where M(p, t) = max
|z|=t
|p(z)|

and Fγ =
{

1
2π

∫ 2π

0

∣∣∣( kR)µ + eiα
∣∣∣γ dα}−1

γ

.

Theorem 4. If p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k, and γ > 0,

‖p
′
(Rz)‖γ ≤

n

R
Fγ×[∫ 2π

0

{
|p(reiθ)|+ n

{∫ R

r

tµ−1

tµ + kµ
M(p, t)dt−

∫ R

r

tµ−1

tµ + kµ
mdt

}
−m

}γ
dθ

] 1
γ

, (17)

where Fγ and M(p, t) are as defined in Theorem 3 and
m = min

|z|=k
|p(z)|.

II. LEMMAS

For the proof of the theorem, we require the following
lemmas.

Lemma 5. For µ = 1, 2, 3, ...n, n ∈ N, any complex number
aµ 6= 0, and for every 0 < R ≤ k, the function

f(x) =
µ
n
|aµ|
x kµ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
x (kµ+1Rµ + k2µR)

(18)
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is a non-increasing function of x > 0.

Proof: The proof follows simply from first the derivative
test. For

f
′
(x) = −

µ
n
|aµ|2
x2 k2µRµ−1(k2 −R2)[

Rµ+1 + kµ+1 + µ
n
|aµ|
x (kµ+1Rµ + k2µR)

]2
≤ 0.

Lemma 6. If p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k ≥ 1,
then

max
|z|=1

|p
′
(z)| ≤ n

1 + s0

{
max
|z|=1

|p(z)| −m
}
, (19)

where m = min
|z|=k

|p(z)|
and

s0 = kµ+1


µ
n
|aµ|
|a0|−mk

µ−1 + 1

µ
n
|aµ|
|a0|−mk

µ+1 + 1

 .

The above lemma is due to Gardner et al. [11].

Lemma 7. If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k ≥ 1,
then on |z| = 1

|q
′
(z)| ≥ kµ+1

µ
n
|aµ|
|a0| k

µ−1 + 1

1 + µ
n
|aµ|
|a0| k

µ+1
|p
′
(z)|, (20)

where q(z) = znp( 1
z ).

This lemma was proved by Qazi [18].

Lemma 8. If p(z) is a polynomial of degree n and q(z) =

znp( 1
z ), then for each α, 0 ≤ α < 2π and γ > 0,∫ 2π

0

∫ 2π

0

|q
′
(eiθ) + eiαp

′
(eiθ)|γdθdα ≤

2πnγ
∫ 2π

0

|p(eiθ)|γdθ. (21)

This lemma was obtained by Aziz [2].

Lemma 9. If p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k,

|p(Reiθ)| ≤ |p(reiθ)|+

n
∫ R
r

µ
n

|aµ|
|a0|−m

kµ+1tµ−1+tµ

tµ+1+ µ
n

|aµ|
|a0|−m

(kµ+1tµ+k2µt)+kµ+1
×

{M(p, t)−m} dt, (22)

and

M(p, r) + n [{M(p, t)−m}×∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)

dt

 ≤

exp

{
n

∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)

dt


×{M(p, r)−m}+m, (23)

where m = min
|z|=k

|p(z)|, M(p, t) = max
|z|=t
|p(z)| and

M(p, r) = max
|z|=r

|p(z)|.

Proof: Since p(z) has no zero in |z| < k, k > 0, for
0 < t ≤ k, P (z) = p(tz) has no zero in |z| < k

t ,
k
t ≥ 1.

Thus using Lemma 6 to P (z), we have

max
|z|=1

|P
′
(z)| ≤ n

1 + (kt )µ+1

{
µ
n

|aµ|
|a0|−m

tµ( kt )
µ−1+1

µ
n

|aµ|
|a0|−m

tµ( kt )
µ+1+1

}
{

max
|z|=1

|P (z)| − min
|z|= k

t

|P (z)|

}
where

m = min
|z|= k

t

|P (z)| = min
|z|= k

t

|p(tz)| = min
|z|=k

|p(z)|.

Which gives

tmax
|z|=t
|p
′
(z)| ≤

n


µ
n
|aµ|
|a0|−m

kµ+1

t + 1

1 + µ
n
|aµ|
|a0|−m

kµ+1

t + µ
n
|aµ|
|a0|−m

k2µ

tµ + kµ+1

tµ+1

{
max
|z|=1

|p(tz)| −m
}
,

which is equivalent to

max
|z|=t
|p
′
(z)| ≤

n


µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1

{
max
|z|=t
|p(z)| −m

}
. (24)

Now, for 0 < r ≤ R ≤ k and 0 ≤ θ < 2π, we have

|p(Reiθ)− p(reiθ)| ≤
∫ R

r

|p
′
(teiθ)|dt

which implies

|p(Reiθ)| ≤ |p(reiθ)|+
∫ R

r

|p
′
(teiθ)|dt. (25)

Since ∫ R

r

|p
′
(teiθ)|dt ≤

∫ R

r

max
|z|=t
|p
′
(z)|dt,

using inequality (24) in (25), we get the first inequality (22)
of Lemma 9.

Further, taking maximum over θ in inequality (22), we
have

max
|z|=R

|p(z)| ≤ max
|z|=r

|p(z)|+

n

∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1

×{M(p, t)−m} dt. (26)
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Now, let us denote the right hand side of inequality (26) by
φ(R). Then

φ
′
(R) = n


µ
n
|aµ|
|a0|−mk

µ+1Rµ−1 +Rµ

Rµ+1 + µ
n
|aµ|
|a0|−m (kµ+1Rµ + k2µR) + kµ+1


×{M(p,R)−m} . (27)

Using M(p,R) ≤ φ(R), equality (27) can be written as

φ
′
(R)− n


µ
n
|aµ|
|a0|−mk

µ+1Rµ−1 +Rµ

Rµ+1 + µ
n
|aµ|
|a0|−m (kµ+1Rµ + k2µR) + kµ+1


×{φ(R)−m} ≤ 0. (28)

Multiplying both sides of (28) by

exp

{
−n×

∫
µ
n
|aµ|
|a0|−mk

µ+1Rµ−1 +Rµ

Rµ+1 + µ
n
|aµ|
|a0|−m (kµ+1Rµ + k2µR) + kµ+1

dR


we get

d

dR
[{φ(R)−m} exp {−n×∫ µ

n
|aµ|
|a0|−mk

µ+1Rµ−1 +Rµ

Rµ+1 + µ
n
|aµ|
|a0|−m (kµ+1Rµ + k2µR) + kµ+1

dR




≤ 0. (29)

It is concluded from (29) that the function

exp

{
−n
∫
µ
n
|aµ|
|a0|−mk

µ+1Rµ−1 +Rµ

Rµ+1 + µ
n
|aµ|
|a0|−m (kµ+1Rµ + k2µR) + kµ+1

dR


×{φ(R)−m}

is a non-increasing function of R in (0, k]. Hence for
0 < r ≤ R ≤ k,

exp

{
−n
∫
µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1

dr


×{φ(r)−m} ≥

exp

{
−n
∫
µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1

dR


×{φ(R)−m} ,

which is equivalent to

exp

{
n

∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1

dR


×{φ(r)−m} ≥ {φ(R)−m} . (30)

Since φ(r) = M(p, r) and using the value of φ(R) in (30),
we get

M(p, r) + n [{M(p, t)−m}∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)

dt

 ≤

m+ {M(p, r)−m} × exp

{
n

∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)

dt

 .

This completes the proof of inequality (23) of Lemma 9.

Lemma 10. If p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then

µ

n

|aµ|kµ

|a0| −m
≤ 1, (31)

where m = min
|z|=k

|p(z)|.

This lemma is due to Gardner et al. [11].

Lemma 11. If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then 0 < R ≤ k,

µ
n
|aµ|R
|a0|−mk

2µ + kµ+1

µ
n
|aµ|
|a0|−mk

µ+1Rµ +Rµ+1
≥ 1. (32)

Proof: Since p(z) 6= 0 in |z| < k, k > 0, for
0 < R ≤ k, the polynomial P (z) = p(Rz) 6= 0 in
|z| < k

R ,
k
R ≥ 1. If we apply Lemma 10 to the polynomial

P (z), we have
µ

n

|aµ|
|a0| −m

kµ ≤ 1. (33)

Since R ≤ k, we have

0 ≤ Rµk −Rkµ ≤ kµ+1 −Rµ+1. (34)

Multiplying (33) and (34) sidewise, we have

µ

n

|aµ|
|a0| −m

kµ(Rµk −Rkµ) ≤ (kµ+1 −Rµ+1),

which is equivalent to (32) and the proof of Lemma 11 is
completed.

Lemma 12. If p(z) is a polynomial of degree n having no
zero in |z| < k, k > 0, then

|p(z)| ≥ m for |z| ≤ k, (35)

where m = min
|z|=k

|p(z)|.

This lemma is due to Gardner et al. [11].

Lemma 13. The function

g(x) = kt+1

{
t
n
|at|
x kt−1 + 1

t
n
|at|
x kt+1 + 1

}
(36)
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where k ≥ 1, t > 0, n ∈ N, is a non-decreasing function of
x > 0.

Proof: The proof follows simply by the first derivative
test.

Lemma 14. If p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k,

{M(p, t)−m} ×∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)

dt

≤
∫ R

r

tµ−1

tµ + kµ
{M(p, t)−m} dt, (37)

where M(p, t) = max
|z|=t
|p(z)|, m = min

|z|=k
|p(z)|.

Proof: Since p(z) 6= 0 in |z| < k, k > 0, the polynomial
P (z) = p(tz) 6= 0 in |z| < k

t ,
k
t ≥ 1 where 0 < t ≤ k.

Hence applying Lemma 10 to P (z), we get

µ

n

|aµ|tµ

|a0| −m

(
k

t

)µ
≤ 1, (38)

where m = min
|z|= k

t

|P (z)| = min
|z|= k

t

|p(tz)| = min
|z|=k

|p(z)|.

Now, (38) becomes

µ

n

|aµ|kµ

|a0| −m
≤ 1,

which is equivalent to

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)

≤ tµ−1

tµ + kµ
.

(39)
Since 0 < t ≤ k, in particular, by Lemma 12, we have

max
|z|=t
|p(z)| ≥ m,

that is,
M(p, t)−m ≥ 0. (40)

Multiplying both sides of (39) by {M(p, t)−m} and inte-
grating both sides of the resulting inequality with respect to
t from r to R, we obtain inequality (37) of Lemma 14.

Lemma 15. If p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k,

exp

n
∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)


≤
(
kµ +Rµ

kµ + rµ

)n
µ

, (41)

where m = min
|z|=k

|p(z)|.

This lemma was obtained by Chanam and Dewan [7].

III. MAIN RESULT

In this paper, under the same set of hypotheses, by
involving certain coefficients of the polynomial, we improve
both the Theorems 3 and 4 proved recently by Chanam et al.
[8] by extending Theorem 1 into Lγ norm. More precisely,
we prove

Theorem 16. If p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k, and γ > 0,

‖p
′
(Rz)‖γ ≤

n

R
Tγ

{
1

2π

∫ 2π

0

[
|p(reiθ)|+

n

∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)

dt

{M(p, t)−m} −m]
γ
dθ}

1
γ . (42)

where

Tγ =
1{

1
2π

∫ 2π

0
|A+ eiα|γ

} 1
γ

, (43)

m = min
|z|=k

|p(z)|,

and

A =

µ
n
|aµ|R
|a0|−mk

2µ + kµ+1

µ
n
|aµ|
|a0|−mk

µ+1Rµ +Rµ+1
.

Proof: Since p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, does

not vanish in |z| < k, k > 0, for any λ with |λ| < 1 by
Rouche’s theorem, the polynomial p(z) − λm has no zero
in |z| < k, k > 0. Hence for 0 < R ≤ k, the polynomial
P (z) = p(Rz)− λm has no zero in |z| < k

R ,
k
R ≥ 1.

Applying Lemma 7 to the polynomial P (z), we have for
|z| = 1,

B|P
′
(z)| ≤ |Q

′
(z)|, (44)

where Q(z) = znP (
1

z
) and

B =

(
k

R

)µ+1


µ
n
|aµ|Rµ
|a0−λm| (

k
R )µ−1 + 1

µ
n
|aµ|Rµ
|a0−λm| (

k
R )µ+1 + 1

 .

Using Lemma 12, |p(z)| > m for |z| < k, i.e., in particular,
|a0| > m. Since |λ| < 1, we have |λ|m < m < |a0|, and
therefore

|a0 − λm| ≥ |a0| − |λ|m > |a0| −m.

Using the fact of Lemma 13, we have B ≥ A, where

A =

µ
n
|aµ|R
|a0|−mk

2µ + kµ+1

µ
n
|aµ|
|a0|−mk

µ+1Rµ +Rµ+1
. (45)

From (44), we have for |z| = 1,

A|P
′
(z)| ≤ |Q

′
(z)|. (46)

and by Lemma 11, A ≥ 1.
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We can easily verify that for every real number α and
R
′ ≥ r′ ≥ 1,

|R
′
+ eiα| ≥ |r

′
+ eiα|. (47)

This implies for each γ > 0,∫ 2π

0

|R
′
+ eiα|γdα ≥

∫ 2π

0

|r
′
+ eiα|γdα. (48)

For point eiθ, 0 ≤ θ ≤ 2π, for which P
′
(eiθ) 6= 0, we denote

R
′

=

∣∣∣∣∣Q
′
(eiθ)

P ′(eiθ)

∣∣∣∣∣ ,
and r

′
= A, then from (47), R

′ ≥ r′ ≥ 1.
Now, we have for each γ > 0,∫ 2π

0

|Q
′
(eiθ) + eiαP

′
(eiθ)|γdα

= |P
′
(eiθ)|γ

∫ 2π

0

∣∣∣∣∣Q
′
(eiθ)

P ′(eiθ)
+ eiα

∣∣∣∣∣
γ

dα

= |P
′
(eiθ)|γ

∫ 2π

0

∣∣∣∣∣
∣∣∣∣∣Q
′
(eiθ)

P ′(eiθ)

∣∣∣∣∣+ eiα

∣∣∣∣∣
γ

dα

≥ |P
′
(eiθ)|γ

∫ 2π

0

|A+ eiα|γdα.[by (48)] (49)

For points eiθ, 0 ≤ θ < 2π, for which P
′
(eiθ) = 0,

inequality (49) trivially holds.
Now using (49) in Lemma 8, we obtain for each γ > 0,∫ 2π

0

|A+ eiα|γdα
∫ 2π

0

|P
′
(eiθ)|γdθ ≤

2πnγ
∫ 2π

0

|P (eiθ)|γdθ. (50)

Since P (z) = p(Rz) − λm, inequality (50) can be written
as ∫ 2π

0

|A+ eiα|γdα
∫ 2π

0

|Rp
′
(Reiθ)|γdθ ≤

2πnγ
∫ 2π

0

|p(Reiθ)− λm|γdθ. (51)

Now, we choose the argument of λ suitably such that

|p(Reiθ)− λm| = |p(Reiθ)| − |λ|m. (52)

Using (52) in (51), we have∫ 2π

0

|A+ eiα|γdα
∫ 2π

0

|Rp
′
(Reiθ)|γdθ ≤

2πnγ
∫ 2π

0

{
|p(Reiθ)| − |λ|m

}γ
dθ. (53)

By applying inequality (22) of Lemma 9 to inequality (53),
we obtain

Rγ
∫ 2π

0

|A+ eiα|γdα
∫ 2π

0

|P
′
(Reiθ)|γdθ ≤ 2πnγ×

∫ 2π

0

[
|p(reiθ)| − |λ|m+ n

{
max
|z|=t
|p(z)| −m

}
∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1

dt

γ dθ

or equivalently,

‖p
′
(Rz)‖γ ≤

n

R
Tγ

{
1

2π

∫ 2π

0

[
|p(reiθ)|+ n×∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)

dt

{M(p, t)−m} − |λ|m]
γ
dθ}

1
γ . (54)

where Tγ is as defined in (43).
Taking limit as |λ| → 1, inequality (54) becomes (42) of

Theorem 16 and this completes the proof of Theorem 16.

Remark 17. Both the ordinary inequalities (11) and (12) are
best possible for the polynomial p(z) = (zµ + kµ)

n
µ where

n is a multiple of µ. It may be expected that inequality (42)
of Theorem 16 is sharp for this polynomial. But it is not so,
as is discussed below:

It is obvious that for p(z) = (zµ + kµ)
n
µ , where n is a

multiple of µ, m = min
|z|=k

|p(z)| = 0, and hence inequality

(42) of Theorem 16 equivalently takes{
1

2π

∫ 2π

0

∣∣kµ +Rµeiα
∣∣γ dα}×{∫ 2π

0

∣∣Rµeiθµ + kµ
∣∣γ(nµ−1) dθ} ≤

[∫ 2π

0

{∣∣rµeiθµ + kµ
∣∣nµ +

(Rµ + kµ)
n
µ − (rµ + kµ)

n
µ

}γ
dθ
]
. (55)

In particular, if we set k = R = r, and µ = 1, then inequality
(55) assumes{

1

2π

∫ 2π

0

∣∣1 + eiα
∣∣γ dα}{∫ 2π

0

∣∣eiθ + 1
∣∣γ(n−1) dθ} ≤{∫ 2π

0

∣∣eiθ + 1
∣∣nγ dθ} . (56)

Now, we have for p > −1,∫ π
2

0

cosp θdθ =

√
πΓ(p2 + 1

2 )

2Γ(p2 + 1)
. (57)

For γ > 0, by a simple calculation, we have∫ 2π

0

∣∣1 + eiα
∣∣γ dα = 2γ+2

∫ π
2

0

cosγ αdα,

which on using (57) gives∫ 2π

0

∣∣1 + eiα
∣∣γ dα = 2γ+1

√
π

Γ(γ2 + 1
2 )

Γ(γ2 + 1)
. (58)

Applying equality (58) in inequality (56), we have

1

2π
× 2γ(n−1)+1

√
π

Γ(γ(n−1)2 + 1
2 )

Γ(γ(n−1)2 + 1)
× 2γ+1

√
π

Γ(γ2 + 1
2 )

Γ(γ2 + 1)

≤ 2nγ+1
√
π

Γ(nγ2 + 1
2 )

Γ(nγ2 + 1)
,

that is,

1√
π
×

Γ(γ(n−1)2 + 1
2 )

Γ(γ(n−1)2 + 1)
×

Γ(γ2 + 1
2 )

Γ(γ2 + 1)
≤

Γ(nγ2 + 1
2 )

Γ(nγ2 + 1)
. (59)
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Further, when n = 3, γ = 4, inequality (59) becomes

1√
π
×

Γ(4 + 1
2 )

Γ(5)
×

Γ(2 + 1
2 )

Γ(3)
≤

Γ(6 + 1
2 )

Γ(7)

which on simplification gives

5 ≤ 11,

in which equality does not hold. This shows that inequality
(42) of Theorem 16 is not sharp.

Remark 18. Since ( kR )µ ≤ A, where A is as defined in
Theorem 16, and by Lemma 14, the bound given by Theorem
16 is better than both the bounds given by Theorems 3 and
4 recently proved by Chanam et al. [8].

Remark 19. Using |p(reiθ)| ≤M(p, r) in Theorem 16, we
have the following interesting result.

Corollary 20. If p(z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k and γ > 0,

‖p
′
(Rz)‖γ ≤

n

R
Tγ [M(p, r) + n×∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)

dt

{M(p, t)−m} −m] , (60)

where Tγ is as defined in Theorem 16 and m = min
|z|=k

|p(z)|.

Remark 21. By the same argument of Remark 18, it is
evident that Corollary 20 yields a better bound than that of
the bounds given by Chanam et al. [7, Corollaries 3.5 and
3.10].

In addition, using inequality (23) of Lemma 9 in inequality
(60) of Corollary 20, we have the following Lγ version of
Theorem 1

Corollary 22. If p(z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k and γ > 0,

‖p
′
(Rz)‖γ ≤

n

R
Tγ ×

exp

n
∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)


{M(p, r)−m} (61)

where Tγ is as defined in Theorem 16 and m = min
|z|=k

|p(z)|.

Letting γ → ∞ in inequality (61) we get inequality (13)
of Theorem 1.

Remark 23. Using Lemma 15 and considering limit as γ →
∞, we see that inequality (61) of Corollary 22 reduces to
inequality (12) proved by Aziz and Shah [3].

Further, if we let µ = 1 and r = 1 in Corollary 22,
we obtain an improved Lγ version of inequality (10) due
to Bidkham and Dewan [5].

Also, when µ = 1 = R = r in Corollary 22, it gives an
improvement of Lγ inequality (8) due to Govil and Rahman

[13] of inequality (6) for ordinary derivative proved by Malik
[15].

In addition, if we use Lemma 15 for µ = 1 = R = r = k,
then Corollary 20 gives an improved version in Lγ setting
of inequality (4) due to Erdös and Lax [14].
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