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Abstract—The synchronization of multi-layer networks have
important theoretical and practical significance for the study
of the interaction between multi-layer networks. Based on
the multi-layer star-ring networks, this paper firstly defines
a class of multi-layer wheel networks through graph theory.
Secondly, using the master stability function model (MSF),
the factors (such as coupling strength, number of layers, and
number of nodes) that affect the synchronization ability of the
multi-layer wheel networks are obtained under two different
conditions of bounded and unbounded synchronized regions.
Thirdly, simulation experiments are used to analyze how the
above factors affect the synchronization ability. Finally, The
structural parameter values of the multi-layer wheel networks
to achieve the optimal synchronization ability are given, which
provides a basis for controlling the synchronization ability.

Index Terms—multi-layer networks, the coupling strength,
the wheel networks, simulation experiment, synchronization
ability

I. INTRODUCTION

THERE are many complex networks in nature, such as
computer networks, power networks [1, 2], etc. Com-

plex networks can be used as network models for systems
such as neuroscience [3], control [4, 5], and disease detection
[6]. As an important interdisciplinary subject, scholars from
different disciplines carry out this research. In recent years,
the research on complex networks have achieved many good
results, such as synchronization [7-13], super-diffusion [14-
16], network topology [17], node importance evaluation and
containment control [18-19].

Mesh network is the most commonly used network form
in Wan. Generally, there are two or more communication
paths between any two node switches in the communication
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subnet. In this way, when one path fails, the information
can also be sent through another path. In addition, the
network can easily add new functions. As a kind of mesh
network, the research on the synchronization ability of wheel
network is very meaningful. The networks in the real world
are not isolated, and the relationships between multi-layer
networks cannot be determined by modeling single layer
networks. In order to solve this problem, scholars proposed
the supra-Laplacian matrix structure based on the diffusion
dynamic equation of multi-layer networks, and analyzed
the synchronization ability of the networks according to
its eigenvalue spectrum [20]. Wei et al. studied the factors
affecting the synchronization ability of two-layer regular
networks, including star networks, ring networks and chain
networks [21]. Wei et al. analyzed the synchronization ability
of two-layer correlation networks and found that the inter-
layer linking patterns and the coupling strength are the key
factors to determine the synchronization ability [22]. Yang et
al. derived the eigenvalue spectrum of two types of double
layer hybrid directional weighted star-ring networks, and
analyzed the relationships among the synchronization ability
and network structure parameters [23]. The innovations of
this article are as follows:

Firstly, we give the definitions of multi-layer wheel net-
works and introduce the basic knowledge of multi-layer
networks synchronization.

Secondly, the supra-Laplacian spectrum of multi-layer
coupled wheel networks are calculated, and the important
indexes of synchronization ability are deduced in the case of
different synchronized regions.

Thirdly, the relationships among the synchronization abili-
ty and parameters of multi-layer coupled wheel networks are
analyzed.

Finally, the structural parameter values of the multi-layer
wheel networks to achieve the optimal synchronization abil-
ity are given.

II. PRELIMINARIES

A. Introduction of synchronization ability of multi-layer net-
works

In this article, the M -layer networks are considered and
the number of single layer nodes is S. The network structure
of each layer is the same. The corresponding nodes between
layers are all connected, the dynamic equation of the ith node
in the N th layer can be described as [22]:

ẋN
i = f(xN

i ) + a
S∑

j=1

ωN
ij T (x

N
j ) + d

M∑
V =1

dNV
i K(xN

i ), (1)

i = 1, 2, · · · , S,N = 1, 2, · · · ,M.
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xN
i is the state variable of the ith node in the N th layer,

f(×) is the dynamic function, a and d are the intralayer and
interlayer coupling strengths, T and K are the intralayer and
interlayer coupling functions.
WN = (ωN

ij ) ∈ RS×S is the intra coupling
matrix of the N th layer, ωN

ii = −
∑S

j=1,j ̸=i ω
N
ii ,

ωN
ij =

{
1, ith node is connected with jth node
0, otherwise

. DM =

(dNV
i ) ∈ RM×M is the inter coupling matrix, dNN

i =
−
∑M

V=1,V ̸=N dNV
i . Let iN be ith node in N th layer, iV

be ith node in V th layer,

dNV
i =

{
1, iN is connected with iV

0, otherwise
.

Let ΛN be the supra-Laplacian matrix of the intralayer in
the N th layer, Λintra be the supra-Laplacian matrix of the
intralayer, ΛN = −aWN ∈ RS×S .

Λintra =
M⊕

N=1

WN =


W 1 0 · · · 0
0 W 2 · · · 0
...

...
. . .

...
0 0 · · · WM

 (2)

Λinter denotes the supra-Laplacian matrix of the interlay-
er, Λinter = −dDM ⊗ IS .

⊗
is Kronecker product, IS is

the identity matrix of S × S. The supra-Laplacian matrix of
multi-layer network is Λ = Λinter + Λintra.

Let the eigenvalues of the supra-Laplacian matrix Λ be
0 = λ1 < λ2 ≤ λ3 ≤ λ4 ≤ · · · ≤ λmax. According to
the MSF, the minimum nonzero eigenvalue of the supra-
Laplacian matrix λ2 is used to reflect the synchronization
ability of multi-layer coupled networks in the unbounded
synchronized region. The synchronization ability is positively
correlated with λ2. r = λmax

λ2
is used to reflect the syn-

chronization ability of multi-layer coupled networks in the
bounded synchronized region, the synchronization ability is
negatively correlated with r [23].

B. The structure model of wheel networks

Let G = (V (G), E(G)) be a connected graph, where
V (G) = {v1, v2, · · · , vn−2, vn−1, vn} is the vertex set,
E(G) = {(vi, vj)|i, j = 1, 2, 3, · · · , n − 1, n; i ̸= j} is the
edge set. Let Kc be a complete graph with c nodes, Pk be
a path with k vertices, and Cm be a cycle of length m.

In order to obtain the definition of multi-layer wheel
networks, we introduce two graph operations as follows.

Definition 1 ([24]) G1 denotes a simple graph with n∗

vertices and m∗ edges, G2 denotes a simple graph with n∗∗

vertices and m∗∗ edges. G1 ◦G2 is obtained from one copy
of G1 and n∗ copies of G2 and then joining the ith vertex of
G1 to every vertex in the ith copy of G2(i = 1, 2, 3, · · · , n∗).

Definition 2 ([25]) G1, G2 represent two simple graphs,
G1 ▽G2 is obtained from the disjoint union of G1 and G2

by adding the edges {uv : u ∈ V (G1), v ∈ V (G2)}.
Gc(c,m+1−c, k) = (Kc▽Cm+1−c)◦Pk, c is the number

of central nodes, m is the length of cycle(m ≥ c+ 2), k is
the number of nodes in path(k ≥ 2). An example of the
single layer wheel network is shown Fig. 1. GM

c (c,m, k)
are composed of M layers Gc(c,m, k). A specific example
is shown in Fig. 2.

Fig. 1. Single layer wheel network G1(1, 8, 3).

Fig. 2. Double layer wheel network G2
1(1, 6, 3).

III. THE SYNCHRONIZATION ABILITY INDEXES OF
MULTI-LAYER WHEEL NETWORKS

A. The synchronization ability indexes of GM
1 (1,m, k)

According to the structure model of multi-layer wheel
networks, we get the supra-Laplacian matrix of GM

1 (1,m, k).

W1 =



0 1 1 · · · 1 1
1 −2 1 · · · 0 0
1 1 −3 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · −3 1
1 0 0 · · · 1 −2


(k+1)×(k+1)

W2 =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1


(m+1)×(m+1)

,
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W3 =



1 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0


(k+1)×(k+1)

,

W4 =


Θ1 1 1 · · · 1
1 Θ2 1 · · · 1
1 1 Θ2 · · · 0
...

...
...

. . .
...

1 1 0 · · · Θ2


(m+1)×(m+1)

,

where Θ1 = −k −m,Θ2 = −k − 3.
The supra-Laplacian matrix of the intralayer in the N th

layer is
ΛN
1 = −aW1 ⊗W2 − aW3 ⊗W4.

The supra-Laplacian matrix of GM
1 (1,m, k) is

Λ1 = IM ⊗Θ3 + (IM − JM )⊗ (dI), (3)

where Θ3 = ΛN
1 + (M − 1)dI , JM is the M ×M matrix,

whose entries are all 1.
The characteristic polynomial of matrix Λ1 is

ΦI(λ) = det(λI − Λ1) =

∣∣∣∣∣∣∣∣∣∣∣

Θ4 dI dI · · · dI
dI Θ4 dI · · · dI
dI dI Θ4 · · · dI
...

...
...

. . .
...

dI dI dI · · · Θ4

∣∣∣∣∣∣∣∣∣∣∣
,

where Θ4 = λI − ΛN
1 − (M − 1)dI .

From the properties of the determinant, we have

ΦI(λ) = |λI − ΛN
1 ||λI − ΛN

1 −MdI|M−1.(4)

The eigenvalue spectrum of Λ1 is

0, (k + 1)a,
m+ k + 2±

√
(m+ k + 2)2 − 4(m+ 1)

2
a,

Md, (k + 1)a+Md︸ ︷︷ ︸
M−1

,

m+ k + 2±
√
(m+ k + 2)2 − 4(m+ 1)

2
a+Md︸ ︷︷ ︸

M−1

,

eα ±
√
e2α − 4(eα − k − 1)

2
a,

eα ±
√
(eα)2 − 4(eα − k − 1)

2
a+Md︸ ︷︷ ︸

(M−1)

,

(eα = 4sin2(
απ

m
) + k + 2, α = 1, 2, · · · ,m− 1)

4asin2(
βπ

k
) + a︸ ︷︷ ︸

m+1

, 4asin2(
βπ

k
) + a+Md︸ ︷︷ ︸

(M−1)(m+1)

.

(β = 1, 2, · · · , k − 1)

TABLE I
THE SYNCHRONIZATION ABILITY INDEXES OF GM

1 (1,m, k).

m ↑ k ↑ a ↑ d ↑ M ↑

λ2

µ1 < Md ↓ ↓ ↑ − −

µ1 > Md − − − ↑ ↑

r
µ1 < Md ↑ ↑ ↓ ↑ ↑

µ1 > Md ↑ ↑ ↑ ↓ ↓

↑ strengthen, ↓ weaken, − unchange.

We get the minimum nonzero eigenvalue and the maxi-
mum eigenvalue as follows:

λ2 = min{µ1,Md},

λmax =
ω1 +

√
ω2
1 − 4(m+ 1)

2
a+Md,

where

µ1 =
e1 −

√
e21 − 4(e1 − k − 1)

2
a,

e1 = 4sin2(
π

m
) + k + 2, ω1 = m+ k + 2.

Then,

r = (
ω1 +

√
(ω1)2 − 4(m+ 1)

2
a+Md)/λ2.

The specific relationships among the synchronization ability
indexes and parameters are described in Table I.

B. The synchronization ability indexes of GM
2 (2,m, k)

Similar to section A, we get the supra-Laplacian matrix
of GM

2 (2,m, k),

W5 =



Θ5 1 1 · · · 1 1
1 Θ5 1 · · · 1 1
1 1 Θ6 · · · 0 1
...

...
...

. . .
...

...
1 1 0 · · · Θ6 1
1 1 0 · · · 1 Θ6


(m+1)×(m+1)

where Θ5 = −k −m,Θ6 = −k − 4.
The supra-Laplacian matrix of the intralayer in the N th

layer is
ΛN
2 = −aW1 ⊗W2 − aW3 ⊗W5.

The supra-Laplacian matrix of GM
2 (2,m, k) is

Λ2 = IM ⊗Θ7 + (IM − JM )⊗ (dI), (5)

where Θ7 = ΛN
2 + (M − 1)dI .

The eigenvalue spectrum of Λ2 is

0, (k + 1)a,
m+ k + 2±

√
(m+ k + 2)2 − 4(m+ 1)

2
a︸ ︷︷ ︸

2

,

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_26

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 



TABLE II
THE SYNCHRONIZATION ABILITY INDEXES OF GM

2 (2,m, k).

m ↑ k ↑ a ↑ d ↑ M ↑

λ2

µ2 < Md ↓ ↓ ↑ − −

µ2 > Md − − − ↑ ↑

r
µ2 < Md ↑ ↑ ↓ ↑ ↑

µ2 > Md ↑ ↑ ↑ ↓ ↓

↑ strengthen, ↓ weaken, − unchange.

Md, (k + 1)a+Md︸ ︷︷ ︸
M−1

,

m+ k + 2±
√
(m+ k + 2)2 − 4(m+ 1)

2
a+Md︸ ︷︷ ︸

2(M−1)

,

fα ±
√

f2
α − 4(fα − k − 1)

2
a,

fα ±
√
(fα)2 − 4(fα − k − 1)

2
a+Md︸ ︷︷ ︸

(M−1)

,

(fα = 4sin2(
απ

m− 1
) + k + 3, α = 1, 2, · · · ,m− 2),

4asin2(
βπ

k
) + a︸ ︷︷ ︸

m+1

, 4asin2(
βπ

k
) + a+Md︸ ︷︷ ︸

(M−1)(m+1)

.

(β = 1, 2, · · · , k − 1)

We get the minimum nonzero eigenvalue and the maxi-
mum eigenvalue as follows:

λ2 = min{µ2,Md},

λmax =
ω1 +

√
ω2
1 − 4(m+ 1)

2
a+Md,

where

µ2 =
f1 −

√
f2
1 − 4(f1 − k − 1)

2
a,

f1 = 4sin2(
π

m− 1
) + k + 3, ω1 = m+ k + 2.

Then,

r = (
ω1 +

√
ω2
1 − 4(m+ 1)

2
a+Md)/λ2.

The specific relationships among the synchronization ability
indexes and parameters are described in Table II.

C. The synchronization ability indexes of GM
c (c,m, k)

We use a similar method to study the synchronization
ability indexes of multi-layer wheel networks with center
nodes c.

The eigenvalue spectrum of GM
c (c,m, k) is derived as

follows:

0, (k + 1)a,
m+ k + 2±

√
(m+ k + 2)2 − 4(m+ 1)

2
a︸ ︷︷ ︸

c

,

Md, (k + 1)a+Md︸ ︷︷ ︸
M−1

,

m+ k + 2±
√
(m+ k + 2)2 − 4(m+ 1)

2
a+Md︸ ︷︷ ︸

c(M−1)

,

gα ±
√
g2α − 4(gα − k − 1)

2
a,

gα ±
√

g2α − 4(gα − k − 1)

2
a+Md︸ ︷︷ ︸

(M−1)

,

(gα = 4sin2(
απ

m+ 1− c
)+ c+ k+1, α = 1, 2, · · · ,m− c),

4asin2(
βπ

k
) + a︸ ︷︷ ︸

m+1

, 4asin2(
βπ

k
) + a+Md︸ ︷︷ ︸

(M−1)(m+1)

.

(β = 1, 2, · · · , k − 1)

We get the minimum nonzero eigenvalue and the maxi-
mum eigenvalue as follows:

λ2 = min{µ3,Md},

λmax =
ω1 +

√
ω2
1 − 4(m+ 1)

2
a+Md,

where

µ3 =
g1 −

√
g21 − 4(g1 − k − 1)

2
a,

g1 = 4sin2(
π

m+ 1− c
) + c+ k + 1, ω1 = m+ k + 2.

Then,

r = (
ω1 +

√
ω2
1 − 4(m+ 1)

2
a+Md)/λ2.

The specific relationships among the synchronization ability
indexes and parameters are described in Table III.
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TABLE III
THE SYNCHRONIZATION ABILITY INDEXES OF GM

c (c,m, k).

m ↑ k ↑ a ↑ d ↑ M ↑

λ2

µ3 < Md ↓ ↓ ↑ − −

µ3 > Md − − − ↑ ↑

r
µ3 < Md ↑ ↑ ↓ ↑ ↑

µ3 > Md ↑ ↑ ↑ ↓ ↓

↑ strengthen, ↓ weaken, − unchange.

0 50 100 150 200 250 300

m

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

2a

2b

2c

Fig. 3. The synchronization ability index changes with m

0 50 100 150 200 250 300

m

0

500

1000

1500

2000

2500

3000

3500

4000

4500

r

r
a

r
b

r
c

Fig. 4. The synchronization ability index changes with m

IV. NUMERICAL SIMULATION EXPERIMENT AND
ANALYSIS

According to the relationships among the synchronization
ability indexes and parameters in section III, the simulation
experiments are carried out in the case of bounded and
unbounded synchronized regions, and the variation of syn-
chronization ability with each parameter are simulated. λ2a,

0 10 20 30 40 50 60 70 80 90 100

k

0

0.05

0.1

0.15

0.2

0.25

2

2a

2b

2c

Fig. 5. The synchronization ability index changes with k

0 10 20 30 40 50 60 70 80 90 100

k

0

2000

4000

6000

8000

10000

12000

14000

r
r
a

r
b

r
c

Fig. 6. The synchronization ability index changes with k

0.5 1 1.5 2 2.5 3

a
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0.14
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0.18

0.2

0.22

0.24

0.26

2

2a

2b

2c

Fig. 7. The synchronization ability index changes with a

λ2b and λ2c represent the synchronization ability indexes of
Gc(c,m, k)(c = 1, 2, 3) in the case of unbounded synchro-
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Fig. 8. The synchronization ability index changes with a
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Fig. 9. The synchronization ability index changes with d
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0.25 0.3 0.35

100

150

200

250

Fig. 10. The synchronization ability index changes with d

nized region. ra, rb and rc represent the synchronization
ability indexes of Gc(c,m, k)(c = 1, 2, 3) in the case of

0 50 100 150

M
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Fig. 11. The synchronization ability index changes with M
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r
r
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Fig. 12. The synchronization ability index changes with M

bounded synchronized region.
We take k = 7, a = 2, d = 0.05,M = 50, and increase m

from 3 to 300 in Fig. 3 and Fig. 4. In the unbounded syn-
chronized region, when m < 256(m < 242,m < 189), λ2a

rapidly decreases to 0.2251, λ2b rapidly decreases to 0.4084,
and λ2c rapidly decreases to 0.5598. When m > 256(m >
242,m > 189), λ2a , λ2b and λ2c remain unchanged with
the increase of m. In the bounded synchronized region, ra,
rb and rc increase with the increase of m.

We take m = 10, a = 2, d = 0.005,M = 50, and increase
k from 2 to 100 in Fig. 5 and Fig. 6. In the unbounded
synchronized region, when k < 8(k < 16, k < 24), λ2a ,
λ2b and λ2c remain unchanged at 0.2500. When k > 8(k >
16, k > 24), λ2a rapidly decreases to 0.0270, λ2b rapidly
decreases to 0.0477, and λ2c rapidly decreases to 0.0686. In
the bounded synchronized region, ra, rb and rc increase with
the increase of k.

We take m = 10, k = 7, d = 0.005,M = 50, and increase
a from 0.5 to 3 in Fig. 7 and Fig. 8. In the unbounded
synchronized region, when a < 1.67(a < 1.04, a <
0.79), λ2a , λ2b and λ2c slowly increase to 0.2500. When
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a > 1.67(a > 1.04, a > 0.79), λ2a, λ2b and λ2c remain
unchanged at 0.2500. In the bounded synchronized region,
when a < 1.67(a < 1.04, a < 0.79), ra slowly decreases
to 189.0116 , rb slowly decreases to 116.6278, rc slowly
decreases to 89.0082. When a > 1.67(a > 1.04, a > 0.79),
ra, rb and rc rapidly increase to 335.8270.

We take m = 10, k = 7,M = 50, a = 2, and
increase d from 0.002 to 2.5 in Fig. 9 and Fig. 10. In
the unbounded synchronized region, when d < 0.006(d <
0.010, d < 0.013), λ2a slowly increase to 0.2994, λ2b

slowly increase to 0.4826, λ2c slowly increase to 0.6365.
When d > 0.006(d > 0.010, d > 0.013), λ2a, λ2b and
λ2c remain unchanged. In the bounded synchronized region,
when d < 0.006(d < 0.010, d < 0.013), ra slowly decreases
to 187.4375, rb slowly decreases to 116.6269, rc slowly
decreases to 88.7136. When d > 0.006(d > 0.010, d >
0.013), ra slowly increases to 603.8856, rb slowly increases
to 374.5799, and rc slowly increases to 284.0456.

We take m = 10, k = 7, d = 0.05, a = 2, and increase
M from 2 to 150 in Fig. 11 and Fig. 12. In the unbounded
synchronized region, when M < 6(M < 10,M < 13), λ2a

slowly increase to 0.2994, λ2b slowly increase to 0.4826, λ2c

slowly increase to 0.6365. When M > 6(M > 10,M > 13),
λ2a, λ2b and λ2c remain unchanged. In the bounded synchro-
nized region, when M < 6(M < 10,M < 13), ra slowly
decreases to 187.4041, rb slowly decreases to 116.6579, rc
slowly decreases to 88.8550. When M > 6(M > 10,M >
13), ra slowly increases to 211.4541, rb slowly increases to
131.1613, and rc slowly increases to 99.4602.

V. MAIN RESULTS

A. Result 1
Gao et al. obtains the synchronization ability index-

es λ⋆
2 and r⋆ of star-composed networks [25], λ⋆

2 =

min{ c+k+1−
√

(c+k+1)2−4c

2 a,Md}, r⋆ = λ⋆
max/λ

⋆
2, where

λmax =
m+k+2+

√
(m+k+2)2−4(m+1)

2 a + Md. Although
the number of network nodes in this paper are the
same as that in the literature [25], the synchroniza-
tion ability indexes are very different. In this pa-

per, λ2 = min{ g1+c+k+1−
√

(g1+c+k+1)2−4(g1+c)

2 a,Md},
r = λmax/λ2, where g1 = 4sin2( π

m+1−c ), λmax =
m+k+2+

√
(m+k+2)2−4(m+1)

2 a + Md. From the properties
of the function, we can deduce λ2 ≥ λ⋆

2. Because of
λmax = λ⋆

max, therefore r ≤ r⋆. Whether the synchronized
region is unbounded or bounded, the synchronization ability
of this paper is better than that of star-composed networks
[25].

B. Result 2
When the synchronized region is unbounded, the specific

relationships among synchronization ability and parameters
are as follows.

With the increase of m, m < m∗, λ2 rapidly de-
creases, m > m∗, λ2 remain unchanged, where m∗ =

2π

arccos(1−M2d2−Mdka−Mda
2a(Md−a)

+ c
2 )

+ c − 1. When m < m∗,

the synchronization ability is negatively correlated with m.
When m > m∗, the change of m will not affect the synchro-
nization ability. The synchronization ability of networks is
optimal at m = c+ 2.

With the increase of k, k < k∗, λ2 remain unchanged, k >
k∗, λ2 slowly decreases, where k∗ = ab

Md+
Md
a −b−1. When

k < k∗, the synchronization ability remain unchanged. When
k > k∗, the synchronization ability is negatively correlated
with k. The synchronization ability of networks is optimal
at k = 2.

With the increase of a(d,M), a < a∗(d < d∗,M < M∗),
λ2 increases at first, a > a∗(d > d∗,M > M∗), λ2

remain unchanged, where a∗ = 2Md

b+k+1−
√

(b+k+1)2−4b
, d∗ =

b+k+1−
√

(b+k+1)2−4b

2M a, M∗ =
b+k+1−

√
(b+k+1)2−4b

2d a(b =
c + 4sin2( π

m+1−c )). When a < a∗(d < d∗,M < M∗), the
synchronization ability is positively correlated with a(d,M).
When a > a∗(d > d∗,M > M∗), the change of a(d,M)
will not affect the synchronization ability. The synchroniza-
tion ability of networks is optimal at a = a∗, d = d∗,M =
M∗.

When the synchronized region is bounded, the specific
relationships among synchronization ability and parameters
are as follows.

With the increase of m(k), r is increased, the synchroniza-
tion ability is negatively correlated with m(k). The synchro-
nization ability of networks is optimal at m = c+ 2, k = 2.

With the increase of a(d,M), a < a∗(d < d∗,M < M∗),
r decreases at first, a > a∗(d > d∗,M > M∗), r
continues to increase. When a < a∗(d < d∗,M < M∗), the
synchronization ability is positively correlated with a(d,M).
When a > a∗(d > d∗,M > M∗), the synchronization ability
is negatively correlated with a(d,M). The synchronization
ability of networks is optimal at a = a∗, d = d∗,M = M∗.

Based on the above analysis, whether the synchronized
region is unbounded or bounded, the synchronization ability
of networks is optimal at m = c + 2, k = 2, a = a∗, d =
d∗,M = M∗.

C. Result 3

Through the numerical simulation experiment and analysis
in section IV, λ2a ≤ λ2b ≤ λ2c, when the synchro-
nized region is unbounded, the synchronization ability of
the networks increases with the increase of central nodes.
rc ≤ rb ≤ ra, when the synchronized region is bounded, the
synchronization ability of the networks also improves with
the increase of central nodes.

VI. CONCLUSION

In this paper, a new multi-layer wheel network model
is constructed on the basis of star-ring network. The MSF
method is used to analyze the synchronization ability of the
networks. Under the same initial conditions, the synchroniza-
tion ability of the network model constructed in this paper
is better than that in the literature [25]. We simulate the
relationships among the synchronization ability and various
parameters, such as the length of cycle m, the number
of nodes k in path. Whether the synchronized region is
unbounded or bounded, m = c + 2, k = 2, a = a∗, d =
d∗,M = M∗, the synchronization ability of networks is
optimal. We further consider the impact of the central node
on the synchronization ability of the networks, whether the
synchronized region is unbounded or bounded, the synchro-
nization ability of the networks improves with the increase of
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central nodes, our conclusion provides an effective strategy
for improving the synchronization ability of the networks.
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