
 

  

Abstract—In this study, we apply the Fredholm-type integral 

equation method to derive the explicit formulas of the average 

run length (ARL) for an autoregressive moving average 

process with explanatory variables (ARMAX(p,q,r)) with 

exponential white noise running on a modified exponentially 

weighted moving average (EWMA) control chart. As a 

performance measure, we compared the computational times 

of calculating the ARL based on explicit formulas and the 

classical numerical integral equation (NIE) method. We found 

that although the ARLs using both methods were very close 

with an absolute percentage difference of less than 0.00001%, 

their calculational times were less than 0.01 and 10 seconds, 

respectively. Furthermore, the comparison of the performances 

of the ARL methods for ARMAX(p,q,r) processes with 

exponential white noise by practical application for time series 

data comprising exchange rates and the price of energy 

running on modified and standard EWMA and cumulative 

sum (CUSUM) control charts using the relative mean index 

(RMI) criteria. The results show that the explicit formulas 

method for the ARL of the process on the modified EWMA 

control chart is more powerful than the CUSUM and standard 

EWMA control charts.  

 
Index Terms— Autoregressive process, moving average 

process, explanatory variable, explicit formulas 

 

I. INTRODUCTION 

TATISTICAL process control (SPC)  is a powerful set 

of tools that are used to inspect, control, and improve the 

quality of products or services that plays an essential role in 

business and manufacturing sectors. Control charts are one 

of the key tools in SPC widely used in various fields, such 
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as health [1], medicine [2], and finance [3]. Shewhart [4] 

presented the first control chart that is still widely used for 

monitoring and detecting large shifts in a process mean. 

Later, the cumulative sum (CUSUM) control chart [5] and 

the standard exponentially weighted moving average 

(EWMA) control chart [6] were found to be more suitable 

for detecting small shifts in a process mean. Moreover, 

Khan et al. [7] modified the EWMA control chart by adding 

an extra constant ( k ) in the last term of the modified 

EWMA statistic, which was further modified by [8]. The 

authors compared its performance with the originally 

modified and standard EWMA control charts in terms of the 

average run length (ARL) and found that it was able to 

detect shifts in a process mean more quickly. 

The ARL is a popular measure for comparing control 

chart performance. It is the average number of observations 

until the first observation is detected outside the control 

limits. There are two components: ARL0 is called an in-

control ARL and ARL1 is called an out-of-control ARL. 

ARL0 is the average number of observations before an out-

of-control observation is detected when the process is in-

control and should be large while ARL1 is the average 

number of observations before an out-of-control signal is 

received when the process has shifted to the out-of-control 

state and should be small [9]. Several methods to calculate 

the ARL for many control charts, such as explicit formulas, 

Monte Carlo simulation, Markov chain, Martingale, and 

numerical integration equations (NIEs) methods [10]. 

Crowder [11] used a Fredholm integral equation to develop 

an approximation for the ARL of a Gaussian process on an 

EWMA control chart. Champ and Rigdon [12] employed the 

NIE and Markov chain approaches for the ARL of processes 

on CUSUM and EWMA control charts. Various researchers 

have aimed at approximating the ARL to measure the 

performance of control charts by using different methods. 

Robert [6] introduced the standard EWMA control chart 

using Monte Carlo simulation to evaluate the ARL. 

Areepong and Novikov [13] presented an explicit formula 

for the ARL and the average delay for a process running on 

an EWMA control chart while assuming that the 

observations follow an exponential distribution by using the 

Martingale approach. Phanyaem et al. [14] used a Fredholm 

integral equation technique to derive an exact expression of 

the ARL for the first-order autoregressive moving average 

(ARMA(1,1)) process running on the CUSUM control chart 

and compare the performance of control charts with the 

exact expression for the EWMA control chart. 

Sukparungsee and Areepong [15] derived explicit formulas 

for the ARL on an EWMA control chart for an 

autoregressive of order p (AR(p)) process. Sunthornwat et 
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al. [16] solved explicit formulas and optimal parameters for 

evaluating the ARL on an EWMA control chart for a long-

memory AR fractionally integrated moving average (MA) 

(ARFIMA) process. Peerajit and Areepong [17] derived an 

exact solution for the ARL for an ARMA process with 

exogenous variables (ARMAX(p.q.r)) with exponential 

white noise running on a CUSUM control chart. 

Supharakonsakun et al. [18] suggested explicit formulas for 

the ARL of an MA(1) process running on a modified 

EWMA control chart. Phanthuna et al. [19] studied the run 

length distribution for the ARL of a stationary AR(p) 

process running on a modified EWMA control chart.  After 

that, Silpakob et al. [20] derived an exact solution for the 

ARL of AR with explanatory variables (ARX(p,r)) 

processes running on a modified EWMA control chart. Most 

recently, Phanthuna and Areepong [21] studied the detection 

sensitivity of a modified EWMA control chart with a time 

series model for integrated MA (IMA) and fractional 

integrated MA (FIMA) models. 

The main purpose of the present study is to derive explicit 

formulas for the ARL of an ARMA process with 

explanatory variables (ARMAX(p,q,r)) with exponential 

white noise running on a modified EWMA control chart 

based on Khan et al.’s [7] derivation. We apply Fredholm-

type integral equations to derive an exact equation for two 

components of the ARL. This paper is organized as follows. 

An introduction to the control charts is provided in Section 

II. The explicit formulas and the NIE for the ARL of the 

process on the modified EWMA control chart are shown in 

Sections III and IV. Next, numerical results for comparing 

the performances of the ARLs derived by using integral 

equations and the NIE method are offered in Sections V and 

VI, respectively. The practical application of the presented 

explicit formulas with real data is reported in Section VII. 

Finally, conclusions are given in Section VIII.  

II. PROPERTIES OF THE CONTROL CHARTS USED IN THE 

STUDY 

A. The CUSUM Control Chart 

This has been widely used to detect small shifts in process 

means in the same way as the EWMA control chart [5]. The 

CUSUM control chart can be defined as  

 

 1max 0,            ; 1, 2,3,...t t tC C Y a t−= + − = ,    (1) 

 

where 
tC  is the CUSUM statistic, 

tY  is the sequence of the 

ARMAX(p,q,r) process with exponential white noise, a  is a 

constant. 
0C u=  is the initial value when  0,u b , where 

0 is the lower control limit (LCL) and b is the upper control 

limit (UCL). 

B. The Standard and Modified EWMA Control Charts 

The modified EWMA control chart by defined as [7] 

 

( ) ( )1 11    ; 1, 2,3,...t t t t tM M Y k Y Y t − −= − + + − = ,     (2) 

 

where 
tM  is the modified EWMA statistic, 

tY  is the 

sequence of the ARMAX(p,q,r) process with exponential 

white noise,   is an exponential smoothing parameter 

(0 1)  , and k  is a constant ( 0)k  . Meanwhile, mean 

0( )tE M =  and variance 
2

2( 2 2 )
( )

(2 )
t

k k
Var M

 




+ +
=

−
. 

From (2), the modified EWMA statistic is reduced to the 

standard EWMA statistic in [6] when 0k =  (i.e., 

( ) 11t t tM M Y −= − + ) and reduced to the primary 

modified EWMA statistic in [8] when 1k =  (i.e., 

( ) ( )1 11t t t t tM M Y Y Y − −= − + + − ). Thus, we can derive 

the LCL and UCL of the two EWMA control charts as 

follows. 

The respective LCL and UCL of the standard EWMA 

control chart with a control width limit 
SL  are 

 

  
0LCL

2
SL


 


= −

−
            (3a) 

and
0UCL

2
SL


 


= +

−
,            (3b) 

 

while the respective LCL and UCL of the modified EWMA 

control chart with a control width limit 
ML  are 

 

     
2

0

( 2 2 )
LCL

(2 )

+ +
= −

−
M

k k
L

 
 


                      (4a) 

and
2

0

( 2 2 )
UCL

(2 )

+ +
= +

−
M

k k
L

 
 


,       (4b) 

 

where 
0  is the target mean,   is the standard deviation of 

process, and , 0S ML L . 

III. EXPLICIT FORMULAS FOR THE ARL OF THE PROCESS  

A. The ARMAX(p,q,r) Process 

This is defined as 

 

1 1 2 2 1 1

2 2

1

...

      ...     ; 1, 2,3,...,

t t t p t p t t

r

t q t q l tl

l

Y Y Y Y

X t

      

    

− − − −

− −

=

= + + + + + −

− − − + =
     (5)  

 

where   is a constant ( 0)  , 
i  is an AR coefficient 

for 1,2,...,i p= ( 1)i , j  is a MA coefficient for 

1,2,...,j q= ( 1)j , 
t  are independent and identically 

distributed (iid) observations in an exponential distribution 

( ( )t Exp  ), tlX  are explanatory variables of tY , and lB  

is a coefficient for 1,2,...,=l r . The initial value for the 

ARMAX(p,q,r) process is 1. 

B. Explicit Formulas 

Explicit formulas for the ARL of an ARMAX(p,q,r) 

process running on the CUSUM control chart are shown in 

[17]. Explicit formulas for the ARL of an ARMAX(p,q,r) 

process on the modified EWMA control chart are derived 

as follows: 
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( ) ( )

( )

1 1

1 1

1 1

1

1

...

        
...

t t t t

t p t p

r

t q t q l tl

l

M M k kY

Y Y

k
X

  

  


    

− −

− −

− −

=

= − + + −

+ + + 
 

+ +  − − − + 
 



 

If 
1Y  signals the out-of-control state for 

1M  when 

0M u= , then 

 

( ) ( )

( )

1 1 0

1 0

1 0

1

1

...

        
...

p t p

r

q t q l tl

l

M u k kY

Y Y

k
X

  

  


    

−

−

=

= − + + −

+ + + 
 

+ +  − − − + 
 



 

 

If 
1  is the in-control state for 

1M , then 
10 M b  ; 0 is 

LCL and b is UCL. Consider the Fredholm integral 

equation of the second kind [22] following  

 

1 1 1( ) 1 ( ) ( ) ( )= + H u H M f d  ,                   (6) 

 

Moreover, ( )H u can be written as 

 

( )

( ) ( )

( )
( )

1

1 1

0

1 1

1

1

...
1

...

t

b

t

r

t l tl

l

u kY k y

Y
H u L f y dy

k
X

 

 


  

−

−

−

=

 − − + + 
 

+ +  
= +   

+ +  − − +  
  




. 

Let 

( ) ( )

( )

1

1 1

1 1

1

1

...

      
...

t

t p t p

r

t q t q l tl

l

w u kY k y

Y Y

k
X

 

  


    

−

− −

− −

=

= − − + +

+ + + 
 

+ +  − − − + 
 



. 

By changing the variable, we can obtain the integral 

equation as follows: 

 

( )

( )

( ) 1

1 1

0

1 1

1

1
1

1

...            

...

t

b

t p t p

r

t q t q l tl

l

H u
k

w u kY

k k

Y YH w f dw

X





 

  

    

−

− −

− −

=

= +
+

− − 
+ 

+ + 
 

+ + +  
  −  − − − +    





.    

       (7) 

 

If ( )tY Exp   and ( )
1

y

f y e 



−

= ; 0y  , then 

 

( )

( )

( )
1 1

1

1 1

1

...
11

...

0

1
1

1
            

t p t p
rt

t q t q l tl

l

Y Y
w u kY

b xk k

H u
k

H w e dw

  


      





− −

−

− −

=

 + + +  
− −   

− + −  − − − ++ +  
  

= +
+





.        

   (8) 

 

Let function ( )

( )

( )

1 1
1

1 1

1

...
1 1

...

− −
−

− −

=

+ + + 
− −  

+  − − − ++  
 


=

t p t p
rt

t q t q l tl

l

Y Y
u kY

Xk

F u e

  


      

, then 

we obtain 

 

( )
( )

( )
( ) ( )

0

1          ; 0

−

+
= +  

+ 
wb

kF u
H u H w e dw u b

k

 

 
. 

 

Let ( ) ( )

0

wb
k

B H w e dw
 

−

+
=  , then ( )

( )

( )
1= + 

+

F u
H u B

k 
. 

Consequently, we obtain  

 

( )

( )

( )

1 1
1

1 1

1

...
1 1

...1
( ) 1

t p t p
rt

t q t q l tl

l

Y Y
u kY

Xk

H u e B
k

  


      

 

− −
−

− −

=

+ + + 
− −  

+  − − − ++  
 


= + 

+
.    (9) 

 

By solving for constant B , we obtain 

 

( ) ( )

0

wb
k

B H w e dw
 

−

+
=   

( )
( ) ( )

0

1

−

+
 

= + 
+ 


wb

kB
F w e dw

k

 

 
 

( )

( )

( )

( )
( )

1 1
1

1 1

1

...
1 1

...

0 0

t p t p
rt

t q t q l tl

l

Y Y
w kY

xkw wb b
k kBe

e dw e dw
k

  


      

   

 

− −
−

− −

=

+ + + 
− −  

+  − − − ++  − −
 

+ +



= + 
+ 

 

( ) ( )

( )
( )

1
1 1 1 1

1

1
... ...

1

1 1

r
t

t p t p t q t q l tl

l

b

k

kY
Y Y x

bk

k

k e

e
e

 

       
  

 

 



−
− − − −

=

−

+

 −
 + + + + − − − +
  −+  

+

 
 − + −
 
 =


 
 + −
 
 

.              

                                     

By substituting constant B into Eq. (23), we arrive at 

( )

( )

( )

( )

( ) ( )

( )

1
1 1 1 1

1

1 1

1

1 1

1

1 1
... ...

...
1

...

1

1

            

r
t

t p t p t q t q l tl

l

t p t p
rt

t q t q l tl

l

u kY
Y Y X

k

b

k

Y Y
kY

b
Xk

e
H u

k

k e

e e


       

  

 

  


      

 

 

 



−
− − − −

=

− −

−

− −

=

 − −
 + + + + − − − +
 +  

−

+

+ + + 
−  

+ − − − − ++   + 



= +
+

 
− + − 

  


+

( )
1

k

 
 
 
 
 
 

  
−      

.  

                         (10) 

Hence, the one-sided explicit formulas for the ARL on a 

modified EWMA control chart for an ARMAX(p,q,r) 

process can be derived by using the Fredholm integral 

equation of the second kind. Let 
0 =  for the process is in 

the in-control state, and 1 =  for the process is in the out-

of-control state, the one-sided explicit formulas for 
0ARL  

and 
1ARL  can be written as follows: 
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( )

( ) ( )

( )
( )

0 0

1 1

1

1 10 0
1 0

1

0 ...
1

...

1

1

1

t p t p
rt

t q t q l tl

l

u b

k k

Y Y
kY

b
Xk

k

e e

ARL

e e



   

  


      

 





− −

−

− −

=

− −

+ +

− − − − 
 

+ − + + + −+   + 

 
− 

  = −

 
+ − 

  

, (11) 

and 
( )

( ) ( )

( )
( )

1 1

1 1

1

1 11 1
1 1

1

1 ...
1

...

1

1

1

t p t p
rt

t q t q l tl

l

u b

k k

Y Y
kY

b
Xk

k

e e

ARL

e e



   

  


      

 





− −

−

− −

=

− −

+ +

− − − − 
 

+ − + + + −+   + 

 
− 

  = −

 
+ − 

  

.(12) 

C. The Existence and Uniqueness of the Explicit 

Formulas 

Here, we show the existence and uniqueness of the 

solution in (8). First, we define 

( )

( )

( ) ( )
1

1 1

1 1

1

1
...

1

...

0

1 1
( ( )) 1

t
t

r

p t p t q t q l tl

l

w u kY
Y

k k

b Y X

T H u H w e dw
k


 

 


     

 

−
−

− − −

=

 − − 
+ − − − 

+ + 
−  

 − + + + −
 
 


= +

+ 

                                    (13) 

 

Theorem 1. Banach’s fixed-point theorem [23]. 

Let [0, ]C b  be a set of all of the continuous functions on 

complete metric ( ), ,X d  and assume that :T X X→  is a 

contraction mapping with contraction constant 0 1s  ; 

i.e., 1 2 1 2 1 2( ) ( )  ,T H T H s H H H H X−  −   . 

Subsequently, (.)H X  is unique at ( ( )) ( )T H u H u= ; i.e., 

it has a unique fixed point in .X  

 

Proof: To show that T  defined in (13) is a contraction 

mapping for 
1 2, [0, ]H H C b , we use the inequality 

1 2 1 2 1 2( ) ( )  , (0, )T H T H s H H H H C b−  −   with 

0 1s  . Consider (8) and (13), then 
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where 
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k
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Therefore, as confirmed by applying Banach’s fixed-point 

theorem, the solution exists and is unique. 

IV. THE NIE FOR THE ARL OF THE PROCESS  

The NIE approach is widely used for evaluating the ARL. 

It can be based on one of various quadrature rules (midpoint, 

trapezoidal, Simpson’s, and Gauss‐Legendre), all of which 

give ARLs that are very close to each other [24]. In the 

present study, we use the Gauss‐Legendre rule to evaluate 

the ARL. The Fredholm integral equation of the second kind 

for the ARL for the ARMAX(p,q,r) process running on the 

modified EWMA control chart in (10) can be evaluated 

using the quadrature formula. We apply the Gauss-Legendre 

rule as follows: 

Given that 

( )
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,    (14) 

 

the estimation for the integral equation by using Gauss-

Legendre rule is in the form 

 

( ) ( ) ( )
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j j

j

H w f w dw w f a
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where 
1
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b
w j m
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= = . 

The numerical approximation ( )H u  for the integral 

equations can be found as the solution to the following 

equations: 
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This set of m  equations with m  unknowns can be 

rewritten in matrix form. The column vector of ( )iH a  is 

( ) ( ) ( )( )1 1 2, ,...,m mH a H a H a

=L . Since 
1 (1,1,...,1)m

=1  

is a column vector of ones and 
m mR  is a matrix, we can 

define m  to thm  composition of matrix R  as follows: 
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and ( )1,1,...,1m diag=I as a unit matrix order m . If 

( )
1−

−I R  exists, the numerical approximation for the 

integral equation in matrix terms can be written as  

( )
1

1 1m m m m m

−

  = −G I R 1 . 

Finally, by substituting 
ia  with u  in ( )iH a , the 

numerical integration equation for function ( )H u  can be 

obtained as 

( ) ( )
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− + + + −
 
 





.        (16) 

V.  COMPARISON OF THE EFFICACIES OF THE NIE AND 

EXPLICIT FORMULAS METHODS 

Here, the details of the simulation study to compare the 

efficacies for the ARL on the modified EWMA control chart 

of an ARMAX(p,q,r) process for the explicit formulas 

( ( ))H u  and the NIE method ( ( ))H u  are provided. The 

parameter of the modified EWMA control chart (  = 0.05, 

0.1 and 1=k ) and ARMAX(p,q,r) process with the in-

control process 
0 1 = ; where the shift size ( )  varied as 

0.001, 0.003, 0.005, 0.007, 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, or 

0.5. given 
0 370ARL = . The absolute percentage difference 

between the ARL methods is defined as 

( ) ( )
(%) 100

( )

H u H u
Diff

H u

−
=  .                (17) 

Equations (10) and (16) were used to evaluate the ARL 

on the modified EWMA control chart for the 
TABLE I 

COMPARISON OF THE ARL FOR AN ARMAX(1,1,1) PROCESS ON THE MODIFIED EWMA CONTROL CHART BY USING EXPLICIT FORMULAS AND THE NIE 

METHOD  WITH ˆ 2= . 

  
  

 ˆ ˆ ˆ0.1,  0.1,  0.1= = − =   and 0.546791b =    ˆ ˆ ˆ0.2,  0.2,  0.2= = − =   and 0.404322=b  

 Explicit NIE Timea Diff%  Explicit NIE Time Diff% 

 0.00 370 370 10.812 0.00000000  370 370 10.531 0.00000000 
 0.001 229.904260 229.904259 11.297 0.00000041  221.949849 221.949848 10.531 0.00000022 
 0.003 130.988167 130.988167 12.750 0.00000036  123.419607 123.419607 10.751 0.00000019 
 0.005 91.687880 91.687879 11.484 0.00000034  85.574008 85.574008 11.531 0.00000018 
 0.007 70.589029 70.589028 11.625 0.00000032  65.549877 65.549876 11.468 0.00000017 

0.05 0.01 52.539577 52.539577 10.979 0.00000031  48.579748 48.579748 11.063 0.00000017 
 0.03 19.696613 19.696612 10.750 0.00000027  18.073970 18.073970 10.687 0.00000015 
 0.05 12.302525 12.302525 11.328 0.00000025  11.273029 11.273029 10.609 0.00000014 
 0.07 9.042091 9.042091 10.593 0.00000023  8.282850 8.282850 10.469 0.00000013 
 0.10 6.563506 6.563506 12.156 0.00000021  6.014209 6.014209 10.467 0.00000011 
 0.30 2.688419 2.688419 11.328 0.00000011  2.483831 2.483831 11.687 0.00000006 
 0.50 1.937998 1.937998 10.656 0.00000007  1.808533 1.808533 11.656 0.00000003 
   0.550849b =     0.4066401=b  
 0.00 370 370 10.438 0.00000000  370 370 11.188 0.00000000 
 0.001 227.026409 227.026407 11.344 0.00000076  218.788511 218.788510 11.078 0.00000040 
 0.003 128.207062 128.207061 11.531 0.00000055  120.550648 120.550647 11.031 0.00000028 
 0.005 89.435741 89.435741 10.437 0.00000046  83.301325 83.301325 10.828 0.00000024 
 0.007 68.734285 68.734285 10.407 0.00000042  63.699735 63.699735 10.687 0.00000022 

0.1 0.01 51.087218 51.087218 10.703 0.00000038  47.145277 47.145277 11.156 0.00000020 
 0.03 19.122925 19.122925 11.188 0.00000029  17.518459 17.518459 10.969 0.00000016 
 0.05 11.952362 11.952362 11.281 0.00000026  10.936191 10.936191 11.531 0.00000014 
 0.07 8.793327 8.793327 11.156 0.00000024  8.044608 8.044608 11.313 0.00000013 
 0.10 6.392839 6.392839 10.860 0.00000021  5.851618 5.851618 11.484 0.00000011 
 0.30 2.640331 2.640331 11.562 0.00000011  2.439131 2.439131 11.078 0.00000005 
 0.50 1.912903 1.912903 10.906 0.00000006  1.785612 1.785612 11.047 0.00000003 

aThe calculations for the NIE method are based on Windows 10 Professional with an Intel Core i5 CPU with number of nodes 1000 iterations 

TABLE II 

COMPARISON OF THE ARL FOR AN ARMAX(1,2,2) PROCESS ON THE MODIFIED EWMA CONTROL CHART BY USING EXPLICIT FORMULAS AND THE NIE 

METHOD WITH ˆ 2= , ˆ 0.1= . 

  
  

 
1 2 1 2
ˆ ˆ ˆ ˆ0.1,  0.2,  0.1,  0.1= − = = = −     and 0.739943.=b    

1 2 1 2
ˆ ˆ ˆ ˆ0.3,  0.2,  0.1,  0.2= − = = = −     and 0.6689122=b  

 Explicit NIE Time Diff%  Explicit NIE Time Diff% 

 0.00 370 370 10.937 0.00000000  370.000000 370.000000 11.515 0.00000000 
 0.001 238.302931 238.302929 11.672 0.00000078  235.456965 235.456964 12.063 0.00000063 
 0.003 139.365880 139.365879 11.703 0.00000067  136.474732 136.474731 11.828 0.00000055 
 0.005 98.588803 98.588802 12.156 0.00000063  96.190221 96.190221 11.875 0.00000051 
 0.007 76.337605 76.337605 11.390 0.00000060  74.331849 74.331849 12.36 0.00000049 

0.05 0.01 57.098633 57.098632 11.281 0.00000058  55.502639 55.502639 12.078 0.00000047 
 0.03 21.598196 21.598196 11.625 0.00000051  20.928321 20.928321 11.406 0.00000041 
 0.05 13.515006 13.515005 11.110 0.00000047  13.087170 13.087170 11.344 0.00000038 
 0.07 9.938871 9.938871 11.235 0.00000043  9.622141 9.622141 12.016 0.00000035 
 0.10 7.214336 7.214336 11.678 0.00000039  6.984252 6.984252 11.532 0.00000032 
 0.30 2.934234 2.934234 11.969 0.00000021  2.846976 2.846976 12.344 0.00000017 
 0.50 2.095283 2.095283 11.781 0.00000012  2.039270 2.039270 11.813 0.00000010 
   0.747141b =     0.6748496=b  
 0.00 370 370 11.765 0.00000000  370.000000 370.000000 12.031 0.00000000 
 0.001 235.720048 235.720045 11.594 0.00000146  232.736927 232.736925 11.875 0.00000117 
 0.003 136.733055 136.733053 11.453 0.00000106  133.772024 133.772023 11.328 0.00000085 
 0.005 96.410183 96.410182 11.891 0.00000089  93.973650 93.973649 10.906 0.00000072 
 0.007 74.522127 74.522127 11.906 0.00000080  72.493444 72.493443 11.297 0.00000064 

0.1 0.01 55.662295 55.662295 11.891 0.00000072  54.054049 54.054049 11.703 0.00000058 
 0.03 21.018871 21.018871 11.469 0.00000055  20.348695 20.348695 11.563 0.00000044 
 0.05 13.158986 13.158986 11.328 0.00000048  12.731843 12.731843 12.218 0.00000039 
 0.07 9.684822 9.684822 11.593 0.00000044  9.368979 9.368979 11.235 0.00000036 
 0.10 7.039143 7.039143 11.344 0.00000039  6.809976 6.809976 11.547 0.00000032 
 0.30 2.883711 2.883711 11.594 0.00000021  2.797098 2.797098 11.938 0.00000017 
 0.50 2.068491 2.068491 11.406 0.00000012  2.012954 2.012954 11.781 0.00000010 
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ARMAX(p,q,r) process with exponential white noise. The 

results are shown in Tables I and II. 

The results in Tables I and II shows that the ARLs 

derived by the explicit formulas are close to the NIE method 

( (%)Diff  was less than 0.00001%). However, the 

computational time for the NIE method was more than 10 

seconds while that of the explicit formulas was less than 1 

second. 

VI. THE ARL RESULTS USING VARIOUS CONTROL CHARTS 

The performances of the ARL derived using explicit 

formulas for an ARMAX(p,q,r) process with exponential 

white noise running on the standard and modified EWMA 

and CUSUM control charts were compared by using the 

relative mean index (RMI). The ARL with the lowest value 

indicates the best performance. The RMI is defined as 

 
 1

( ) ( )1
( )

( )

n
i i

i i

ARL r Min ARL s
RMI r

n Min ARL s=

 −
=   

 
 ,          (18) 

where ( )iARL r  is the ARL of the control chart for the shift 

size in row i  and  ( )iMin ARL s  denotes the smallest ARL 

of the three control charts in comparison to the shift size in 

row i , for 1, 2,...,i n= . The control chart with the smallest 

RMI is the best for a particular set of criteria. 
For the simulation study with ARMAX(1,1,1) and 

ARMAX(2,2,2) processes, the parameter of the modified 

EWMA control chart (  = 0.05, 0.1 and 1,2,3=k ) and the 

in-control process 
0 1 = ; where =  0.001, 0.003, 0.005, 

0.007, 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, or 0.5 and 

0 370ARL = . The results for the ARMAX(1,1,1) processes 

are reported in Table III and plot in Fig. 1 while those for 

the ARMAX(2,2,2) process are reported in Table IV and 

plot in Fig. 2. 

TABLE III 

COMPARISON OF THE ARL FOR THE ARMAX(1,1,1) PROCESS ON CUSUM, STANDARD, AND MODIFIED EWMA CONTROL CHARTS WITH ˆ 2= , ˆ 0.2= , 

AND ˆ 0.1= . 

  ̂    CUSUM EWMA 
Modified EWMA 

k=1 k=2 k=3 

   a=5, b=3.1466 b=0.00000001266 b=0.3339873 b=0.6689124 b=1.003798 

  0.00 370 370 370 370 370 
  0.001 367.719 361.985 269.720 235.469 222.534 
  0.003 363.149 346.437 174.876 136.479 124.045 
  0.005 358.654 331.615 129.375 96.192 86.130 
  0.007 354.231 317.482 102.661 74.333 66.050 

  0.2 0.01 347.731 297.502 78.381 55.503 49.021 
  0.03 308.174 194.794 30.426 20.928 18.381 

  0.05 274.357 129.684 18.898 13.087 11.542 
  0.07 245.299 87.737 13.728 9.622 8.531 
  0.10 208.949 50.275 9.766 6.984 6.242 
  0.30 86.574 3.180 3.554 2.847 2.651 

  0.50 45.429 1.217 2.373 2.039 1.944 
0.05 RMI  15.246 4.210 0.503 0.150 0.050 

   a=5, b=3.6681 b=0.000000008486 b=0.2232272 b=0.447094 b=0.6709292 

  0.00 370 370 370 370 370 
  0.001 367.627 361.830 260.325 224.551 211.263 
  0.003 362.880 346.014 163.397 125.860 113.915 
  0.005 358.213 330.947 119.051 87.534 78.117 
  0.007 353.624 316.594 93.629 67.160 59.516 
   -0.2 0.01 346.883 296.321 70.907 49.841 43.932 
  0.03 305.978 192.543 27.069 18.588 16.324 
  0.05 271.182 127.253 16.735 11.599 10.237 
  0.07 241.426 85.494 12.128 8.523 7.567 
  0.10 204.414 48.514 8.611 6.188 5.542 
  0.30 82.204 2.988 3.143 2.548 2.384 
  0.50 42.452 1.190 2.123 1.849 1.771 
 RMI  16.378 4.715 0.494 0.141 0.041 

   a=5, b=3.1466 b=0.00053475 b=0.3376842 b=0.6748497 b=1.012368 
  0.00 370 370 370 370 370 
  0.001 367.719 365.532 263.023 232.743 221.178 
  0.003 363.149 356.751 166.655 133.774 122.783 
  0.005 358.654 348.215 121.983 93.975 85.123 
  0.007 354.231 339.915 96.207 72.494 65.227 
   0.2 0.01 347.731 327.893 73.063 54.054 48.381 
  0.03 308.174 259.296 28.126 20.349 18.130 
  0.05 274.357 206.884 17.473 12.732 11.388 
  0.07 245.299 166.465 12.713 9.369 8.421 
  0.10 208.949 121.951 9.071 6.810 6.167 
  0.30 86.574 22.409 3.367 2.797 2.629 
  0.50 45.429 6.907 2.280 2.013 1.932 
0.1 RMI  14.249 7.812 0.374 0.086 0.000 

   a=5, b=3.6681 b=0.0003582 b=0.2251526 b=0.4498835 b=0.674842 
  0.00 370 370 370 370 370 
  0.001 367.627 365.432 253.108 221.486 209.568 
  0.003 362.880 356.357 155.096 123.016 112.452 
  0.005 358.213 347.543 111.810 85.264 76.981 
  0.007 353.624 338.980 87.418 65.305 58.601 
   -0.2 0.01 346.883 326.589 65.872 48.398 43.229 
  0.03 305.978 256.213 24.965 18.026 16.055 
  0.05 271.182 202.873 15.446 11.257 10.073 
  0.07 241.426 162.053 11.216 8.281 7.451 
  0.10 204.414 117.499 7.992 6.022 5.463 
  0.30 82.204 20.484 2.982 2.502 2.361 
  0.50 42.452 6.160 2.044 1.825 1.759 
 RMI  15.620 8.608 0.378 0.087 0.000 
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Fig. 1. The ARL for an ARMAX(1,1,1) process running on CUSUM, standard, and modified EWMA control charts.  (a) The ARL for 0.05=  and 

ˆ 0.2=  and (b) the ARL for  0.1=  and ˆ 0.2= − . 

TABLE IV 

COMPARISON OF THE ARL FOR THE ARMAX(2,2,2) PROCESS ON CUSUM, STANDARD, AND MODIFIED EWMA CONTROL CHARTS WITH ˆ 2= , 
1
ˆ 0.1= , 

2
ˆ 0.2= , 

2
ˆ 0.2= , 

1
ˆ 0.1=  AND 

2
ˆ 0.1= . 

  
1̂    CUSUM EWMA 

Modified EWMA 

k=1 k=2 k=3 

   a=5, b=3.0274 b=0.000000013991 b=0.369456 b=0.739944 b=1.11039 

  0.00 370 370 370 370 370 
  0.001 367.767 362.009 272.145 238.359 225.506 
  0.003 363.227 346.529 177.954 139.385 126.825 
  0.005 358.761 331.768 132.196 98.598 88.363 
  0.007 354.367 317.692 105.156 76.343 67.885 
 0.3 0.01 347.907 297.786 80.466 57.102 50.461 
  0.03 308.582 195.352 31.382 21.599 18.971 
  0.05 274.934 130.294 19.517 13.515 11.917 
  0.07 245.998 88.304 14.187 9.939 8.809 
  0.10 209.765 50.724 10.098 7.214 6.445 
  0.30 87.380 3.231 3.674 2.934 2.729 
  0.50 45.994 1.224 2.447 2.095 1.995 
0.05 RMI  14.922 4.082 0.505 0.153 0.052 

   a=5, b=3.8159 b=0.000000007679 b=0.2018705 b=0.4043218 b=0.6067437 

  0.00 370 370 370 370 370 
  0.001 367.599 361.820 258.046 221.933 208.579 
  0.003 362.787 345.935 160.712 123.414 111.594 
  0.005 358.056 330.807 116.679 85.572 76.309 
  0.007 353.405 316.397 91.576 65.548 58.054 
 -0.3 0.01 346.575 296.050 69.225 48.579 42.801 
  0.03 305.176 192.000 26.329 18.074 15.872 
  0.05 270.024 126.662 16.261 11.273 9.951 
  0.07 240.019 84.949 11.778 8.283 7.356 
  0.10 202.776 48.088 8.360 6.014 5.390 
  0.30 80.684 2.943 3.054 2.484 2.326 
  0.50 41.449 1.184 2.069 1.809 1.734 
 RMI  16.600 4.841 0.492 0.139 0.039 
   a=5, b=3.0274 b=0.0005912 b=0.373837 b=0.747141 b=1.120839 
  0.00 370 370 370 370 370 
  0.001 367.767 365.602 265.607 235.720 224.244 
  0.003 363.227 356.894 169.783 136.733 125.634 
  0.005 358.761 348.426 124.787 96.410 87.407 
  0.007 354.367 340.192 98.655 74.522 67.102 
 0.3 0.01 347.907 328.261 75.086 55.662 49.849 
  0.03 308.582 260.106 29.033 21.019 18.730 
  0.05 274.934 207.926 18.057 13.159 11.769 
  0.07 245.998 167.609 13.145 9.685 8.703 
  0.10 209.765 123.107 9.384 7.039 6.372 
  0.30 87.380 22.923 3.480 2.884 2.708 
  0.50 45.994 7.112 2.350 2.068 1.983 
0.1 RMI  13.864 7.608 0.373 0.086 0.000 
   a=5, b=3.8159 b=0.00032407 b=0.2035172 b=0.4066402 b=0.609968 
  0.00 370 370 370 370 370 
  0.001 367.599 365.406 250.711 218.797 206.830 
  0.003 362.787 356.258 152.411 120.553 110.105 
  0.005 358.056 347.374 109.489 83.303 75.158 
  0.007 353.405 338.745 85.435 63.700 57.129 
 -0.3 0.01 346.575 326.263 64.264 47.146 42.092 
  0.03 305.176 255.448 24.272 17.519 15.602 
  0.05 270.024 201.883 15.003 10.936 9.788 
  0.07 240.019 160.969 10.890 8.045 7.241 
  0.10 202.776 116.413 7.758 5.852 5.311 
  0.30 80.684 20.031 2.900 2.439 2.304 
  0.50 41.449 5.988 1.994 1.786 1.722 
 RMI  15.902 8.802 0.379 0.087 0.000 
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According to Tables III and IV and Figs. 1 and 2, it is 

evident from the results that the ARL values for the explicit 

formulas method on the modified EWMA control chart were 

lower than those for the standard EWMA and CUSUM 

control charts for all  , shift sizes and values of constants 

k, and thus its RMI values were lower. 

VII. PRACTICAL APPLICATIONS WITH REAL DATA   

We applied the explicit formulas for the ARL of an 

ARMAX(1,1,1) process using 72 real data observations of 

the price of gasoline (Unit: USD per barrel [25]) and crude 

oil (Unit: USD per gallon [26]) from January 2015 to 

December 2020, with the latter being the explanatory 

variable, on CUSUM, and standard and modified EWMA 

control charts. The parameters were set as  = 0.05; the 

various parameter values listed in Tables V and VI; and a 

shift size of 0.001, 0.003, 0.005, 0.007, 0.01, 0.03, 0.05, 

0.07, 0.1, 0.3, or 0.5. The results are summarized in Table 

VII. 

We also performed another comparison for the ARL of an 

ARMAX(1,2,1) process involving 72 real-world data 

observations of the exchange rate of 100 JPY to THB from 

January 2015 to December 2020, and with the USD to THB 

exchange rate over the same time period as the explanatory 

variable [27] on CUSUM, and standard and modified 

EWMA control charts. The parameters were set as  = 0.05; 

the various parameter values listed in Tables V and VI; and 

the same shift size as for the ARMAX(1,1,1) process. The 

results are summarized in Table VIII. 

From Tables VII and VIII, it can be seen that the ARL 

values obtained from the explicit formulas running on the 

modified EWMA control chart were less than those for the 

CUSUM and standard EWMA control charts for all shift 

sizes and all values of k. Furthermore, as k  increased, ARL1 

and the RMI decreased. Because the ARL of the CUSUM 

control chart is very different from EWMA and modified 

EWMA control chart, we compared the detection of shifts in 

the process means for the ARMAX(1,1,1) and 

ARMAX(1,2,1) processes with real data on the two types of 

EWMA control charts only, the results for which are 

displayed in Figs. 3 and 4, respectively. 

 

 
Fig. 2.  The ARL for an ARMAX(2,2,2) process running on CUSUM, standard, and modified EWMA control charts. (a) The ARL for 0.05=  where 

1
ˆ 0.3=   and (b) the ARL for 0.1=  where 

1
ˆ 0.3= − . 

TABLE V 

FITTING STATISTICS FOR THE REAL-WORLD DATASETS TO ARMAX(1,1,1) AND ARMAX(1,2,1) MODELS. 

Data Variable COEFFICIENT Std. Error t Sig. 

Gasoline (ARMAX(1,1,1)) Constant ( ̂ ) 0.2345 0.0845 2.7740 0.0072 

 AR(1) ( ̂ ) 0.5347 0.1367 3.9107 0.0002 

 MA(1) ( ̂ ) 0.3361 0.1535 2.1904 0.0320 

 Crude Oil ( ̂ ) 0.0267 0.0016 16.7076 0.0000 

JPY (ARMAX(1,2,1)) Constant ( ̂ ) 15.4721 4.4510 3.4761 0.0009 

 AR(1) ( ̂ ) 0.8267 0.0783 10.5550 0.0000 

 MA(1) (
1̂ ) 0.3982 0.1323 3.0107 0.0037 

 MA(2) (
2̂ ) 0.2744 0.1306 2.1009 0.0395 

 USD ( ̂ ) 0.4365 0.1348 3.2378 0.0019 

 
TABLE VI 

CHECKING THAT EXPONENTIAL DISTRIBUTIONS FIT THE WHITE NOISE OF THE REAL-WORLD 

DATASETS  

Data Mean ( 0 ) Kolmogorov-Smirnov Z Sig. 

Gasoline (ARMAX(1,1,1)) 0.0567 0.8942 0.4008 

JPY (ARMAX(1,2,1)) 0.3331 0.4560 0.9854 
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The results in Fig. 3 display that the modified EWMA 

control chart was able to detect a change in the price of 

gasoline for the first time at the 5th observation while the 

standard EWMA control chart achieved this at the 45th 

observation.  

The results in Fig. 4 indicate that the modified EWMA 

control chart can be detect a change in the exchange rate of 

TABLE VII 

COMPARISON OF THE ARL FOR THE ARMAX(1,1,1) PROCESS FOR REAL DATA RUNNING  ON CUSUM, STANDARD, AND MODIFIED EWMA CONTROL CHARTS. 

    CUSUM EWMA 
Modified EWMA 

k=1 k=2 k=3 

  a=60, b=45.458 b=
161.989 10−  b=0.021604 b=0.044232 b=0.0668341 

 0.00 370 370 370 370 370 
 0.001 367.811 357.104 313.520 267.902 247.382 
 0.003 363.379 331.803 239.977 172.499 148.884 
 0.005 359.017 308.387 194.209 127.224 106.576 
 0.007 354.725 286.710 162.982 100.788 83.047 

  0.05 0.01 348.413 256.956 131.168 76.855 62.445 
 0.03 309.928 126.171 56.204 29.841 23.787 

 0.05 276.914 63.833 35.256 18.587 14.867 
 0.07 248.452 33.382 25.446 13.543 10.907 
 0.10 212.704 13.500 17.761 9.676 7.885 

 0.30 90.643 1.067 5.565 3.595 3.132 
 0.50 48.538 1.001 3.314 2.423 2.202 

RMI  18.415 1.625 1.301 0.470 0.261 

 

 TABLE VIII 

COMPARISON OF THE ARL FOR THE ARMAX(1,2,1) PROCESS FOR REAL DATA RUNNING  ON CUSUM, STANDARD, AND MODIFIED EWMA CONTROL CHARTS.  

    CUSUM EWMA 
Modified EWMA 

k=1 k=2 k=3 

  a=10, b=8.6369 b=
133.975 10−  b=0.231849 b=0.470822 b=0.709694 

 0.00 370 370 370 370 370 
 0.001 367.750 358.642 313.296 275.493 259.122 
 0.003 363.261 336.976 239.605 182.407 162.178 
 0.005 358.844 316.701 193.887 136.406 118.143 
 0.007 354.498 297.720 162.756 108.976 92.989 
  0.05 0.01 348.109 271.490 131.089 83.770 70.560 
 0.03 309.185 148.934 56.649 33.183 27.415 
 0.05 275.844 83.758 35.868 20.849 17.252 
 0.07 247.141 48.296 26.123 15.288 12.712 
 0.10 211.152 22.215 18.468 11.006 9.232 

 0.30 89.012 1.257 6.149 4.191 3.703 
 0.50 47.332 1.010 3.771 2.836 2.591 

RMI  15.977 1.724 1.147 0.472 0.293 

 

 

 
Fig. 3.  Mean shift detection for the ARMAX(1,1,1) process for the price of gasoline and crude oil is explanatory variable. 
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JPY for the first time at the 16th observation while the 

standard EWMA control chart achieved this at the 22nd 

observation. Hence, in both cases, the performance of the 

modified EWMA control chart is better than of the standard 

EWMA control chart for detecting shifts in the process 

mean, thus the former is more efficient than the latter. 

VIII. CONCLUSIONS 

We derived explicit formulas for the ARL of the modified 

EWMA control chart for an ARMAX(p,q,r) process. and 

used simulated data to check its accuracy by comparing it 

with the ARL derived from the NIE method by using an 

absolute percentage difference . The results indicate that 

although both methods yielded very close ARL values with 

an absolute percentage difference of less than 0.00001%, the 

explicit formula method took much less time to calculate 

them. A comparison of the ARL derived by using explicit 

formulas for the ARL of an ARMAX(p,q,r) process with 

exponential white noise running on CUSUM, and standard 

and modified EWMA control charts, indicate that the 

proposed explicit formulas was more effective than on the 

CUSUM and standard EWMA control charts in terms of 

RMI. Practical application with real data for ARMAX(p,q,r) 

processes with exponential white noise running on the three 

control charts indicate that the method on the modified 

EWMA control chart performed much better than on the 

other two for a one-sided shift. In addition, as k  increased, 

its ARL1 and the RMI decreased. Based on the findings, the 

ARL derived by using explicit formulas of an 

ARMAX(p,q,r) process with exponential white noise 

running on the modified EWMA control chart were the most 

efficient. 
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