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Abstract—We are interested in this paper to show that the
approximate solution, by the finite volumes method, converges
to the renormalized solution of an elliptic operator with discon-
tinuous matrix diffusion coefficients and L1-data. By adapting
the strategy developed in the finite volume method, we show that
the approximate solution converges to the unique renormalized
solution.

Index Terms—Discontinuous matrix diffusion, L1-data,
Renormalized Solutions, Finite Volume schemes.

I. INTRODUCTION

WE are interested here in the discretization of an
elliptic operator with discontinuous matrix diffusion

coefficients, which may appear in real case problems such
as electrical or thermal transfer problems or, more generally,
diffusion problems in heterogeneous media. Let’s Ω be an
open bounded polygonal subset of Rd, d ≥ 2, with boundary
∂Ω, and consider the problem{ −div(A∇u) + div(vu) + bu = f in Ω,

u = 0 on ∂Ω,
(1)

with the following assumptions on the data (one denotes by
Rd×d the set of d× d matrices with real coefficients):

(H1) A is a bounded measurable function from Ω to
Rd×d such that for any x ∈ Ω, A(x) is symmetric,
and that there exists α and β ∈ R∗+ such that

αξ ·ξ ≤ A(x)ξ ·ξ ≤ βξ ·ξ for any x ∈ Ω and any ξ ∈ Rd.

(H2) v ∈ (Lp(Ω))d, 2 < p < +∞ if d = 2, p = d, if
d ≥ 3.

(H3) b ∈ L2(Ω) is a positive function.

(H4) f ∈ L1(Ω).
In the sequel, we use the notation Avw for the scalar product
of the vector Av by the vector w (which is often denoted by
tw ·Av).
The main difficulties in dealing with the existence and the
uniqueness of a solution to problem (1) are due to the
discontinuous character of the matrix and the L1-data.
The theory of renormalized solutions has been introduced in
[6] for Boltzmann equations and has been adapted in [13],
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[14] for elliptic problems with L1-data. It is well known that
the renormalized solutions are a convenient framework for
parabolic and elliptic equations with L1-data which provides
in general existence, stability and uniqueness results.
Concerning the discretization methods, several techniques
are developed in [9], [16] and [17]. The convergence of the
cell-centered finite volume scheme for equation (1) has been
studied in [10] when v = 0 and with measure data. In [9] the
authors consider a bounded piecewise continuous function
f with Non-homogeneous Dirichlet boundary conditions:
They prove that the solution of this scheme for equation (1)
converges to the unique variational solution u ∈ H1(Ω) of
(1).
In [12] the author studied problem (1) with ∆u instead of
-div(A∇u).
Recall that a renormalized solution of (1) is a measurable
function u defined from Ω to R, such that u is finite a.e. in
Ω and

∀k > 0, Tk(u) ∈ H1
0 (Ω), (2)

lim
k→+∞

1

k

∫
Ω

|∇Tk(u)|2dx = 0, (3)



∀h ∈ C1
c (R),∀ψ ∈ H1

0 (Ω) ∩ L∞(Ω),∫
Ω

A∇Tk(u)∇ψ h(u) dx

+

∫
Ω

h′(u)A∇Tk(u)∇Tk(u)ψ dx

−
∫

Ω

uh(u) v∇ψ dx−
∫

Ω

uh′(u)ψ v∇u dx

+

∫
Ω

b u h(u)ψ dx =

∫
Ω

ψ h(u) f dx,

(4)

with Tk the truncate function at height k (see Figure 1
below).

Fig. 1. The function Tk

Since h has a compact support, each term of (4) is well
defined.
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The existence and the uniqueness of a renormalized solution
to (1) for L1- data is proved in [14] by F. Murat.
In the present paper, using the tools developed for finite
volume schemes, we adapt the strategy used to deal with the
existence of a renormalized solution for elliptic equations
with L1-data (see [4], [5], [13], [14], [15]).
The main originality in the present work is that we pass to
the limit in a ”renormalized discrete version”, this is to say
that we take a discrete version of ϕh(u) as a test function in
the finite volume scheme. The first difficulty is to establish a
discrete version of the estimate on the energy (3). Moreover it
is worth noting that in (4) all the terms are ”truncated” while
a discrete version of ϕh(u) in the finite volume scheme leads
to some residual terms which are not ”truncated”.
The second difficulty is then to handle these residual terms.
The method developed in [12] allows us to deal with nonlin-
ear version of (1) in the sense that the solution of the discrete
scheme converges to the unique renormalized solution (see
Section 4).
The rest of the paper is organized as follows. In Section
2, we present the finite volume scheme and the properties
of the discrete gradient. In Section 3, we prove existence
and uniqueness of the solution to the schemes. Section 4
is devoted to prove several estimates, especially the discrete
equivalent to (4) which is crucial to pass to the limit in the
finite volume scheme. In Section 5, we prove the convergence
of the cell-centered finite volume scheme via a density
argument.

II. FINITE VOLUME SCHEME

As in [9], let us define the admissibility mesh in the
present work.

Definition 2.1: (Admissible meshes)
Let Ω be an open bounded polygonal subset of Rd, d = 2,

or 3. An admissible finite volume mesh of Ω, denoted by T ,
is given by a family of ”control volumes”, which are open
polygonal convex subsets of Ω, a family of subsets of Ω
contained in hyperplanes of Rd, denoted by E (these are the
edges (two-dimensional) or sides (three-dimensional) of the
control volumes), with strictly positive (d − 1)-dimensional
measure, and a family of points of Ω denoted by P satisfying
the following properties (in fact, we shall denote by T the
family of control volumes):

(i) The closure of the union of all the control volumes
is Ω.

(ii) For any K ∈ T , there exists a subset T (K) of
T denoted E(K) = {σ ∈ E ;σ ∈ ∂K}, such
that ∂K = K \ K = ∪σ∈E(K)σ for all K ∈ T .
Furthermore, E = ∪K∈T E(K).

(iii) For any (K,L) ∈ T 2 with K 6= L, either the
(d − 1)-dimensional Lebesgue measure of K ∩ L
is 0 or K ∩ L = σ for some σ ∈ E , which will
then be denoted by σ = K/L.

(iv) For all K ∈ T , xK is in the interior of K.

(v) For any K ∈ T , let AK denote the mean value of
A on K, that is

AK =
1

|K|

∫
K

A(x) dx.

There exists a family of points

P = (xK)K∈T such that xK = ∪σ∈E(K)DK,σ,

where DK,σ is a straight line perpendicular to
σ with respect to the scalar product induced
by A−1

K such that DK,σ ∩ σ = DL,σ ∩ σ 6= ∅
if σ = K/L. Furthermore, if σ = K/L, let
yσ = DK,σ ∩ σ(= DL,σ ∩ σ) and assume that
xK 6= xL.

(vi) For any σ ∈ Eext, let K be the control volume
such that σ ∈ E(K) and let DK,σ be the straight
line going through xK and orthogonal to σ with
respect to the scalar product induced by A−1

K ; then,
there exists yσ ∈ DK,σ ∩ σ.

In the sequel, the following notations are used.
The mesh size is defined by: hT = sup

K∈T
diam(K).

For any K ∈ T and σ ∈ E , we denote by |K| the
d-dimensional Lebesgue measure of K (it is the area of
K in the two-dimensional case and the volume in the
three-dimensional case) and |σ| the (d − 1)-dimensional
measure of σ.
The unit normal to σ ∈ E(K) outward to K is denoted by
ηK,σ.
The set of interior (resp. boundary) edges is denoted by
Eint (resp. Eext), that is Eint = {σ ∈ E ; σ 6⊂ ∂Ω} (resp.
Eext = {σ ∈ E ; σ ⊂ ∂Ω}).
The set of neighbours of K is denoted by N (K), that is
N (K) = {L ∈ T ;∃σ ∈ E(K), σ = K ∩ L}.
For any K ∈ T and σ ∈ E , we denote by dK,σ the
Euclidean distance between xK and σ.
For any σ ∈ E , dσ is defined by dσ = dK,σ + dL,σ , if
σ = K/L ∈ Eint (in which case dσ is the Euclidean distance
between xK and xL ) and dσ = dK.σ , if σ ∈ Eext ∩ E(K).
For any σ ∈ E , the ”transmissibility” through σ is defined

by τσ =
|σ|
dσ

if dσ 6= 0.

We will need discrete Sobolev inequalities (see Lemma
2.9), which depend on the constant ζ appearing in the
following assumption.

∃ζ such that ∀K ∈ T , ∀σ ∈ EK , dK.σ ≥ ζdσ. (5)

In the continuous case the usual tools to solve the problem
are Poincaré and Sobolev inequalities. In the discrete case
we will need such estimates, so we have to establish their
discrete versions (see [4]).
Let us define the discrete W 1,q

0 norm.
Definition 2.2: (discrete W 1,q

0 norm ) Let Ω be an open
bounded polygonal subset of Rd, d ≥ 2, and let T be an
admissible mesh. Define X(T ) as the set of functions from
Ω to R which are constant over each control volume of the
mesh. For vT ∈ X(T ) and q ∈ [1,+∞[, we define the
discrete W 1,q

0 norm by

‖ vT ‖q1,q,T =
∑

σ∈Eext
σ∈E(K)

|σ|dσ
∣∣∣ vk
dσ

∣∣∣q +
∑
σ∈Eint
σ=K/L

|σ|dσ
∣∣∣vk − vL

dσ

∣∣∣q,
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where vk denotes the value taken by v on the control volume
K.

Definition 2.3: The set of measurable functions of Lp(Ω)
which admit some small derivative up to p ∈ N is denoted
by Hp(Ω) .
The sub-set vectorial space Hp(Ω) of the functions at com-
pact support in Ω is denoted by Hp

0 (Ω) ⊂ Hp(Ω).
Definition 2.4: The set of measurable functions of Lp(Ω)

whose all the derived are also in LP (Ω) up to the total
derivation order of q ∈ N is denoted by W q,p(Ω).
For 1 ≤ p ≤ ∞, a norm in W q,p(Ω) is

‖ u ‖W q,p(Ω)=
∑

k1+···+kq≤q

‖ u(k1+···+kq) ‖Lp(Ω) .

The sub-set vectorial space of W q,p(Ω) consisting of the
functions at compact support in Ω is denoted W q,p

0 (Ω) ⊂
W q,p(Ω).

Theorem 2.5: (of Rellich) [14] Let Ω be an open set of R
that we suppose boundary and with border regular enough.
Then, the injection Hp

0 (Ω) ↪→ Lp(Ω) is compact.
Before writing the finite volume scheme, let us define a

discrete finite volume gradient (see [12])).
Definition 2.6: (Discrete finite volume gradient) For all

K ∈ T and for all σ ∈ E(K), we define the volume DK,σ

as the cone of basis σ and of opposite vertex xK . Then, we
define the ”diamond-cell” Dσ by:

Dσ = DK,σ ∪DL,σ if σ = K/L ∈ Eint,
Dσ = DK,σ if σ ∈ Eext ∩ E(K).

For any vT ∈ X(Tm) and notice that |Dσ| =
|σ| dσ
d

,
we define the discrete gradient ∇T vT by: for all x in Dσ ,

∀σ ∈ Eint, σ = K/L,∇T v(x) = d
vL − vK
dσ

ηK,σ,

∀σ ∈ Eext ∩ E(K),∇T v(x) = d
0− vK
dσ

ηK,σ.

Fig. 2. Example of control volume for the method of finite volume in
two dimensions of space

Proposition 2.7: (Discrete Poincaré inequality) Let T be
an admissible mesh and vT ∈ X(T ). Then, if 1 ≤ q ≤ 2,
‖ vT ‖Lq(Ω)≤ diam(Ω) ‖ 5vT ‖1,q,T .

Proposition 2.8: (Discrete Sobolev inequality) Let 1 ≤
q ≤ 2, T be an admissible mesh and ζ > 0 satisfying for
all K ∈ T and all σ ∈ E(K) , dK,σ ≥ ζdσ , Then, with

q∗ =
dq

d− q
if q < d and q∗ < ∞ if q = d = 2, there

exists C > 0 only depending on (Ω, q, q∗, ) such that, for all
vT ∈ X(T ),we have ‖ vT ‖Lq∗(Ω)≤ C ‖ vT ‖1,q,T .

Lemma 2.9: (Weak convergence of the finite volume
gradient) Let (Tm)m≥1 be a sequence of admissible meshes
such that there exists ζ > 0 satisfying for all m > 1, for
all K ∈ T and for all σ ∈ E(K) , dK,σ ≥ ζdσ , and such
that hTm −→ 0 . Let vTm ∈ X(Tm) and let us assume that
there exists C > 0 such that ‖ vTm ‖1,Tm≤ C, and that vTm
converges in L1(Ω) to v ∈ H1(Ω). then ∇TmvTm converges
to ∇v weakly in L2(Ω)d.

Let T be an admissible mesh, we can define the finite
volume discretization of (1). For K ∈ T , we define

bK =
1

|K|

∫
K

b dx, (6)

vK,σ =
1

|Dσ|

∫
Dσ

v.ηK,σdx (7)

and

fK =
1

|K|

∫
K

f dx. (8)

Let (uK)K∈T denote the discrete unknowns, which aim to
be approximations of the values u(xK), for all K ∈ T .
In order to describe the scheme in the most general way,
one introduces some auxiliary unknowns, namely the fluxes
FK,σ , for all K ∈ T and σ ∈ E(K), and some (expected)
approximation of u in σ, denoted by uσ , for all σ ∈ E . These
auxiliary unknowns are helpful to write the scheme, but
they can be eliminated locally so that the discrete equations
will only be written with respect to the primary unknowns
(uK)K∈T . The finite volume scheme for the numerical
approximation of the solution to Problem (1) is obtained by
integrating it over each control volume K, and approximating
the fluxes over each edge σ of K. This yields for all K ∈ T∑

σ∈E(K)

FK,σ +
∑

σ∈E(K)

|σ|vK,σ uσ,+ + |K|bK uK

= |K|fK , (9)

with

∀σ = K/L ∈ Eint,

{
uσ,+ = uK if vK,σ ≥ 0,

uσ,+ = uL, otherwise
(10)

and

∀σ ∈ Eext ∩ E(K),

{
uσ,+ = uK if vK,σ ≥ 0,

uσ,+ = 0, otherwise.
(11)

We denote by uσ,− the downstream choice of u which is
such that {uσ,+, uσ,−} = {uK , uL} (with uL = 0 if σ ∈
Eext ∩ E(K)).

FK,σ is an approximation of
∫
σ

−AK ∇u(x) · ηK,σ dγ(x);

the approximation FK,σ is written with respect to the discrete
unknowns (uK)K∈T and (uσ)σ∈E . For K ∈ T and σ ∈
E(K), let λK,σ = |AK ηK,σ|. A natural expression for FK,σ
is then

FK,σ = −|σ|λK,σ
uσ − uK
dK,σ

.

Writing the conservativity of the scheme, i.e. FL,σ = −FK,σ
if σ = K/L ⊂ Ω, yields the value of uσ , with respect to
(uK)K∈T ;

uσ =
1

λK,σ
dK,σ

+
λL,σ
dL,σ

(λK,σ
dK,σ

uK +
λL,σ
dL,σ

uL

)
.
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Hence the value of FK,σ;

FK,σ = −τσ(uL − uK), if σ ∈ E(K), (12)

with uL = 0 if σ ∈ Eext ∩ E(K), and

τσ =


|σ| λK,σ λL,σ
λK,σ dL,σ + λL,σ dK,σ

if σ = K/L ∈ Eint,

|σ|λK,σ
dK,σ

if σ ∈ Eext ∩ E(K).

Now we are led to give our main results.

Theorem 2.10: (Existence of a solution for the scheme
on (1)) Let T be an admissible mesh of Ω. Then, there
exists a unique solution uT = (uK)K∈T to (9)-(12).

Theorem 2.11: (Convergence of the solution for the
scheme on (1)) If (Tm)m≥1 is a sequence of admissible
meshes such that there exists ζ > 0 satisfying for all m ≥ 1,
for all K ∈ T and all σ ∈ E(K), dK,σ ≥ ξdσ , and such
that hTm → 0, then if uTm = (uK)K∈Tm is the solution
to (9)-(12), with T = Tm, uTm converges to u in the sense
that for all n > 0, Tn(uTm) converges weakly to Tn(u) in
H1

0 (Ω), when u is the unique renormalized solution of (1).

III. EXISTENCE AND UNIQUENESS OF THE SOLUTION
TO THE SCHEMES

Proof: (Proof of Theorem 2.10)
We intend here to prove Theorem 2.10 by means of linear

algebra tools. We set

FK,σ = τσ(uK − uL) + |σ|(v+
K,σ uK − v

−
K,σ uL)∀σ ∈ E(K),

where s+ = max(s, 0) and s− = max(−s, 0) are the
positive and negative parts of a real number s. The quantity
|σ|(v+

K,σ uK − v
−
K,σ uL) is a upwind discretization approx-

iming the convective flux
∫
σ

u v · ηK,σ, which stabilizes the

scheme (at the cost of the introduction of an additional
numerical diffusion).
Defining B(s) = 1 + (−s)+ = 1 + s−, then, using the fact

that τσ =
|σ|
dσ

, FK,σ can be written as

FK,σ = τσ

(
B
(
− vK,σ

|σ|
τσ

)
uK − B

(
vK,σ

|σ|
τσ

)
uL

)
=
|σ|
dσ

(
B(−vK,σ dσ)uK − B(vK,σ dσ)uL

)
(13)

As in [4], we note that the function B satisfies the following:

B is Lipschitz-continuous on R, (14)

B(0) = 1 and B(s) > 0 ∀ s ∈ R, (15)

B(s)− B(−s) = −s ∀ s ∈ R. (16)

The scheme (9)-(12) leads to a linear system of equations
that can be written as

(A +BD)U = F, (17)

where U = (uK)K∈T , B = (|K|bK)K∈T ,
F = (|K|fK)K∈T , D is the diagonal matrix whose diagonal

entries are DK,K = |K| and A is the square matrix of size
Card(T )× Card(T ) with entries

AK,K =
∑

σ∈E(K)

|σ|
dσ
B
(
− vK,σdσ

)
∀K ∈ T , (18)

AK,L = −|σ|
dσ
B
(
vK,σ dσ

)
∀K ∈ T , L ∈ N (K), (19)

AK,L = 0 ∀K ∈ T ,∀L /∈ N (K). (20)

Theorem 2.10 is thus a logical consequence of the following
proposition.

Proposition 3.1: For all b ∈ L2(Ω) a nonnegative func-
tion, the diagonal coefficients of the matrix Ab = A+BD are
positive, the extra-diagonal coefficients of Ab are nonpositive
and the sum of the coefficients in each column of Ab is
positive. Therefore Ab is an M -matrix and is invertible.

Proof: (Proof of Proposition 3.1) Due to (18)-(20)
and (15) we note that all of the diagonal entries of A are
strictly positive, whereas the extra-diagonal coefficients are
nonpositive. This is therefore also the case for Ab.
Moreover, since vL,σ = −vK,σ whenever σ = K/L ∈ Eint,
we have

AK,K = −
∑

L∈N (K)

AL,K ∀K ∈ T . (21)

In other words, in each column the diagonal term is the
opposite of the sum of the extra-diagonal terms. This has
the following consequence:
the sum of the coefficients in the column K of Ab is equal
to B|K|, and Proposition 3.1 is proved.

The proof of Theorem 2.10 is then complete.

IV. ESTIMATIONS

In this section, we first establish in Proposition 4.1
an estimate on ln(1 + |uT |) which is crucial to control
the measure of the set {|uT | > n} . Then, we show in
Proposition 4.3 an estimate on Tn(uT ) and the convergence
of Tn(uT ) to Tn(u). Finally, we prove in Proposition 4.4 a
discrete version of the decay of the energy.

Proposition 4.1: (see [12]) Let T be an admissible mesh.
If uT = (uK)K∈T is a solution to (9)-(12), then

‖ ln(1 + |uT |)‖21,T ≤ 2‖f‖L1(Ω) + d|Ω|
p−2
p ‖v‖2LP (Ω)d , (22)

where |v| denotes the Euclidean norm of v in Rd.
Let us state a corollary, which is used in the proof of the
estimate of Proposition 4.3.

Corollary 4.2: Let T be an admissible mesh.
If uT = (uK)K∈T is a solution to (9)-(12) and, for n > 0,
En = {|uT | > n}, then there exists C > 0 only depending
on (Ω, v, f, d, p) such that

|En| ≤
C(1 + ‖f‖L1(Ω))

(ln(1 + n))2
. (23)

The following proposition checks that our schemes satisfy
properties that are well known for the continuous equations,
namely, if b is positive then it is easy to obtain a priori
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estimates for the solution to (1) and the L2-norm of the
gradient of the solution to (1) is always controlled by the
L2-norm of the solution. Of course, the main difference
with respect to the continuous case is that, at the discrete
level, we have to make sure that these estimates do not
depend on the size of the mesh.

Proposition 4.3: (Estimation on Tn(uT ) ) Let T be an
admissible mesh. If uT = (uK)K∈T is a solution to (9)-
(12), then for all n ∈ N∗,

‖Tn(uT )‖1,T ≤ 2n‖f‖L1(Ω) + n2d‖v‖2L2(Ω)d . (24)

Moreover, if (Tm)m≥1 is a sequence of admissible meshes
such that there exists ζ > 0 satisfying for all m ≤ 1, for all
K ∈ T and for all σ ∈ E(K) , dKσ > ζdσ , there exists a
measurable function u finite a.e. in Ω such that, up to a sub-
sequence Tn(uTm) converges to Tn(u) weakly in H1(Ω) ,
strongly in L2(Ω) and a.e. in Ω.

Proof: The proof is divided into two steps. In Step 1
we derive the estimate (24) on the truncate on uT . The step
2 is devoted to extract a Cauchy sub-sequences in measure.

Step 1: Estimation on Tn(uT )
We multiply equation (9) by Tn(uK) and sum over K ∈ T .
Due to the conservativity of the fluxes and to (13), gathering
by edges, we find that∑

σ∈E

|σ|
dσ

(
B(−vK,σ dσ)uK − B(vK,σ dσ)uL

)
×

×
(
Tn(uK)− Tn(uL)

)
+
∑
K∈T

|K|bKuKTn(uK)

=
∑
K∈T

∫
K

fTn(uK)dx. (25)

Since b is nonnegative and since rTn(r) > 0 ∀r, we
notice that the second term in the left hand side of (25) is
nonnegative. Moreover, since Tn is bounded by n, we deduce
that ∣∣∣∣∣∑

K∈T

∫
K

fTn(uK)dx

∣∣∣∣∣ 6 n‖f‖L1(Ω).

Using (16), the first term of (25) can be rewritten as

∑
σ∈E

|σ|
dσ

(
B(−vK,σ dσ)uK − B(vK,σ dσ)uL

)
×

×
(
Tn(uK)− Tn(uL)

)
=
∑
σ∈E

|σ|
dσ

B
(
vK,σ dσ

)
(uK − uL)(Tn(uK)− Tn(uL))

+
∑
σ∈E
|σ| vK,σ uK

(
Tn(uK)− Tn(uL)

)
= I1 + I2,

with

I1 =
∑
σ∈E

|σ|
dσ

B
(
vK,σ dσ

)
(uK − uL)(Tn(uK)− Tn(uL)),

I2 =
∑
σ∈E
|σ| vK,σ uK

(
Tn(uK)− Tn(uL)

)
.

Therefore, we deduce from (25)

I1 6 n‖f‖L1(Ω) − I2. (26)

As in [7], I2 can be rewritten as

−I2 =
∑
σ∈E
|σ||vK,σ|uσ,+(Tn(uσ,−)− Tn(uσ,+)).

As in [7], we define the subset A of edges by

A = {σ ∈ E ;uσ,+ > uσ,−, uσ,+ < 0}
∪{σ ∈ E ;uσ,+ < uσ,−, uσ,+ ≥ 0} (27)

and since Tn is non decreasing we have

−I2 =
∑
σ∈E
|σ||vK,σ|uσ,+(Tn(uσ,−)− Tn(uσ,+)).

Notice that ∀σ ∈ A, |uσ,+| ≥ n implies |uσ,−| ≥ n. So, we
deduce that for all σ ∈ A,

uσ,+(Tn(uσ,−)−Tn(uσ,+)) = Tn(uσ,+)(Tn(uσ,−)−Tn(uσ,+)).

It follows that

−I2 ≤
∑
σ∈A
|σ||vK,σ|uσ,+Tn(uσ,+)(Tn(uσ,−)− Tn(uσ,+))

≤ nd
1
2 ‖v‖L2(Ω)d

(∑
σ∈A

|σ|
dσ

(Tn(uσ,−)− Tn(uσ,+))2
) 1

2

≤ 1

2
n2d

1
2 ‖v‖2L2(Ω)d +

1

2

∑
σ∈A

|σ|
dσ

(Tn(uσ,−)− Tn(uσ,+))2

≤ 1

2
n2d

1
2 ‖v‖2L2(Ω)d +

1

2

∑
σ∈E

|σ|
dσ

(Tn(uK)− Tn(uL))2.

Since |Tn(uK) − Tn(uL)| ≤ |uK − uL| (because Tn is 1-
Lipschitz function), we have

−T2 ≤
1

2
n2d

1
2 ‖v‖2L2(Ω)d+

1

2

∑
σ∈E

|σ|
dσ

(uK−uL)(Tn(uK)−Tn(uL)).

We deduce from (26) and the fact that B(s) ≥ 1, ∀s ∈ R,

1

2

∑
σ∈E

|σ|
dσ

(uK − uL)(Tn(uK)− Tn(uL))

≤ n‖f‖L1(Ω) +
1

2
n2d‖v‖2L2(Ω)d .

Therefore, using again the fact that Tn is 1-Lipschitz, we can
write :
1

2

∑
σ∈E

(
Tn(uK)− Tn(uL)

)2 ≤ n‖f‖L1(Ω) +
1

2
n2d‖v‖2L2(Ω)d ,

which yields (24).
Applying Lemma 2.9 and the diagonal process, up to a
subsequence still denoted by Tm, for any n ≥ 1, there exists
vn in H1(Ω) such that Tn(uTm) −→ vn and Tn(uTm) ⇀ vn
in the finite volume gradient sense.

Step 2: Up to a subsequence, uT is a Cauchy sequence
in measure
In this step, we follow a proof of [5] to show that uTm
converges a.e. to u . For all n > 0 and all sequences
(Tm)m≥1 and (Tp)p≥1 of admissible meshes, we have

{|uTm − uTp | > n} ⊂ {|uTm | > n} ∪ {|uTp | > n}

∪{|Tn(uTm)− Tn(uTp)| > n}.
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Let ε > 0 fixed. By (14), let n > 0 such that, for all
admissible meshes Tm and Tp,

meas({|uTm | > n}) + meas({|uTp | > n}) < ε

2
.

Once n is chosen, we deduce from Step 1 that Tn(uTm) is
a Cauchy sequence in measure, thus

∀hTm , hTp < h0, meas({|Tn(uTm)− Tn(uTp)| > n}) < ε

2
.

Therefore, we deduce that

∀hTm , hTp < h0, meas({|uTm − uTp | > n}) < ε.

Hence (uTm) is a Cauchy sequence in measure. Conse-
quently, up to a subsequence still indexed by Tm , there
exists a measurable function u such that uTm −→ u a.e. in
Ω. Due to Corollary 4.2, u is finite a.e. in Ω. Moreover from
convergences obtained in Step 1 we get that

Tn(u) ∈ H1(Ω),∇TmTn(uT )→ ∇Tn(u) in (L2(Ω))d.
(28)

In the following proposition we prove a uniform estimate
on the truncated energy of uT (see (29) below) which is
crucial to pass to the limit in the approximate problem.
We explicitly observe that (29) is the discrete version of
(3) which is imposed in the definition of the renormalized
solution for elliptic equation with L1-data. As in the
continuous case (29) is related to the regularity of f :
f ∈ L1(Ω) and does not charge any zero-Lebesgue set. If
we replace div(vu), we also have to uniformly control the

discrete version of
1

n

∫
Ω

vu∇Tn(u)dx which is stated in

(30).

Proposition 4.4: (Discrete estimate on the energy)
Let (Tm)m ≥ 1 be a sequence of admissible meshes such
that there exists ζ > 0 satisfying ∀m > 1,∀K ∈ T and
∀σ ∈ E(K), dK,σ ≥ ζdσ .
If uTm = (uK)K∈Tm is a solution to (9)-(12), then

lim
n→+∞

lim
hTm→0

1

n

∑
σ∈E

|σ|
dσ

(uK − uL)×

×(Tn(uK)− Tn(uL)) = 0 (29)

where uL = 0 if σ ∈ Eext, and

lim
n→+∞

lim
hTm→0

1

n

∑
σ∈E
|σ||vK,σ||uσ,+| ×

×|(Tn(uσ,+)− Tn(uσ,−)| = 0. (30)

Proof: We first establish (29). Let T be an admissible
mesh and let uT be a solution of (9)-(12). Multiplying each

equation of the scheme by
Tn(uK)

n
, summing on K ∈ T

and gathering by edges lead to

1

n

∑
σ∈E

|σ|
dσ

(
B(−vK,σ dσ)uK − B(vK,σ dσ)uL

)
×

×
(
Tn(uK)− Tn(uL)

)
+

1

n

∑
K∈T

|K|bKuKTn(uK)

=
1

n

∑
K∈T

∫
K

fTn(uK)dx. (31)

Since b is non-negative and since rTn(r) ≥ 0 ∀r , we get

1

n

∑
K∈T

|K|bKuKTn(uK) ≥ 0. (32)

Due to the definition of uT we have

1

n

∑
K∈T

∫
K

fTn(uK)dx =

∫
Ω

f
Tn(uT )

n
dx.

In view of the point-wise convergence of uT to u, we obtain
that Tn(uT ) converges to Tn(u) a.e. and weak * as hT → 0.
It follows that

lim
hT→0

∫
Ω

f
Tn(uT )

n
dx =

∫
Ω

f
Tn(u)

n
dx.

Since u is finite a.e. in Ω ,
Tn(u)

n
converges to 0 a.e. and

in L∞ weak, and since f belongs to L1(Ω), the Lebesgue
dominated convergence theorem implies that

lim
n→+∞

lim
hT→0

1

n

∑
K∈T

∫
K

fTn(uK)dx = 0. (33)

Using (16), the first term of (31) can be rewritten as

1

n

∑
σ∈E

|σ|
dσ

(
B(−vK,σ dσ)uK − B(vK,σ dσ)uL

)
×

×
(
Tn(uK)− Tn(uL)

)
=

1

n

∑
σ∈E

|σ|
dσ

B
(
vK,σ dσ

)
(uK − uL)(Tn(uK)− Tn(uL))

+
1

n

∑
σ∈E
|σ| vK,σ uK

(
Tn(uK)− Tn(uL)

)
= T1 + T2,

with

T1 =
1

n

∑
σ∈E

|σ|
dσ

B
(
vK,σ dσ

)
(uK − uL)(Tn(uK)− Tn(uL)),

T2 =
1

n

∑
σ∈E
|σ| vK,σ uK

(
Tn(uK)− Tn(uL)

)
.

Using the same arguments as in [12], we prove that

−T2 ≤
1

n

r2d‖v‖2L2(Ω)d

2

+
1

2n

∑
σ∈E(K)

|σ|
dσ

(uK − uL)(Tn(uK)− Tn(uL)). (34)

Using the fact that B(s) ≥ 1, ∀s ∈ R, we get from the
second term in the right hand side of (34)

1

2n

∑
σ∈E(K)

|σ|
dσ

(uK − uL)(Tn(uK)− Tn(uL))

≤ 1

2n

∑
σ∈E(K)

|σ|
dσ
B
(
vK,σ dσ

)
(uK − uL)×

×(Tn(uK)− Tn(uL)). (35)

From (34) and (35), we deduce that

−T2 ≤
1

n

r2d‖v‖2L2(Ω)d

2
+

1

2
T1. (36)

Combining (32), (33) and (36) we deduce (29).
By the same manage as in [12], we prove (30).
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The following corollary is useful to pass to the limit in the
diffusion term.

Corollary 4.5: (see [12]) Let (Tm)m≥1 be a sequence of
admissible meshes such that there exists ξ > 0 satisfying
for all m ≤ 1 for all K ∈ T and all σ ∈ E(K), dk,σ ≥ ξdσ .
If uTm = (uK)K∈Tm is a solution to (9)-(12), then

lim
n→+∞

lim
hT→0

∑
σ∈E,

|uK |≤2n,
|uL>4n

|σ|
dσ
|uL| = 0. (37)

V. CONVERGENCE RESULTS

We intend here to prove Theorem 2.11 that is the main
result of this paper.
Before proving Theorem 2.11, we recall the following
convergence result (see [12]) concerning the function (hn)
defined, for any n ≥ 1, by

hn(s) =



0, if s ≤ −2n;

s

n
+ 2, if −2n ≤ s ≤ −n,

1, if −n ≤ s ≤ n,

−s
n

+ 2, if n ≤ s ≤ 2n,

0, if s ≥ 2n.

(38)

Fig. 3. The function hn

Lemma 5.1: Let (Tm)m≥1 be a sequence of admissible
meshes such that there exists ξ > 0 satisfying for all m ≥ 1,
for all K ∈ T and for all σ ∈ E(K), dK,σ ≥ ξdσ . Let
uTm ∈ X(Tm) be a sequence of solution of (9)-(12). We
define the function h̃n by

∀σ = K/L ∈ Eint,∀x ∈ Dσ, h̃n(x) =
hn(xK) + hn(xL)

2
,

then h̃n(uTm) → hn(u) in Lq(Ω), ∀q ∈ [2,+∞[ as
hTm → 0, where u is the limit of uTm .

Proof: Proof of Theorem 2.11. Let ϕ ∈ C∞c (Ω) and
hn the function defined by (22). We denote by ϕT the
function defined by ϕK = ϕ(xK) for all K ∈ T . Multiplying
each equation of the scheme (9)-(12) by ϕ(xK)hn(uK)
(which is a discrete version of the test function used in
the renormalized formulation), summing over the control
volumes and gathering by edges, we get T1 + T2 + T3 = T4

with

T1 =
∑
σ∈E

τσ(uK − uL)(ϕ(xK)hn(uK)− ϕ(xL)hn(uL)),

T2 =
∑
σ∈E
|σ|bK,σuσ,+(ϕ(xK)hn(uK)− ϕ(xL)hn(uL)),

T3 =
∑
K∈T

|K|bKuKϕ(xK)hn(uK),

T4 =
∑
K∈T

∫
K

fϕ(xK)hn(uK).

As far as the term T4 is concerned, by the regularity
of ϕ, we have ϕT → ϕ uniformly on Ω when
hT → 0. We now pass to the limit as hT → 0. Since
hn(uT ) → hn(u) a.e and L∞ weak ∗, ϕT → ϕ uniformly,
|fϕT hn(uT )| ≤ Cϕ|f | ∈ L1(Ω), the Lebesgue dominated
convergence theorem ensures that

T4 =

∫
Ω

fϕT hn(uT )dx −→
hT→0

∫
Ω

fϕhn(u)dx. (39)

In view of the definition of bT , and since b belongs to L1(Ω),
bT = (bK)K∈T converges to b in L1(Ω) as hT → 0. With
already used arguments we can assert that

T3 =

∫
Ω

bT T2n(uT )ϕT hn(uT )dx

−→
hT→0

∫
Ω

bT2n(u)ϕhn(u)dx. (40)

We now study the convergence of the diffusion term. We
write

T1 =
∑
σ∈E

τσ (uK − uL)
(
ϕ(xK)hn(uK)− ϕ(xL)hn(uL)

)
= T1,1 + T1,2

with

T1,1 =
∑
σ∈E

τσ hn(uK)
)

(uK − uL)
(
ϕ(xK)− ϕ(xL)

)
,

T1,2 =
∑
σ∈E

τσ ϕ(xL)(uK − uL)
(
hn(uK)− hn(uL)

)
.

In view of the definitions of hn and τσ we get

|T1,2| ≤
1

n

∑
σ∈E

|σ|
dσ
ϕ(xL)(uK − uL)(T2n(uK)− T2n(uL)).

From (29), we deduce that

lim
n→+∞

lim
hT→0

T1,2 = 0. (41)

As far as T1,1 is concerned, we observe that uK is truncated
while uL is not truncated. To deal with T1,1 we write

T1,1 =
∑
σ∈E

τσ hn(uK)(T2n(uK)− uL)(ϕ(xK)− ϕ(xL))

= T 1
1,1 + T 2

1,1 + T 3
1,1,
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with

T 1
1,1 =

∑
σ∈E

τσ
hn(uK) + hn(uL)

2
(T4n(uK)− T4n(uL))×

×(ϕ(xK)− ϕ(xL)),

T 2
1,1 =

∑
σ∈E

τσhn(uK)(T4n(uL)− uL)(ϕ(xK)− ϕ(xL)),

T 3
1,1 =

∑
σ∈E

τσ
hn(uK)− hn(uL)

2
(T4n(uK)− T4n(uL))×

×(ϕ(xK)− ϕ(xL)).

Since in T 1
1,1, uK and uL are both truncated we can pass to

the limit in I as hT → 0 by writing

T 1
1,1 =

∑
σ∈E

dσ
d
τσ
(
T4n(uK)− T4n(uL)

)
×

×hn(uK) + hn(uL)

2
d

(ϕ(xK)− ϕ(xL))

dσ
= I1 + I2,

with

I1 = −
∑
σ∈E

∫
σ

AT∇T T4n(uT ) · ∇T ϕT h̃n(x) dγ(x),

I2 =
∑
σ∈E
|σ|hn(uK) + hn(uL)

2

(ϕ(xK)− ϕ(xL))

dσ
×

×
(
T4n(uK)− T4n(uL)

)
−
∑
σ∈E

hn(uK) + hn(uL)

2

(ϕ(xK)− ϕ(xL))

dσ
×

× 1

|Dσ|

∫
σ

AT∇T T4n(uT ) · ηK,σdγ(x).

By Lemma 5.1, h̃n(uT ) → hn(u) in Lq(Ω) ∀q ∈ [2,+∞[,
while AT∇T T4n(uT ) tends to A∇T4n(uT ) weakly in
(L2(Ω))2. Since ϕ belongs to C∞c (Ω) we conclude that

lim
hT→0

I1 =

∫
Ω

hn(u)A∇T4n(u).∇ϕdx. (42)

By the regularity of ϕ and due to hypothesis (H1), we see
that

|I2| ≤ β ‖ϕ‖W 1,∞(Ω) hT ‖T4n(uT )‖21,2,T .

Therefore,
lim
hT→0

I2 = 0. (43)

We now turn to T 2
1,1.

|T 2
1,1| ≤

∑
σ∈E

|σ|
dσ
|hn(uK)||T4n(uL − uL||(ϕ(xK)− ϕ(xL))|

≤ 2‖ϕ‖L∞(Ω)

∑
σ∈E

|uK≤2n|, |uL>4n|

|σ|
dσ
|uL|.

We can deduce by Corollary 4.5 that

lim
n→+∞

lim
hT→0

T 2
1,1 = 0. (44)

Noticing that

|T 3
1,1| ≤

||ϕ||L∞(Ω)

n

∑
σ∈E

|σ|
dσ
|uK − uL||Tn(uK)− Tn(uL)|,

and using estimate (29), we deduce that

lim
n→+∞

lim
hT→0

T 3
1,1 = 0. (45)

For the convection term we have

T2 =
∑
σ∈E
|σ|vK,σuσ,+

(
ϕ(xK)hn(uK)− ϕ(xL)hn(uL)

)
=

∑
σ∈E

vK,σ≥0

|σ|vK,σuσ,+hn(uσ,+)(ϕ(xK)− ϕ(xL))

+
∑
σ∈E

vK,σ≥0

|σ|vK,σuσ,+ϕ(xL)(hn(uσ,+)− hn(uσ,−))

−
∑
σ∈E

vK,σ<0

|σ|vK,σuσ,+hn(uσ,+)(ϕ(xL)− ϕ(xK))

−
∑
σ∈E

vK,σ<0

|σ|vK,σuσ,+ϕ(xK)(hn(uσ,+)− hn(uσ,−))

= T2,1 + T2,2 − T2,3,

with

T2,1 =
∑
σ∈E
|σ|vK,σuσ,+hn(uσ,+)(ϕ(xK)− ϕ(xL)),

T2,2 =
∑
σ∈E

vK,σ≥0

|σ|vK,σuσ,+ϕ(xL)(hn(uσ,+)− hn(uσ,−)),

T2,3 =
∑
σ∈E

vK,σ<0

|σ|vK,σuσ,+ϕ(xK)(hn(uσ,+)− hn(uσ,−)).

We prove that according to [12]

lim
n→+∞

lim
hT→0

(T2,2 − T2,3) = 0 (46)

and
lim
hT→0

T2,1 = −
∫

Ω

T2n(u)hn(u)v.∇ϕdx. (47)

We are now in position to pass to the limit as hT → 0 in
the scheme (9)-(12). Gathering equations from (39) to (47),
we can assert that∫

Ω

hn(u)A∇u · ∇ϕdx−
∫

Ω

uhn(u) v · ∇ϕdx

+

∫
Ω

b u hn(u)ϕdx−
∫

Ω

f ϕhn(u)dx

= lim
hT→0

T (n, ϕ), (48)

where lim
hT→0

|T (n, ϕ)| ≤ ||ϕ||L∞(Ω) ω(n) with ω(n)→ 0 as
n→ +∞.

Let h ∈ C1
c (R) and ψ ∈ C1

c (Ω) ∩ H1
0 (Ω). In view

of the regularity of Tn(u)(see (2)) the function h(u)ψ
belongs to L∞(Ω) ∩ H1

0 (Ω). By the density of C∞c (Ω) in
L∞(Ω)∩H1

0 (Ω) (here any element of L∞(Ω)∩H1
0 (Ω) can

be approached by a sequence of C∞c (Ω) which is bounded
in L∞(Ω)). So, taking ϕ = h(u)ψ in (48) and passing to
the limit as n→ +∞, we deduce that∫

Ω

A∇uh(u)∇ψ dx+

∫
Ω

A∇uψ∇uh′(u) dx

−
∫

Ω

uh(u) v · ∇ψ dx−
∫

Ω

uh′(u)ψ v · ∇u dx

+

∫
Ω

b u h(u)ψ dx =

∫
Ω

f ψ h(u) dx,
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which is Equality (4) in the definition of a renormalized
solution. It remains to prove that u satisfies the decay (3)
of the truncate energy.
Thanks to the discrete estimate on the energy (27) we get,

lim
n→+∞

lim
hT→0

1

n

∑
σ∈E

|σ|
dσ

(T2n(uK)− T2n(uL))2 = 0

and ∑
σ∈E

|σ|
dσ

(T2n(uK)− T2n(uL))2

=
∑
σ∈E
|σ|dσ

(
T2n(uK)− T2n(uL)

dσ

)2

=
∑
σ∈E

d|Dσ|

(
T2n(uK)− T2n(uL)

dσ

)2

=
1

d

∑
σ∈E
|Dσ|

(
d
T2n(uK)− T2n(uL)

dσ

)2

=
1

d

∫
Ω

|∇T T2n(uT )|2dx,

hence, lim
n→+∞

lim
hT→0

1

n

∫
Ω

|∇T T2n(uT )|2 dx = 0. Since

∇T2n(uT ) converges weakly in L2(Ω)d, we also have

1

n

∫
Ω

|∇T2n(u)|2 dx ≤ lim inf
hT→0

1

n

∫
Ω

|∇T T2n(uT )|2dx,

which leads to

lim
n→+∞

1

n

∫
Ω

|∇T2n(u)|2 dx = 0.

Since the renormalized solution u is unique, we conclude
that the whole sequence uTm converges to u in the sense
that for all n > 0, Tn(uTm) converges weakly to Tn(u) in
H1

0 (Ω).
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