
 

  

Abstract—In tensor learning, recent studies have shown that 

the Tensor Train (TT) decomposition can capture the hidden 

information from tensor better than Tucker decomposition. 

The TT decomposition is determined by a well-balanced 

matricization scheme. Moreover, as a convex relaxation of the 

rank, the nuclear norm may cause the data recovery to differ 

significantly from the original value. Therefore, we propose a 

completion model based on TT decomposition and nonconvex 

Schatten-p norm. The objective function is nonconvex. It 

requires a large-scale singular value decomposition or 

eigenvalue decomposition. We introduce Schatten-2/3 and 

Schatten-1/2 quasi-norms to transform the problem into a 

convex programming with respect to norm minimization. The 

completion algorithms STT-2/3 and STT-1/2 are proposed by 

the proximal alternating linearized minimization (PALM). 

Experiments show that the proposed method is effective for 

data recovery. 

 
Index Terms—Data recovery, Proximal alternating 

linearized minimization, Schatten-p norm, Tensor optimization 

 

I. INTRODUCTION 

ITH the explosive growth of information, data is no 

longer limited to a 2-order structure. Data loss is 

common due to errors and noises. The problem of data 

completion is gaining more attention. At present, 2-order data 

completion has been mature [1]-[3]. For higher-order 

problems, the usual approach is simply to transform the data 

into matrices or vectors. Its disadvantage is low 

decomposition efficiency and easy to cause spatial 

redundancy [4]. 

Essentially, a tensor is a higher-order generalization of a 

matrix. The tensor has the advantage that it can store 

structures between neighboring data. In recent years, more 

and more theories of tensors have been proposed by scholars 

[5]-[7]. The completion problem is extended to 

higher-dimensional spaces by using tensors. In simple terms, 

tensor completion is the inference of missing terms in a 

tensor from partial observations. 
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In 1927, Hitchcock [8], [9] proposed the concept of 

n-mode rank. He demonstrated that the sum of tensors of 

finite rank can be expressed as a tensor. In the years since, 

tensor decompositions have been extensively studied.Tucker 

[10] introduced the well-known Tucker decomposition in 

1966. The CANDECOMP (Canonical Decomposition) 

model was proposed by Carroll and Chang [11] in 1970. 

Moreover, Harshman [12] presented the PARAFAC (Parallel 

Factor) model. Then, Kiers HAL [13] proved that the 

CANDECOMP model and PARAFAC model are actually 

equivalent. These two models are now generally referred to 

as the CP decomposition. Both CP decomposition and Tucker 

decomposition work well for the low-order tensor. However, 

as the order rises, it becomes difficult to obtain the CP factor 

and the Tucker decomposition will grow exponentially. In 

light of this, after 2009 W. Hackbusch et al. [14]-[16] 

presented tree-type decomposition. It relies on spatially 

indexed splits and requires recursive algorithms. This may 

complicate the calculation of the problem. In 2011, I.V. 

Oseledets [17] improved the tree-type decomposition and 

defined the tensor-train (TT) decomposition. In contrast to 

other decomposition models, TT decomposition is not 

impacted by the "curse of dimension" and is always flexible 

and stable. Consequently, the TT decomposition has attracted 

the interest of some researchers. For instance, Bengua [18] 

suggested a low TT rank method in 2017. Yuan [19] 

proposed a gradient descent-based algorithm based on the TT 

decomposition completion in the same years. 

At present, there are three primary methods to solve the 

low-rank tensor completion (LRTC) problem. The first is to 

extend the rank minimization framework of the matrix 

completion to LRTC [20]. The second is to apply the concept 

of tensor algebra to solve LRTC [21]. The last one is to apply 

the concept of manifold to solve LRTC [22]. Obviously, the 

rank minimization problem is NP-hard [5]. In general, the 

prevalent method is to substitute the nuclear norm for the 

rank function of the matrix. Nonetheless, Huet et al. [24] 

discovered in 2013 that the nuclear norm may excessively 

penalize partial singular values. In reality, several researchers 

have started to study non-convex surrogate functions of 

matrix rank. In 2012, Nie [3], [25] presented and 

demonstrated that the Schatten-p norm is preferable to the 

nuclear norm for approximating the rank function. 

Even though the Schatten-p norm is gradually being used 

in tensor problems [26], [27], these completion models often 

have two drawbacks: 1) Most of them are based on the 

Tucker decomposition, which can cause results that deviate 

from the ideal value. 2) Solving LRTC typically necessitates 

singular value decomposition, which can result in large-scale 

calculations. Motivated by these flaws, the main work of this 

paper are as follows: 1) We define the Schatten-p norm based 
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on the TT decomposition. 2) A novel tensor completion 

model is proposed. 3) By introducing the quasi-norm, the 

algorithms STT-2/3 and STT-1/2 are presented by the PALM 

method. 4) Experiments show that the proposed algorithm is 

significantly superior to the existing completion methods. 

II. NOTIONS 

A tensor is denoted by an Euler script letter, e.g., X . The 

capital letters denote matrices. Scalars are denoted by 

lowercase letters, e.g.,  . The element ( ),i j  of a matrix A  

is denoted by ijA , element 
1 2( , , )Ni i iL  of a tensor 

1 2X NI I I
R

 


L  by 
1 2, , Ni i ix L . 

A. Tensor Train Decomposition 

Definition 1 [28] For the tensor 1 2X NI I I
R

 


L , its 

k-unfolding is defined as the matrix 1 1

[ ]
k k NI I I I

kX R +


L L
 with 

entries [ ] ..( .. , ... )
1 21 2 1 Nk k k N i i iX i i i i i x+ = . 

Definition 2 [28] For the tensor 1 2X NI I I
R

 


L
, its mode-k 

unfolding is defined as the matrix 1 1 1

( )
k k k NI I I I I

kX R − +


L L
 with 

entries ( ) ..( , .. .. )
1 21 1 1 Nk k k k N i i iX i i i i i x− + = . 

Besides, [ ]( )Xn nunfold X=  represents the matricization 

process of a tensor, ( ( ))X Xn nfold unfold =  denotes its 

inverse process. 

Definition 3 [17] For a tensor 1 2X NI I I
R

 


L
, its tensor 

train (TT) decomposition can be expressed as 

( )

( )
0

1

1 0 1 1 2 1 2 2 1

,

,

, , ( , , ) ( , , )

X

N

N

N N N N

i i

G i G i G i
 

     −= 
L

L

L
     (1) 

where ( ) 1

1, , k k kr I r

k k k kG i R  −  

−   is a core tensor, 
kr  is the 

TT rank, 
0 1Nr r= =  is the boundary condition of the rank. 

Fig.  1 shows the TT decomposition of the 4-order tensor. 

 
Fig.  1.  Tensor train decomposition. 

In fact, the rank of the matrix [ ]kX  is 
kr . Additionally, 

[ ] [ ]( ) ( ( ),..., ( ))1 1X Nrank rank X rank X −=  can be used to 

represent the multilinear rank of 1 2X NI I I
R

 


L
. 

B. Matrix Norm 

Definition 4 [29] The Schatten-p norm  (0 )p    of a 

matrix ( )m nX R m n   is defined as follows 

1/

1

( )
p

p
n

p

iS
i

X X
=

 
=  

 
                        (2) 

where ( )i X  is the ith singular value of the matrix X . 

Definition 5 [30] For the matrix 
m nX R   with 

( )rank X r d=  , if m dU R   and n dV R   are matrices 

such that TX UV= , the Frobenius/Nuclear Hybrid norm is 

defined as 

/ *

3/2
2

*

min

2
= min

3

T

T

F N F
X UV

F

X UV

X U V

U V

=

=

=

 +
 
 
 

                    (3) 

Moreover, the following equality holds 

 
2/3/

( 2/3)
F N S

X X p= =                       (4) 

Definition 6 [30] For the matrix m nX R   with 

( )rank X r d=  , if m dU R   and n dV R   are matrices 

such that TX UV= , the Bi-nuclear norm is defined as 

* *

2

* *

min

min
2

T

T

BiN
X UV

X UV

X U V

U V

=

=

=

 + 
=   

 

                        (5) 

The Bi-nuclear norm is related to the Schatten-p norm as 

follows 

1/2

( 1/2)
BiN S

X X p= =                      (6) 

III. TENSOR COMPLETION MODEL 

A. Formulation of a Model 

The mode-k unfolding matrix ( )kX  is obtained by 

matrixing the tensor along a single mode. It captures only the 

correlation between the mode k and the remaining modes. 

Structural information for randomly combining multiple 

modes is ignored. In contrast, the k-unfolding matrix [ ]kX  

obtained via TT decomposition is much more balanced than 

( )kX . From Definition 1, the rank 
kr  of [ ]kX  globally 

captures the hidden correlations between the modes. 

Therefore, we select a completion optimization model based 

on TT rank. 

Give a tensor 1X NI I
R




L
, its completion based on 

minimizing TT rank can be formulated as 

min ( )

. .

X
X

X T

TTrank

s t  =
                                 (7) 

where T  is the observation tensor,   is the index of 

observed entries, X T =  is represented as 
1 1

X T
N Ni i i i=L L , 

with  1 2, , Ni i i L . 

( )[1] [2] [ 1]( ) ( ), ( ), ( )XTT Nrank rank X rank X rank X −= L  [17]. 

Further, the above model is written as 

[ ]

1

[ ]

1

min ( )

. .X T

i

N

i i
X

i

a rank X

s t

−

=

 =


                            (8) 

where , 1, 1ia i N= −L  are the weights with 
1

1

0, 1
N

i i

i

a a
−

=

 = . 

According to [3], the Schatten-p ( )0 1p   norm is 

nonconvex. But as a surrogate for rank, it is better suited than 

the nuclear norm. First, we define the Schatten-p norm based 

on the TT decomposition: 
1

1

[ ]

1

X
p p

N pp

i iS S
i

a X
−

=

 
=  

 
                         (9) 

Then, a new tensor completion model can be formulated as 
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1

[i]

1

min

.t .

X

X T

p

N
p

i S
i

a X

s

−

=

 =


                             (10) 

B. Solving the Proposed Model 

The completion model (10) is a nonlinear programming 

that is hard to directly solve. So, we introduce the 

independent matrices 
1 2 1, , NM M M −L , the problem can be 

transformed into the following model: 
1

2

[i]
,

1

min
2

.t .

X

X T

N
p i

i i iSp FM
i

b
a M M X

s

−

=

 

+ −

=


             (11) 

The model is nonconvex. The variables are separated into 

X  and 
1 2 1( , , )NM M M −L . The original problem is then split 

into the following two subproblems. 

The first subproblem: 
1

2
1

[i]

1

2

argmin
2

1

2

N
pk ki

i i iSp F
M i

k

i i F
i

b
M a M M X

M M


−
+

=

 + −

+ −


        (12) 

where 0 1i  . 

The second subproblem: 
1

2
1 1

[i]

1

2

argmin
2

1

2

X

X

X X

N
k ki

i F
i

k

F

b
M X

v

−
+ +

=

 
 − 

 

+ −


          (13) 

where 0 1v  . 

1) Solving the First Subproblem 

For the variable ( 1, 1)iM i N= −L , we need to solve the 

following problem: 

2

2

[i]

1
min

2

1

2

i

k

i i FM
i

pk

i i i SpF

M M

M X M





−

+ − +

                 (14) 

where /i i ia b = , 
i i ib = . (14) is further simplified: 

( )

2

[i]

2

1
min

2 1

1

i

k k

i i

i
M

i F

pi i

i Sp

i

M X
M

M





 



+
−

+

+

+

                    (15) 

The problem is reduced to the following form for 

calculational ease: 

21
min

2 p

p

F SA
A B A− +                        (16) 

For the problem (16), the key to its solution is to consider 

the Schatten-p norm. When 2 / 3p = , the Schatten-p norm is 

equivalent to the Frobenius/Nuclear Hybrid norm [30]. When 

1/ 2p = , the Schatten-p norm is equivalent to the Bi-nuclear 

norm [30]. By substituting the Schatten-2/3 and Schatten-1/2 

norms into (16), this model can be transformed into a convex 

optimization problem. 

i) p 2 / 3= , according to Definition 5 

( )
2/3

2/3 2

*

1
2

3p

p

S S F
X X U V= = +              (17) 

Let m nA R  , Am r
U R


 , An r

V R


 , where 
Ar  is the rank 

of matrix A . (16) is converted to 

( )2

2*

, :

2 1
min

3 2T

F T

FU V A UV

U V
UV B



=

+
+ −         (18) 

To solve for 
iM  is to solve for 

iU  and 
iV . Clearly, (18) is 

a convex optimization problem. We use and extend the 

proximal alternating linearized minimization (PALM) [31]. 

For 1kU + , let 
21

(U)
2

T

k k F
g UV B= − . Then its gradient is 

Lipschitz continuous: 

( )1 2 1 2

2

1 2 1 1 22

(U ) g (U ) T T

k k k k kF F

g

k kF F

g U V U V V

V U U l U U+

 −  = −

 − = −

   (19) 

where 
1

g

kl +
 is the Lipschitz constant. 

Further, add a proximal term: 
^

21

(U,U ) g (U ) (U ),U U

2

k k k k k k k

g

k
k F

g g

l
U U+

= +  −

+ −

       (20) 

According to the PALM method [31]: 

( )

^

1 *

2

1

*

1

2
arg min (U, U )

3

2
arg min

3 2

k k k
U

g
k kk

k g
U k F

U U g

g Ul
U U U

l





+

+

+

= +


= + − +

 (21) 

Therefore, ( ) ( )T

k k k k kg U U V B V = − , 
2

1 2

g

k kl V+ = . 

Let 1

1

( )k k

k g

k

g U
Y U

l +


= − ,its singular value decomposition 

is 
1 1 11

T

Y Y YY U V=  . Based on the singular value thresholding 

algorithm [1], the solution is directly calculated: 

1 1 11

1

2
max( ,0)

3

T

k Y Y Yg

k

U U V
l


+

+

=  −                 (22) 

where 
( )

1 2

2

T

k k k

k

k

U V B V
Y U

V

−
= − , 

[i]

1

k k

i i

i

M X
B





+
=

+
, and 

2( 1)

a

b





=

+
. 

Next, solve 1kV + . Let 
2

1

1
(V)

2
k k F

h U V B+= − , its gradient 

is also Lipschitz continuous: 

( )1 2 1 1 1 2

2

1 1 2 1 1 22

(V ) (V ) (V V )T T T

k k k kF F

h

k kF F

h h U U

U V V l V V

+ +

+ +

 −  = −

 − = −

   (23) 

where 1

h

kl +  is the Lipschitz constant. 

Similarly: 

( )
2

2 1

1

1

arg min
3 2

h
k kk

k k hF
V k F

h Vl
V V V V

l

 +

+

+


= + − +     (24) 

where ( )1 1(V ) T

k k k k kh U V B U+ + = − , 
2

1 1 2

h

k kl U+ += . 

Let 2

1

( )k k

k h

k

h V
Y V

l +


= − , the solution is 
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1 2 1 2

1

1
1

3

2 2 3

3

h h

k k

k h
h k
k

l Y l Y
V

l
l

 
+ +

+

+
+

= =
+

+

                        (25) 

where 
( )1 1

2 2

1 2

T

k k k

k

k

U V B U
Y V

U

+ +

+

−
= − , 

[i]

1

k k

i i

i

M X
B





+
=

+
, 

and 
2( 1)

a

b





=

+
. 

ii) p 1/2= , according to Definition 6: 

( )
1/2

1/2

* *

1

2p

p

S S
X X U V= = +               (26) 

(16) is converted to 

( ) 2* *

, :

1
min

2 2 FU V A UV

U V
UV B



=

+
+ −             (27) 

Similarly, we use the PALM method [31] to convert the 

above problem into 

( )

^

1 *

2

1

*

1

arg min (U, U )
2

arg min
2 2

k k k
U

g
k kk

k g
U k F

U U g

g Ul
U U U

l





+

+

+

= +


= + − +

    (28) 

Obtained from [1]: 

1 1 11

1

max( ,0)
2

T

k Y Y Yg

k

U U I V
l


+

+

=  −                  (29) 

where 
( )

1 2

2

T

k k k

k

k

U V B V
Y U

V

−
= − , 

[i]

1

k k

i i

i

M X
B





+
=

+
, and 

2( 1)

a

b





=

+
. 

Similarly: 

( )
2

1

1 *

1

arg min
2 2

h
k kk

k k h
V k F

h Vl
V V V V

l

 +

+

+


= + − +    (30) 

The optimal solution of (30) is 

2 2 21

1

max( ,0)
2

T

k Y Y Yh

k

V U I V
l


+

+

=  −                 (31) 

where 
( )1 1

2 2

1 2

T

k k k

k

k

U V B U
Y V

U

+ +

+

−
= − , 

[i]

1

k k

i i

i

M X
B





+
=

+
, and 

2( 1)

a

b





=

+
. 

According to i) and ii), the optimal solution to the 

subproblem (12) is 1 1 1( )k k k T

i i iM U V+ + += . 

2) Solving the Second Subproblem 

After updating all 
kM , the tensor 

1X k +
 is computed. 

Subproblem (13) is a convex optimization. The optimal 

solution according to the KKT condition is 

1 1

1

1

11

1

1

, (i )

(M ) /
, (i )

1/

XX

Ni i N

N
k

k i i i
Ni

N

i

i

t i

b fold v
i

b v

−

+

=

−

=

 

  − = 
 
  − 

 





L L

L   (32) 

where 
1

( )T
Ni it= L  is the observation data.  

For the proposed tensor completion model (10), the 

algorithms of 2 / 3p =  and 1/ 2p =  are referred to as 

STT-2/3 and STT-1/2, respectively. The pseudocode for 

STT-2/3 is as follows. STT-1/2 simply needs to adjust the 

formulas for 1kU +  and 1kV +  on the basis. 

IV. COMPLEXITY AND CONVERGENCE 

For a tensor 1 2X NI I I
R

 


L
, we assume that 

1 2 NI I I I= = =L  and 
1 2 1Nr r r r−= = =L . The original 

model (10) is divided into sub-problems (12) and (13). In this 

paper, we analyze the complexity of each subproblem. Since 

the computational complexity of (15) is ( )NI r , it follows 

that the complexity of (12) is ( )( 1) NN I r − . For (13), the 

computational complexity is ( )( 1) NN I − . Suppose the 

proposed algorithm requires K  iterates in total, its 

computation complexity is ( )( 1) NK N I r − . 

Let 0,1,..{ }k

k =  ( 0,1,..{ }k

k = ) be the sequence generated by 

STT-2/3 (STT-1/2), then each limit point of { }k  ({ }k ) is a 

critical point of the objective function. Further, we assume 

that { }k  ( { }k ) is bounded and then { }k  ( { }k ) is 

converges to a critical point of the function. In other words, 

the algorithm is globally convergent. 

The convergence proof may refer to the convergence 

analysis in [26], which is omitted here. 

V. NUMERICAL EXPERIMENT 

In this section, STT-2/3 and STT-1/2 are used to 

reconstruct the lost synthetic data and color image. We 

compare the results with SpBCD[26], SiLRTC-TT[18], 

SiLRTC[32], FaLRTC[32], GeomCG[33], and TMac[34]. 

The algorithms are compared under different data missing 

ratios (mr). The missing ratio is defined as follows: 

1

N

k

k

s
mr

I
=

=


                                  (33) 

where s  is the number of missing entries and its selection 

follows a uniform distribution. 

Algorithm：STT-2/3  

Input：T ,  , a , b ,  , v ,  ,  ,    

Output: X  

1：while not converged do： 

2：   for 1,2,...N 1i = −  do 

3：       1k

iU +  by（22）； 1k

iV +  by（25）； 

4：       1 1 1( )k k k T

i i iM U V+ + += ； 

5：   end for 

6：   update 1X k +  by （32）； 

7：    if 
1X X

X

k k

F

k

F



+ −
  then 

8：       break; 

9：    end if 

10：end while 
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In addition, the performance of the algorithm is evaluated 

by the relative square error (RSE). The RSE is defined as 

X X

X
true F

true F

RSE
−

=                            (34) 

where Xtrue
 is the original tensor, X  is the recovered tensor. 

In the experiments, the weight 
ia  is defined as 

1

1

/
N

i i

i

a  
−

=

=  , where 
1 1

min( , )
k N

i l l

l l k

I I
= = +

=   . The parameter 

ib  is set to be 
i ib k a=  , where k  selects a value from 

[0.01,0.05,0.1,0.5,1]  that makes the best performance. 
i  is 

100 /i ib = . v  is set to be ( )
1

1

10( 1) /
N

i

i

v N b
−

=

= −  . 
i  is set 

to be 
2( 1)

i i

i

i i

a

b





=

+
, and 

i  is set to be 
i i ib = . The 

iteration termination condition of the algorithm is set as 
410 −= . The parameters of SpBCD, SiLRTC-TT, SiLRTC, 

FaLRTC, GeomCG and TMac are all set to their default 

values. 

A. Color Image Inpainting 

Two color images are used to test the methods. One is from 

the LFW face dataset, which contains 13233 faces in total. 

The other is from CBSD68, a collection of 68 color 

photographs. The face image and airplane image sizes are 

250 250 4   and 160 240 4  , respectively. The 

corresponding 3-order tensor a b c   of an image represents 

its AHeight wi Bdth RG   values. We use STT-2/3, 

STT-1/2, SpBCD, SilRTC-TT, SiLRTC, FaLRTC, GeomCG, 

and TMac to complete face and airplane. Figs.  2, 3, 4, and 5 

show the recovery of the two images under 20%mr =  and 

40%mr = , respectively. Figs.  6 and 7 illustrate RSE, 

iteration, and runtime (s) for different mr. Tables I and Ⅱ 

show the RSE about these methods. The best results are 

highlighted in bold black text. 
TABLE I 

THE RSE ON THE FACE IMAGE. 

MR 10%  20%  30%  40%  

Uncomplement 0.316 0.446 0.548 0.631 
STT-2/3 0.033 0.050 0.065 0.083 

STT-1/2 0.029 0.043 0.057 0.071 

SpBCD 0.052 0.051 0.064 0.056 

SiLRTC-TT 0.046 0.067 0.077 0.085 

SiLRTC 0.032 0.053 0.114 0.177 
FaLRTC 0.064 0.091 0.078 0.083 

GeomCG 0.093 0.092 0.093 0.093 

TMac 0.058 0.063 0.067 0.073 

 
TABLE Ⅱ 

THE RSE ON THE AIRPLANE IMAGE. 

MR 10%  20%  30%  40%  

Uncomplement 0.322 0.417 0.548 0.611 
STT-2/3 0.023 0.042 0.055 0.067 

STT-1/2 0.019 0.037 0.046 0.051 

SpBCD 0.026 0.039 0.048 0.045 

SiLRTC-TT 0.036 0.056 0.066 0.079 

SiLRTC 0.028 0.042 0.048 0.058 
FaLRTC 0.050 0.069 0.105 0.069 

GeomCG 0.044 0.044 0.048 0.049 

TMac 0.030 0.038 0.047 0.047 

 

  
(a) Original image                                (b) 20%mr =  

 

  
(c) STT-2/3                                         (d) STT-1/2     
 

  
(e) SpBCD                                          (f) SiLRTC-TT 
 

    
(g) SiLRTC                                         (h)FaLRTC 

 

  
(i) GeomCG                                        (j) TMac 

 

Fig.  2.  Results of face image recovery with 20%  missing ratio using 

different algorithms. (a) is the undamaged original image. (b) is the image 

with missing ratio is 20% . (c) - (j) are the recovery results. 
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(a) Original image                               (b) 40%mr =  

 

  
(c) STT-2/3                                          (d) STT-1/2  

 

  
(e) SpBCD                                           (f) SiLRTC-TT 

 

  
(g) SiLRTC                                        (h)FaLRTC 

 

  
(i) GeomCG                                        (j)TMac 

 

Fig.  3.  Results of face image recovery with 40%  missing ratio using 

different algorithms. (a) is the undamaged original image. (b) is the image 

with missing ratio is 40% . (c) - (j) are the recovery results. 

 

 

  
(a) Original image                                   (b) 20%mr =  

 

  
(c) STT-2/3                                           (d)STT-1/2 

 

  
(e) SpBCD                                         (f) SiLRTC-TT 
 

  
(g) SiLRTC                                          (h)FaLRTC 

 

  
(i) GeomCG                                             (j) TMac 

 

Fig.  4.  Results of airplane image recovery with 20%  missing ratio using 

different algorithms. (a) is the undamaged original image. (b) is the image 

with missing ratio is 20% . (c) - (j) are the recovery results. 
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(a) Original image                                (b) 40%mr =  

 

  
(c) STT-2/3                                          (d) STT-1/2 
 

  
(e) SpBCD                                        (f) SiLRTC-TT 
 

  
(g) SiLRTC                                         (h) FaLRTC 

 

  
(i) GeomCG                                            (j) TMac 

 

Fig.  5.  Results of airplane image recovery with 40%  missing ratio using 

different algorithms. (a) is the undamaged original image. (b) is the image 

with missing ratio is 40% . (c) - (j) are the recovery results. 

 

 

 
 

 
 

The numerical results show that STT-2/3 and STT-1/2 are 

optimal in most instances. From the RSE in Tables I and Ⅱ, 

we conclude that the proposed method is superior in 

recovering missing data. In addition, SpBCD performs the 

best among the other six methods. It is proved that the 

Schatten-p norm can be used to make the solution closer to 

the actual value. 

In Figs.  6 and 7, the relative squared error of most methods 

increases as the mr increases. Therefore, the performance of 

the algorithm is affected by the severity of missing data. The 

algorithm with the fewest iterations is SiLRTC-TT, which 

directly calculates 1l

kM +  through 
[ ]

l

kX  to reduce the number 

of calculation steps. In terms of running time, TMac is the 

most efficient. Since the final result is dependent on the initial 

parameters chosen, this experiment does not mean that 

comparison methods are flawed. Overall, the data recovery 

results are satisfactory. 

Moreover, in order to study the convergence of the 

algorithm, we define the convergence condition as follows: 
1 /X X Xk k k

F F
Error += −                  (35) 

Fig.  8 shows the convergence curves of STT-1/2 and 

STT-2/3 under the face and airplane. 

It can be observed from the steepness of the curve that 

STT-2/3 and STT-1/2 converge rapidly. After 5 iterations, 

the curve tends to flatten out and approach 0 . After 9  

iterations, 410Error − . This shows that STT-2/3 and 

STT-1/2 converge well. 

B. Synthetic Data Completion 

The Schatten-p norm has significant advantages over 

SiLRTC, FaLRTC and SILRTC-TT methods. Overall, the 

three most effective techniques are STT-1/2, STT-2/3, and 

SpBCD. SpBCD is based on the Tucker decomposition, 

whereas the proposed method is based on the TT 

decomposition. STT-2/3, STT-1/2, and SpBCD are used to 

recover randomly generated multidimensional data. Next, we 

study the impact of different tensor decompositions on the 

completion problem. 

We generate three tensors of different sizes, 

15 15 15 15(4 )D   , 10 10 10 10 10(5 )D    , and 

5 5 5 5 5 5(6 )D     , whose elements respect the uniform 

distribution on the interval ( )0,1 . Assuming 20%mr = , 

reconstruct three synthesized tensors. Fig.  9 shows the plots 

of RSE, iteration, and runtime (s), respectively. Table Ⅲ 

displays the specific RSE values. Highlight the best results in 

bold. The convergence curves for STT-1/2 and STT-2/3 are 

plotted in Fig.  10. 

 
TABLE Ⅲ 

THE RSE OF ALGORITHM ON THE SYNTHETIC TENSOR WITH 20%mr = . 

 4D 5D 6D 

STT-2/3 0.072 0.098 0.157 
STT-1/2 0.065 0.094 0.156 

SpBCD 0.444 0.450 0.447 
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(b) Number of iterations 

 
 

 

 
(c) Times (s) 

 

 

Fig.  6.  The RSE, iteration and runtime (s) of algorithms on face data under 
different mr. (a) is the RSE. (b) is the number of algorithm iterations. (c) is 

the time consumed. 
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(a) RSE 

 

 

 
 

 

 
 

 
 

 

 
 

 

 

 

 

 
(b) Number of iterations 
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Fig.  7.  The RSE, iteration, and runtime (s) of algorithms on airplane data 
under different mr. (a) is the RSE. (b) is the number of algorithm iterations. 

(c) is the time consumed. 
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Fig.  9 and Table Ⅲ show that STT-1/2 has the best 

recovery results. STT-1/2 has a higher global solution than 

STT-2/3. But it is also more difficult to compute because the 

model 1/ 2p =  adds a nuclear norm term. Moreover, the 

RSE indicates that the proposed method significantly 

outperforms SpBCD. This shows that TT decomposition is 

more suitable than Tucker decomposition to replace low-rank 

tensor computation in experiments. 

VI. CONCLUSION 

In this paper, we derive a new tensor completion model 

based on TT decomposition and Schatten-p norm. To solve 

the model, we first split the original problem into two 

subproblems. Then, we solve the norm minimization problem 

using the PALM method and the singular value thresholding 

method. Finally, the STT-2/3 and STT-1/2 algorithms are 

proposed. In contrast to existing methods, our algorithm does 

not require a large number of singular value decompositions. 

Experiments show that TT rank yields superior completion 

results. The proposed algorithm is effective. However, as the 

image size rises, the memory consumption of calculation will 

continue to increase. Therefore, the algorithm must be further 

optimized. Besides, different parameters directly affect the 

recovery results. Therefore, we will consider the adaptive 

approach for further discussion. 

 
(a) face image 

 

 
(b) airplane image 

 

Fig.  8.  Convergence plots for STT-2/3 and STT-1/2 with 20%  missing 

ratio. 
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(b) Number of iterations 

 

 

 
(c) Times 

 
 

Fig.  9.   The RSE, iteration and runtime (s) of algorithms on the data of 
different orders. (a) is the RSE. (b) is the number of algorithm iterations. (c) 

is the time consumed. 
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(a) 4-order 

 

 
(b) 5-order 

 

 
(c) 6-order 

 

Fig.  10.  Convergence plots for STT-2/3 and STT-1/2 with 20%  missing 

ratio. 
 

Fig.  9 and Table Ⅲ show that STT-1/2 has the best 

recovery results. STT-1/2 has a higher global solution than 

STT-2/3. But it is also more difficult to compute because the 

model 1/ 2p =  adds a nuclear norm term. Moreover, the 

RSE indicates that the proposed method significantly 

outperforms SpBCD. This shows that TT decomposition is 

more suitable than Tucker decomposition to replace low-rank 

tensor computation in experiments. 

VII. CONCLUSION 

In this paper, we derive a new tensor completion model 

based on TT decomposition and Schatten-p norm. To solve 

the model, we first split the original problem into two 

subproblems. Then, we solve the norm minimization problem 

using the PALM method and the singular value thresholding 

method. Finally, the STT-2/3 and STT-1/2 algorithms are 

proposed. In contrast to existing methods, our algorithm does 

not require a large number of singular value decompositions. 

Experiments show that TT rank yields superior completion 

results. The proposed algorithm is effective. However, as the 

image size rises, the memory consumption of calculation will 

continue to increase. Therefore, the algorithm must be further 

optimized. Besides, different parameters directly affect the 

recovery results. Therefore, we will consider the adaptive 

approach for further discussion. 
 

REFERENCES 

[1] Cai, Jian-Feng, Candè; s, Emmanuel J, Shen, Zuowei. A singular value 

thresholding algorithm for matrix completion[J]. SIAM Journal on 

Optimization, 2010, Vol.20: 1956-1982. 

[2] Lin, XF; Wei, G. Accelerated reweighted nuclear norm minimization 

algorithm for low rank matrix recovery[J]. Signal Processing, 2015, 

Vol.114: 24-33. 

[3] Feiping Nie; Heng Huang; Chris Ding. Low-Rank matrix recovery via 

efficient Schatten p-Norm minimization[A]. Twenty-Sixth AAAI 

Conference on Artificial Intelligence[C], 2012. 

[4] Shashua, Amnon; Hazan, Tamir. Non-negative tensor factorization 

with applications to statistics and computer vision[A]. ICML 2005: 

22nd International Conference on Machine Learning[C], 2005. 

[5] T.G. Kolda, B.W. Bader. Tensor decompositions and applications[J]. 

Siam Review, 2009, 51(3): 455-500. 

[6] Vasilescu, M.A.O.; Terzopoulos, D. Multilinear subspace analysis of 

image ensembles[J]. Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, 2003, Vol.2: 

II93-II99. 

[7] Thomas Franz; Antje Schultz; Sergej Sizov; Steffen Staab. TripleRank: 

ranking semantic web data by tensor decomposition[A]. International 

Semantic Web Conference (ISWC 2009) [C], 2009. 

[8] Frank L. Hitchcock. The expression of a tensor or a polyadic as a sum 

of products[J]. Studies in Applied Mathematics, 1927, Vol.6: 164-189. 

[9] Frank L. Hitchcock. Multiple invariants and generalized rank of a p‐

way matrix or tensor[J]. Studies in Applied Mathematics, 1928, Vol.7: 

39-79. 

[10] Tucker, L R. Some mathematical notes on three-mode factor 

analysis[J]. Psychometrika, 1966, Vol.31(3): 279-311. 

[11] J. Douglas Carroll; Jih-Jie Chang. Analysis of individual differences in 

multidimensional scaling via an n-way generalization of 

“Eckart-Young” decomposition[J]. Psychometrika, 1970, Vol.35(3): 

283-319. 

[12] Harshman R A, Lundy M E. PARAFAC: Parallel factor analysis[J]. 

Computational Statistics & Data Analysis, 1994, 18(1): 39-72. 

[13] Henk A.L.Kiers. A three-step algorithm for 

CANDECOMP/PARAFAC analysis of large data sets with 

multicollinearity[J]. Journal of Chemometrics, 1998, Vol.12(3): 

155-171. 

[14] Oseledets, I.V; Tyrtyshnikov, E.E. Breaking the curse of 

dimensionality, or how to use SVD in many dimensions[J]. SIAM 

Journal on Scientific Computing, 2010, Vol.31(5): 3744-3759. 

[15] Hackbusch, W.; Kühn, S. A new scheme for the tensor 

representation[J]. Journal of Fourier Analysis and Applications, 2009, 

Vol.15(5): 706-722. 

[16] Grasedyck, Lars. Hierarchical singular value decomposition of 

tensors[J]. SIAM Journal on Matrix Analysis and Applications, 2010, 

Vol.31(4): 2029-2054. 

[17] Oseledets, I.V. Tensor-Train decomposition[J]. Siam Journal on 

Scientific Computing, 2011, Vol.33(5): 2295-2317. 

[18] Bengua, Johann A; Phien, Ho N; Tuan, Hoang Duong; Do, Minh N. 

Efficient tensor completion for color image and video recovery: 

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_38

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

low-rank tensor train[J]. IEEE Transactions on Image Processing, 2017, 

Vol.26(5): 2466-2479. 

[19] Yuan, Longhao; Zhao, Qibin; Cao, Jiangting. Completion of high order 

tensor data with missing entries via Tensor-Train decomposition[J]. 

Neural Information Processing, 2017, Vol.10634: 222-229. 

[20] Long, Z; Liu, YP; Chen, LX; Zhu, C. Low rank tensor completion for 

multiway visual data[J]. Signal Processing, 2019, Vol.155: 301-316. 

[21] Shi, Jiarong; Jiao, Licheng; Shang, Fanhua. Tensor completion 

algorithm and its application in face recognition[J]. Pattern 

Recognition and Artificial Intelligence, 2011, Vol.24(2): 255-261. 

[22] Kressner, Daniel; Steinlechner, Michael; Vandereycken, Bart. 

Low-rank tensor completion by Riemannian optimization[J]. BIT: 

Numerical Mathematics, 2014, Vol.54(2): 447-468. 

[23] Benjamin Recht; Maryam Fazel; Pablo A. Parrilo. Guaranteed 

minimum-rank solutions of linear matrix equations via nuclear norm 

minimization[J]. SIAM Review, 2010, Vol.52(3): 471-501. 

[24] Hu, Y; Zhang, DB; Ye, JP; Li, XL; He, XF. Fast and accurate matrix 

completion via truncated nuclear norm regularization[J]. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 2013, 

Vol.35(9): 2117-2130. 

[25] Nie, Feiping; Wang, Hua; Cai Xiao; Huang, Heng; Ding, Chris. Robust 

matrix completion via joint Schatten p-Norm and lp-Norm 

minimization[A]. 2012 IEEE 12th International Conference on Data 

Mining[C], 2012. 

[26] Gao, Shangqi; Fan, Qibin. Robust Schatten-p Norm based approach for 

tensor completion[J]. Journal of Scientific Computing, 2020, Vol.82(1): 

1-30. 

[27] Kong, H; Xie, XY; Lin, ZC. t-Schatten-p Norm for low-rank tensor 

recovery[J]. IEEE Journal of Selected Topics in Signal Processing, 

2018, Vol.12(6): 1405-1419. 

[28] Andrzej Cichocki. Tensor networks for big data analytics and 

large-scale optimization problems[J]. Computer Science, 2014. 

[29] Schatten, Robert. A theory of cross-spaces[J]. Princeton University 

Press, Princeton, N.J., 1950. 

[30] Fanhua Shang; Yuanyuan Liu; James Cheng. Scalable algorithms for 

tractable Schatten Quasi-Norm minimization[J]. Learning, 2016. 

[31] Jérôme Bolte; Shoham Sabach; Marc Teboulle. Proximal alternating 

linearized minimization for nonconvex and nonsmooth problems[J]. 

Mathematical Programming, 2013, Vol.146: 459-494. 

[32] Liu J; Musialski P; Wonka P; Ye J. Tensor completion for estimating 

missing values in visual data[J]. IEEE Transactions On Pattern 

Analysis And Machine Intelligence, 2013, Vol.35(1): 208-220. 

[33] Kressner, Daniel; Steinlechner, Michael; Vandereycken, Bart. 

Low-rank tensor completion by Riemannian optimization[J]. BIT 

Numerical Mathematics, 2014, Vol.54(2): 447–468. 

[34] Xu, YY; Hao, RR; Yin, WT; Su, ZX. Parallel matrix factorization for 

low-rank tensor completion[J]. Inverse Problems and Imaging, 2015, 

Vol.9(2): 601–624. 

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_38

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 




