
 

  

Abstract— Satellite images are widely used in various fields 

as they are important, especially in monitoring activities. 

Change detection is one such activity that assesses differences in 

satellite images over time. However, weather and environmental 

effects may degrade the quality of images. Therefore, the image 

quality needs to be enhanced before processing the image. This 

study examined a number of adaptive contrast enhancement 

approaches based on histogram & non-linear transfer functions, 

as well as the impact of adopting multiple colour spaces for 

enhancement. We proposed an enhancement method where the 

L channel in the CIE LAB colour space was enhanced through 

a combination of the adaptive gamma correction method with 

weighting distribution (AGCWD) and Contrast Limited 

Adaptive Histogram Equalisation (CLAHE). We also advocated 

using average ranking to select the best method by averaging the 

various metrics. Improving the performance of change 

detection, our technique produced the highest average rank of 

BRISQUE and RMSE contrast values compared to the other 

methods. 

 
Index Terms — contrast enhancement, satellite images, 

gamma correction, histogram equalisation, change detection 

I. INTRODUCTION 

 Change detection is a method of assessing differences in a 

matter's or aspect's state across time [1]. The goal is to 

determine whether a change has occurred along with the 

timestamp of any such changes. Multi-temporal satellite data, 

such as aerial and satellite images, can be used to identify 

changes in land use and land cover (LULC) across time at a 

specific location [2]. With the rapid advancement of 

technology, high resolution remote sensing images can be 

retrieved for any form of analysis [3]. Differentiating LULC 

is crucial for a variety of applications, including urban 

development and monitoring.  

 
 

 Change detection, which entails identifying differences 

between two images, is a frequently used application of 

remote sensing data where the images were captured at 

different time points. The changes that are discovered will 

generate a change map identifying the areas that have 

changed and those that have not. Change detection in 

multitemporal satellite images can be accomplished via 

deep learning, in which a convolutional neural network is 

utilised to train the model for change detection [1][4].  

Nevertheless, the ability of satellites is limited in 

acquiring satellite images due to weather and 

environmental factors [5]. Poor image quality in satellite 

images is caused by a number of factors, including non-

uniform illumination, a fast shutter cycle, insufficient 

image sensors, as well as low illumination [6]. Images 

captured in these conditions have low intensity, fading 

colours, and contrast distortions. Low-light photos 

frequently have a small dynamic range, little contrast, and 

a lot of noise [7]. Hence, image enhancement is regarded 

as a critical phase of change detection as it ensures the 

accuracy of the following phases, including the generation 

of the change map. The purpose of image enhancement is 

to bring out the features that are normally obscured in a low 

contrast image [8]. 

Based on the change detection method, image 

preprocessing or enhancement takes place before the 

change detection algorithm because it is necessary to 

ensure the performance of the change detection by 

improving the images affected by air disturbances and 

other noise [6].  

A. Image Enhancement Techniques 

The techniques for image enhancement can be split into 

three categories (Figure 2), namely frequency domain, 

non-linear transfer function-based, with histogram-based 

[9]. For simple frequency-domain image restoration, the 

Fourier transform of the visual is calculated, the result is 

multiplied by a filter, and finally the inverse transformation 

is carried out. whereas non-linear functions that alter the 

pixel values directly includes gamma correction as well as 

logarithmic mapping. Due to their ease of adjustment and 

application, they are commonly carried out to improve 

contrast and brightness. Gamma correction has emerged as 

the most often used nonlinear transfer function in recent 

years because it accurately mimics the characteristics of 

the human sensory systems. By changing the digital values 
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of gloomy photographs, it improves their aesthetics. In 

contrast, histogram-based methods are frequently 

employed to balance the grey level distributions in an 

image [10]. 

In histogram-based techniques, histogram equalisation 

(HE) is a straightforward and efficient enhancement 

technique. HE balances the intensity levels of the input 

histogram evenly over the full range. Several HE 

drawbacks include over-enhancement and intensity 

saturation [11]. Adaptive Histogram Equalisation (AHE) 

can be used to address these flaws [12], An image is 

divided into sub-tiles, the combined distribution function 

(CDF) for every tile is built, and then pixels are overlaid 

using the cumulative distribution of four nearby tiles. 

Nonetheless, when the slope of the histogram is severe, 

noise will inevitably grow. Contrast Limited Adaptive 

Histogram Equalization (CLAHE) was proposed as a 

solution to this issue in AHE [13]. After a histogram is 

generated in CLAHE, it is trimmed using a predetermined 

threshold and then redistributed among the histogram's 

pixels. The pixels are then transformed to CDF. As 

clipping inhibits the CDF from getting steep, it can 

minimise noise since it stops the CDF from becoming 

steep [9]. Numerous research has utilised CLAHE to 

improve image contrast. For images with little 

illumination, CLAHE may provide high-quality visuals, 

but its performance in dark places may deteriorate [9]. The 

scientists claimed that maintaining details while increasing 

overall brightness is the fundamental to improving low-

light images. Integrating nonlinear function with histogram 

modification to improve intensity while enhancing local 

contrast is therefore a potential technique. 

A nonlinear transfer function, like the gamma correction 

method, is employed to improve image quality by adjusting 

contrast while maintaining the average luminance [11]. 

Determining gamma correction settings manually is a time-

consuming process. To improve the image's contrast, an 

adaptive gamma correction (AGC) approach was 

presented in which the optimal gamma level is calculated 

automatically based on the information retrieved from the 

image [14]. In addition, adaptive gamma correction with 

weighting distribution (AGCWD), an enhanced variant of 

AGC, was implemented. It determines the gamma value 

depends on the CDF of the source images. 

B. Colour Space 

 Other than image enhancement methods, colour space 

also plays an important role in enhancement. According to 

Sovdat et al. [15], the axes of the CIE XYZ and RGB 

colour spaces are not perfectly aligned with the visible 

qualities of the colour, such as brightness and saturation. 

So, when simple contrast and chromaticity adjustments are 

applied, the hue and saturation of the colour will also be 

changed. Hence, the information in the image cannot be 

entirely preserved. Therefore, CIELAB (also known as 

CIE LAB, and CIE L*a*b) colour spaces, which are 

independent of these features, are preferable alternatives 

for such adjustments.  

C. Overview of the Proposed Method 

In light of the description above, an effective technique for 

picture enhancement was suggested to boost contrast without 

sacrificing the image's naturalness or information. RGB input 

image was transformed into the CIELAB colour space in the 

proposed method before the L channel was enhanced. 

Combining histogram-based and non-linear transfer function-

based techniques, such as AGCWD and CLAHE, it reduces 

excessive amplification and intensity overload effects to 

significantly improve contrast. After being converted from 

the CIELAB colour system to the RGB colour space, an 

updated and newer image can be produced. 

II. PROPOSED METHOD 

Based on the methodologies outlined above, this study 

suggested a technique for effectively enhancing the contrast 

of satellite images. Figure 1 demonstrates the framework of 

the proposed method. The proposed enhancement began with 

colour space conversion, in which the RGB satellite image 

input was converted to CIELAB colour space. Then, to 

enhance the contrast of the image while keeping the A and B 

channels, the histogram-based as well as non-linear transfer-

based enhancement techniques, AGCWD and CLAHE were 

applied to the L channel. Finally, the enhanced CIELAB 

image was transformed into RGB colour space. 

A. RGB to CIELAB Color Space Conversion 

The conversion of RGB to CIELAB colour space was done 

indirectly, using XYZ colour space as an intermediate mode.  

The LAB colour components are given by the following 

formula: 

Figure 1.  Framework of the proposed method 
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𝑏 ∗  = 500[ℎ (
𝑌

𝑍𝑊

) − ℎ (
𝑍

𝑍𝑊

)] (3) 

  where 

h(q)  =  {
√𝑞3                        𝑞 > 0.008856

7.787𝑞 +
16

116
   𝑞 ≤ 0.008856

 (4) 

 

and 𝑋𝑊, 𝑌𝑊, and 𝑍𝑊 are white tristimulus reference values, 

which are the whites of a perfectly reflecting diffuser under 

the CIE standards of D65 illumination. Following the colour 

space conversion, the image was enhanced using CLAHE and 

AGCWD by conserving the A and B channel components 

while improving the L channel. 

B. Contrast Enhancement Method 

AGCWD and CLAHE were utilised to enhance the quality 

of the L channel in the CIELAB satellite image. The adaptive 

gamma adjustment for the AGCWD technique was developed 

using: 

 

 

𝑇(𝑙) =  𝑙𝑚𝑎𝑥(𝑙/𝑙𝑚𝑎𝑥)𝛾 = 𝑙𝑚𝑎𝑥(𝑙/𝑙𝑚𝑎𝑥)1−𝑐𝑑𝑓(𝑙) 
 

(5) 

 

Additionally, the statistical histogram was slightly 

modified and the likelihood of adverse outcomes was 

decreased by using the weighted distribution (WD) function. 

The following is how the WD function was created: 

 

𝑝𝑑𝑓𝑤(𝑙) =  𝑝𝑑𝑓𝑚𝑎𝑥 (
𝑝𝑑𝑓(𝑙) − 𝑃𝑑𝑓𝑚𝑖𝑛

𝑃𝑑𝑓𝑚𝑎𝑥 − 𝑃𝑑𝑓𝑚𝑖𝑛

)

𝑎

 

 

(6) 

where 𝑎 denotes the gamma value adjustment parameter and 

pdf denotes the likelihood density function., with 𝑝𝑑𝑓𝑚𝑎𝑥 as 

the maximum 𝑝𝑑𝑓 of the statistical histogram and 𝑝𝑑𝑓𝑚𝑖𝑛  as 

the minimum 𝑝𝑑𝑓. The modified cumulative distribution 

function (𝑐𝑑𝑓) was defined as: 

 

 

∑ 𝑝𝑑𝑓𝑤 =  ∑ 𝑝𝑑𝑓𝑤(𝑙)
𝑙𝑚𝑎𝑥

𝑙=0
 

 

(8) 

Finally, the gamma parameter relying on 𝑐𝑑𝑓 for formula 

𝑇(𝑙) was calculated using the following equation: 

 

𝛾 = 𝑙 −  𝑐𝑑𝑓𝑤(𝑙) 

 
(9) 

In order to remove the maximum values from the histograms 

for each block, CLAHE limits the contrast by a clipping 

point, which sets it apart from standard HE. The clipped 

pixels are distributed among each grey range. The following 

formula was employed to determine the clipping point: 

 

β =
M

N
( 1 +  α 100 Smax) 

 

(10) 

The variables M, N, Smax, and α relate to the number of 

pixels in each frame, the dynamic gamut of the block, the 

highest slope, and the clipping factor, which, when set to 0, 

causes the clip point to be M/N, which results in a constant 

pixel in this block. The difference becomes much more 

pronounced when the value gets closer to 100. The clipping 

point is thus the most crucial element in determining the 

image contrast. To reconfigure the image blocks' grey levels, 

we obtained a transformation matrix based on CDF as shown 

in: 

𝑐𝑑𝑓(𝑙) =  ∑ 𝑝𝑑𝑓(𝑙)
𝐿

𝑘=0
 (11) 

𝑇(𝑙) = 𝑐𝑑𝑓(𝑙) × 𝑙𝑚𝑎𝑥  
 

(12) 

 

The remapping function 𝑇(𝑙), the pixel grey level l, and the 

block's highest pixel value 𝑙𝑚𝑎𝑥  are specified. On the basis of 

the CDF of the reallocated histogram in every block, distinct 

rebinding algorithms were developed. To avoid blocking 

artefacts, each pixel value was extrapolated from the adaptive 

thresholding in the neighboring blocks. The four blocks' 

central pixels are designated as points a, b, c, and d, while the 

outermost pixel, p, is chosen at random. The rebind pixel p 

was calculated using the linear transformation as regards: 

 

𝑇(𝑝(𝑖)) = 𝑚 ∙ (𝑛 ∙ 𝑇𝑎 ∙ 𝑝(𝑖) + (1 − 𝑛) ∙ 𝑇𝑏 ∙ 𝑝(𝑖))) 

+(1 − 𝑚) ∙ (𝑛 ∙ 𝑇𝑐 ∙ 𝑝(𝑖) + (1 − 𝑛) ∙ 𝑇𝑑 ∙ 𝑝(𝑖)) (13) 

 

 

{
𝑛 = (𝑥𝑏 − 𝑥𝑝)(𝑥𝑏 − 𝑥𝑎)

𝑚 =  (𝑦𝑐 − 𝑦𝑝)(𝑦𝑐 − 𝑦𝑎) 

 

(14) 

 

 

The rebinding method is denoted by T(.), and the value of 

randomized pixel I with dimensions is denoted by p(i) (x, y). 

Finally, the processed intensity of the image in channel L was 

merged with the A and B colour components before being 

converted into the RGB colour space to obtain the improved 

image. 

III. EXPERIMENTAL SETUP 

In RGB colour space, the recommended method was 

compared to the histogram as well as non-linear transfer 

function optimization techniques. The proposed approach 

was contrasted with one that makes use of histograms and 

non-linear model parameters in various colour spaces. 

Then, the proposed method was evaluated and applied to 

build deep learning-based change detection for multitemporal 

satellite images. Once the dataset for the training change 

detection model was enhanced, the proposed technique was 

used in image pre-processing. Finally, the trained change 

detection model was compared to the non-enhanced model to 

determine the influence of performance enhancements on the 

change detection model. 

A. Satellite Images Sample 

 500 satellite images of varying brightness and contrast 

were used to test the enhancement methods. A portion of the 

images was hazy and misty. The Semantic Change Detection 

Dataset's images were selected at random (SECOND) [16]. 

These collections of aerial imagery also include those from 

Shanghai, Chengdu, and Hangzhou. The images were 

captured using a variety of platforms and sensors. 
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B. Image Quality Assessments 

The proposed approach was evaluated utilizing Root Mean 

Square Error (RMSE) of contrast, the Blind/Referenceless 

Image Spatial Quality Evaluator (BRISQUE) assessment, as 

well as the average score. 

 RMSE performance measure was used since this study 

employed a histogram-based method that tends to over-

enhance. By contrasting the increased output with the 

corresponding manually enhanced ground-truth images, the 

estimator can identify the image's contrast inconsistency. 

Following are the steps to calculate the RMSE: 

𝑅𝑀𝑆𝐸 =  √
∑ ||𝑦(𝑖) −  �̂�(𝑖)|2 𝑁

𝑖=1

𝑁
 (15) 

 

N stands for the number of points, y(i) for the 

measurements at position I and 𝑦(𝑖) for such forecast at 

position i. 

On the other hand, the output image generated from each 

enhancement method was also evaluated by the 

Blind/Referenceless Image Spatial Quality Evaluator 

(BRISQUE). BRISQUE is a referenceless quality assessment 

technique. It is, to some extent, a holistic evaluation metric 

that leverages “natural scene statistics” to quantify the 

absence of  “naturalness” in an image and the presence of 

distortions [17]. The value of the BRISQUE score ranges 

from 0 to 100, with lower values indicating higher quality 

output images. 

Since RMSE and BRISQUE, two distinct evaluation 

criteria, were utilised in this study to evaluate the 

enhancement method, the average ranking was employed to 

decide which enhancement approach was optimal. Prior to 

averaging, the RMSE of the contrast and the BRISQUE score 

are ranked individually. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑛𝑘 =
𝑅𝑀𝑆𝐸 𝑟𝑎𝑛𝑘 + 𝐵𝑅𝐼𝑆𝑄𝑈𝐸 𝑟𝑎𝑛𝑘

2
 (16) 

  

C. Change Detection Model Building 

After analysing the enhancement techniques and proposed 

method, the proposed enhancement method was used in the 

pre-processing stage of the change detection method to 

examine the influence of the enhancement on the 

performance of the deep learning-trained change detection 

model. To perform the comparison, two change detection 

models were trained; one with enhancement and another one 

without enhancement. The outputs from both models were 

then analysed and discussed. 

IV. RESULT AND DISCUSSION 

A. Quality Assessment of Enhanced Images in Single 

Method  

Other non-linear transition function-based as well as 

histogram-based approaches on RGB colour space were 

contrasted with the suggested combination we developed 

(CLAHE and AGCWD). This comparison was made to assess 

the effects of a combination method vs. a single method.  

In RGB colour space, Table I summarises the outcomes of 

the improvement approaches that rely on the histogram as 

well as non-linear transfer function as well as our suggested 

combination methodology. The RGB colour space is 

maintained as a constant variable.   

Figure 2 visualises the results from Table I in the form of a 

bar chart ranked from the top to the lowest based on average 

ranking (left to right). Based on the chart, the proposed 

combination of AGCWD and CLAHE achieved acceptable 

average scores for BRISQUE and RMSE of contrast (the 

smaller the two matrices, the better the result). The suggested 

combination strategy, which has a slightly bigger contrast 

error and a higher BRISQUE score than CLAHE, came in 

second with regard to average rank value. While, the HE 

method achieved the highest BRISQUE score of 18.676, but 

suffered from a high contrast RMSE of 27.687 as depicted in 

Figure 4(i). AHE had the lowest RMSE contrast and the 

lowest BRISQUE score (21.993), but it also had the best 

RMSE contrast and the lowest error. 

B. Quality Assessment of Enhanced Images in Different 

Color Spaces 

We also assessed and compared our combination technique 

(AGCWD and CLAHE) to other colour spaces and the 

suggested colour space, CIELAB. Table II (visualised in 

Figure 3) summarises the results of an experiment in which 

the proposed combination method was evaluated using 

various colour spaces and compared to the recommended 

colour space, CIELAB. 

 

TABLE I 

COMPARISON OF PROPOSED COMBINATION METHOD WITH OTHER SINGLE METHODS IN RGB 

Color 

Space 

Method Mean BRISQUE Score RMSE Rank BRISQUE Rank RMSE  Average Rank 

RGB LHE 22.842 40.386 5.0 8.0 6.5 

RGB HE 18.676 27.687 1.0 7.0 4.0 

RGB CLAHE 22.208 22.025 3.0 2.0 2.5 

RGB AHE 22.993 20.195 6.0 1.0 3.5 

RGB GC 25.352 24.428 8.0 4.0 6.0 

RGB AGCWD 22.401 26.167 4.0 6.0 5.0 

RGB AGC 23.044 26.000 7.0 5.0 6.0 

RGB 
AGCWD + 

CLAHE 
21.801 22.986 2.0 3.0 2.5 
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The method proposed consists of combination between 

AGCWD with CLAHE. Clip limit is a numeric value that 

determines the amount of noise amplified. Upon calculating 

the histogram for each sub-area, they were redistributed to 

ensure that their height did not exceed the specified clip limit.  

As demonstrated in Table II and Figure 5, our proposed 

technique (AGCWD and CLAHE in CIELAB colour space) 

achieved the highest average rank of 1.5. It achieved a 

reasonable average between the BRISQUE score and the 

contrast RMSE. Although the HSI colour space had the 

strongest RMSE contrast with only an error of 20,675, it also 

had the highest BRISQUE score, signifying a poor image 

quality. In short, the proposed method outperformed previous 

methods and colour spaces based on the histograms and non-

linear transfer functions. 

Figure 5 illustrates a comparison of the enhanced images 

obtained using the methods described in Table II. Overall, it 

was clear from visual inspection that the suggested solution 

(Figure 5(b)) kept the image's natural appearance while 

removing some foggy clouds to boost contrast. Additionally, 

it can improve the picture without distorting the colours. 

C. Enhancement Effects on Change Detection Model 

To train the model, the Unet architecture was adopted. The 

LEVIR dataset was implemented into the architecture as 

supervised learning. To train the model, the same 

hyperparameter setting was used to train both the enhanced 

and non-enhanced models. Table III lists the details of the 

hyperparameter setting. 

 

 
Figure 2. Bar Graph Comparison of Proposed Combination Method with Another Single Method in RGB 

 
Figure 3. Bar Graph Comparison of the Proposed Combination of AGCWD + CLAHE in Different Color Spaces 

 

TABLE II 

COMPARISON OF COMBINATION OF AGCWD + CLAHE IN DIFFERENT COLOR SPACES 

Color Space Mean BRISQUE 

Score 
RMSE of Contrast Rank BRISQUE Rank RMSE of 

Contrast 
Average Rank 

CIELAB1 21.656 22.986 1 2 1.5 

YCbCr 
21.774 23.655 2 3 2.5 

RGB 
21.801 24.800 3 4 3.5 

HSI 23.066 20.675 4 1 2.5 

1 Proposed method 
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TABLE III 

HYPERPARAMATER SETTING FOR MODEL TRAINING 

Network architecture Unet 

Network total parameters 1,941,537 

Learning rate 0.001 

Batch size 8 

Epoch 20 

Optimizer Adam 

 

 

The training model's findings are shown in Table IV. The 

LEVIR dataset was initially improved for the enhanced 

model using the suggested enhancement technique. As for the  

 

 

non-enhanced model, the dataset was used directly for the 

training model. 

 As depicted in Table IV, the enhanced model obtained a 

higher overall result compared to the non-enhanced models. 

The accuracy of the enhanced model was greater than that of 

the non-enhanced models, indicating the accuracy of the 

enhanced model in predicting changes. The enhanced model 

obtained a higher recall of 0.5510, compared to the non-

enhanced model (0.5314). Recall reflects the model’s 

sensitivity. Moreover, the precision for the enhanced model 

was slightly higher than that of the non-enhanced model, 

where it yielded 0.5353. Meanwhile, the F1 score which 

denotes the harmonic mean for recall and precision, indicated 

that the enhanced model was better. Whereas, for intersection 

over union (IoU), the enhanced model obtained a higher value 

of 0.6142 compared to the non-enhanced model, 0.5876. IoU 

measures the extent to which two boxes, prediction, and 

ground truth, overlap. The greater the overlap region, the 

larger the IOU.  

 

     
(a) input (b) GC (c) AGCWD+CLAHE (d) AGC (e) AGCWD 

    

 

(f) AHE (g) CLAHE (h) LHE (i) HE  

Figure 4.  Examples of an individual method's improvement outcomes using the RGB colour space 

 

     

     

     

(a) (b) (c) (d) (e) 

 

Figure 5. Examples of enhancement result based on combination of AGCWD+CLAHE in different color spaces (a) Input images; (b) CIELAB; (c) 

YCbCr; (d) RGB; (e) HSI; 
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The graph of training accuracy against validation accuracy 

over the total number of epochs for enhanced and non-

enhanced models is depicted in Figure 6. The accuracy and 

validation accuracy rise together for the non-enhanced model 

(Figure 6(b)) indicating that the model trained is not 

overfitting. The constant line in the graph with a slight 

increase as it reaches a plateau indicated that the model was 

unable to learn anymore. As for the enhanced model, the 

accuracy and validation accuracy lines demonstrated a 

striking growth indicating that the model can be trained with 

more epochs to yield a better model with higher performance. 

On the other hand, Figure 7 represents training loss vs. 

validation loss for the non-enhanced and enhanced models. 

The training loss refers to the fitting of the model with the 

training data, while the validation loss represents the fit of the 

model with new data. Based on the loss graphs, the line for 

training and validation losses were close and decreased with 

the number of epoch iterations. Hence, both models were not  

 

underfitting, as the algorithm captured the training and new 

data. However, the enhanced model (Figure 7 (b)) indicated  

a lower loss since the two lines for training and validation 

were interrelated and dropped uniformly together.  

Figure 8 illustrates a pair of multitemporal images (image 

1 and image 2) along with their corresponding ground truth 

of change area and image results of prediction using trained 

models, i.e., non-enhanced and enhanced. Visually, the 

enhanced model could predict changes better and detect 

specific changes in certain areas which explains the higher 

IoU as it could detect changes along the edges of the building. 

Whereas, the non-enhanced model can only detect some 

changes, where some areas of changes are left undetected. 

Moreover, the non-enhanced model predicted incorrectly 

where it indicated changes in no change areas. 

 

TABLE IV 
RESULT OF CHANGE DETECTION MODEL TRAINING 

Evaluation Metric Enhanced Model Non-enhanced Model 

Accuracy 0.9718 0.9694 

Recall 0.5510 0.5314 

Precision 0.5353 0.5092 

F1 Score 0.6344 0.5999 

Intersection over Union (IoU) 0.6142 0.5876 

 
                                            (a) Non-enhanced model 

 
                      (b) Enhanced model 

Figure 6.  Accuracy of train and validation learning curves 

 
                                             (a) Non-enhanced model 

 
                    (b) Enhanced model 

Figure 7.  Loss of train and validation learning curves 
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V. CONCLUSION 

According to the results, the adaptive contrast 

enhancement method we presented, which combines CLAHE 

with AGCWD in the CIELAB colour space, produced the 

optimal outcomes. It can also be used to improve the 

performance of change detection activities.  

The use of the CIELAB colour space in the proposed 

method was also supported [15] as CIELAB was accepted as  

 

the preferable colour space for image enhancement as it can 

preserve the information in the image. The results of this 

investigation are consistent with those of an earlier study [9], 

which found that using a combined histogram-based as well 

as non-linear transfer functions method led to superior 

outcomes with maximum intensity and localized contrasts. 

 

 

 
 

 

 

 

 

 

 

     

     

     

     

     

(a) Image 1 (b) Image 2 (c) Ground truth (d) Non-enhanced model (e) Enhanced model 

Figure 8. Prediction results of trained model on LEVIR-CD dataset 
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