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∆ is a binary operation on the unit interval [0, 1] such that
for all a, b, c, d ∈ [0, 1] the following conditions are satisfied:

1) ∆(a, 1) = a;
2) ∆(a, b) = ∆ (b, a);
3) ∆(a, b) ≥ ∆(c, d) , whenever a ≥ c, b ≥ d;
4) ∆(∆(a, b) , c) = ∆ (a,∆(b, c)) .

Some examples of t-norm are ∆M (a, b) = min {a, b}, ∆P

(a, b) = ab and ∆(a, b) = max {a+ b− 1, 0} .
Definition 2: ( [2]) A mapping F : R → R+ is a distribu-

tion function if it is non-decreasing and left continuous with
the inf {F (t) : t ∈ R} = 0 and the sup {F (t) : t ∈ R} = 1.

We denote ℑ as the set of all distribution functions, and
denote H the specific distribution function defined by:

H (t) =

{
1, t > 0
0, t ≤ 0

If X is a non-empty set, 𭟋 : X × X → ℑ is called a
probabilistic distance on X . In addition 𭟋 (x, y) is denoted
by Fx,y.

Definition 3: ( [2]) The ordered pair (X,𭟋) is an
N.A.PM-space, if X is a non-empty set and 𭟋 is a prob-
abilistic distance satisfying the flowing conditions: for all
x, y, z ∈ X and t, t1, t2 > 0,

1) Fx,y (t) = 1 ⇐⇒ x = y;
2) Fx,y (t) = Fy,x (t) ;
3) if Fx,y (t1) = 1 and Fy,z (t2) = 1, then

Fx,z (max {t1, t2}) = 1. The ordered triplet (X,𭟋,∆)
is called an N.A. Menger PM-space if (X,𭟋) is
an N.A.PM-space, ∆ is a t-norm and the following
inequality holds:

Fx,z (max {t1, t2}) ≥ ∆(Fx,y (t1) , Fy,z (t2)) ,

for all x, y, z ∈ X and t1, t2 > 0.

The concept of neighborhoods in Menger PM-spaces was
introduced by Schweizer and Sklar [36]. If x ∈ X, ϵ > 0
and λ ∈ (0, 1) , then an (ϵ, λ)-neighbourhood of x, Ux (ϵ, λ)
is defined by:

Ux (ε, λ) = {y ∈ X : Fx,y (ε) > 1− λ} .

If the t-norm ∆ be continuous and strictly increasing, then
(X,𭟋,∆) is a Hausdorff space in the topology induced by
the family {Ux (ε, λ) : x ∈ X, ε > 0, λ ∈ (0, 1) } of neigh-
bourhoods [5].

Example 1: Let X be any set with at least two elements.
If we define Fx,x (t) = 1 for all x ∈ X, t > 0 and

Fx,y (t) =

{
0 if t ≤ 1,
1 if t > 1,

where x, y ∈ X,x ̸= y, then (X,𭟋,∆) is an N.A. Menger
PM-space with ∆(a, b) = min {a, b} or (ab) for all a, b ∈
[0, 1] .

Example 2: Let X = R be the set of real numbers
equipped with the metric defined by d (x, y) = |x− y| and

Fx,y (t) =

{ t
t+|x−y| if t > 0;

0, if t = 0.

Then (X,𭟋,∆) is an N.A. Menger PM-space with ∆ as
continuous t-norm satisfying ∆(a, b) = min {a, b} or (ab)
for all a, b ∈ [0, 1] .

Next, we let Ω = {g /g : [0, 1] → [0,∞)} be a contin-
uous, strictly, decreasing function such that g (1) = 0 and
g (0) < ∞.

Definition 4: ( [7]) Let g ∈ Ω. An N.A. Menger PM-space
(X,𭟋,∆) is said to be of type (C)g if

g (Fx,z (t)) ≤ g (Fx,y (t)) + g (Fy,z (t))

for all x, y, z ∈ X, t > 0.
Definition 5: ( [7]) Let g ∈ Ω. An N.A. Menger PM-space

(X,𭟋,∆) is said to be of type (D)g if

g (∆ (t1, t2)) ≤ g (t1) + g (t2) ,

for all t1, t2 ∈ [0, 1] .
Remark 1: ( [2]) If an N.A. Menger PM-space (X,𭟋,∆)

is of type (D)g , then:
1) it is of type (C)g ,
2) it is metrizable, where the metric d on X is defined

by:

d (x, y) =

∫ 1

0

g (Fx,y (t)) dt,

for all x, y ∈ X .
We denote the (X,𭟋,∆) as N.A. Menger PM-space with

a continuous strictly increasing t-norm ∆.
Definition 6: ( [2]) Two self mappings A and S of an

N.A. Menger PM-space (X,𭟋,∆) are said to be compatible
if limn→∞ g (FASxn,SAxn

(t)) = 0 for all t > 0 and g ∈ Ω,
whenever {xn} is a sequence in X such that limn→∞ Axn =
limn→∞ Sxn = z for some z ∈ X.

Definition 7: A pair (A,S) of self mappings of an N.A.
Menger PM-space (X,𭟋,∆) is said to satisfy (E.A) prop-
erty if there exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ X.
Definition 8: ( [2]) A pair (A,S) of self mappings of a

non-empty set X is said to be weakly compatible (or coin-
cidentally commuting) if they commute at their coincidence
points, i.e., if Az = Sz for some z ∈ X , then ASz = SAz.
If two self-mappings A and S of an N.A. Menger PM-space
(X,𭟋,∆) are compatible, then they are weakly compatible,
but the converse need not be true. It can be noticed that
the notions of weak compatibility and property (E.A) are
independent of each other.

Definition 9: Two pairs (A,S) and (B, T ) of self map-
pings of an N.A. Menger PM-space (X,𭟋,∆) are said
to satisfy the common property (E.A), if there exist two
sequences {xn} and {yn} in X for some z in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z.

Definition 10: A pair (A,S) of self mappings of an N.A.
Menger PM-space (X,𭟋,∆) is said to satisfy the common
limit range property with respect to mapping S, denoted by
(CLRS), if there exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ S (X).
Definition 11: Two pairs (A,S) and (B, T ) of self map-

pings of an N.A. Menger PM-space (X,𭟋,∆) are said to
satisfy the common limit range property with respect to
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mappings S and T , denoted by (CLRST ), if there exist two
sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z,

where z ∈ S (X) ∩ T (X) .
Definition 12: ( [14]) Two families of self mappings {Ai}

and {Sj} are said to be pairwise commuting if they satisfy:
1) AiAj = AjAi, i, j ∈ {1, 2, ...,m},
2) SkSl = SlSk, k, l ∈ {1, 2, ..., n},
3) AiSk = SkAi , i ∈ {1, 2, ...,m} , k ∈ {1, 2, ..., n}.

III. MAIN RESULTS

In this section, we prove the common fixed point theorem
for the compatible mappings in Non-Archimedean Menger
PM-spaces by denoting Φ as the collection of all functions
φ : [0,∞) → [0,∞) which are upper semicontinuous from
the right and satisfy φ (t) < t, for all t > 0.

Lemma 1: ( [7]) If a function ϕ : [0,∞) → [0,∞) belongs
to the class Φ, then we have:

1) for all t ≥ 0, limn→∞ ϕn (t) = 0, where ϕn (t) is the
nth-iteration of ϕ (t) ;

2) if {tn} is a non-decreasing sequence of real num-
bers and tn+1 ≤ ϕ (tn) where n = 1, 2, ..., then
limn→∞ tn = 0. In particular, if t ≤ ϕ (t) for each
t ≥ 0, then t = 0.

Now we state and prove our first main result.
Theorem 1: Let A,B, S and T be four self-mappings

of an N.A. Menger PM-space (X,𭟋,∆), where ∆ is a
continuous t-norm, satisfying

g (FAx,By (t))

≤ ϕ

max



g (FSx,Ty (t)) , g (FSx,Ax (t)) ,
g (FTy,By (t))

1
2 [g (FSx,By (t)) + g (FTy,Ax (t))] ,
min {g (FSx,By (t)) , g (FTy,Ax (t))}√

g (FSx,Ty (t)) .g (FTy,Ax (t)),
g(FSx,Ax(t)).g(FSx,By(t))

g(FAx,By(t))



 ,

for all x, y ∈ X, t > 0, where g ∈ Ω and ϕ ∈ Φ. If the
pairs (A,S) and (B, T ) have the (CLRST ) property, then
(A,S) and (B, T ) have a coincidence point each. Moreover,
A,B, S, and T have a unique common fixed point provided
both pairs (A,S) and (B, T ) are weakly compatible.
Proof: In view of the fact that the pairs (A,S) and (B, T )
have the (CLRST ) property, there exist two sequences {xn}
and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z,

where z ∈ S (X)∩T (X) . As z ∈ S (X) , there exists a point
v ∈ X such that Sv = z. First we assert that Av = Sv. Then
by using the inequality (1) with x = vandy = yn, we get:

g (FAv,Byn (t))

≤ ϕ

max



g (FSv,Tyn (t)) , g (FSv,Av (t)) ,
g (FTyn,Byn (t))

1
2 [g (FSv,Byn

(t)) + g (FTyn,Av (t))] ,
min {g (FSv,Byn

(t)) , g (FTyn,Av (t))}√
g (FTyn,Byn

(t)) .g (FTyn,Av (t)),
g(FSv,Av(t)).g(FSv,Byn (t))

g(FAv,Byn (t))





Passing to the limit as n → ∞, this reduces to

g (FAv,z (t))

≤ ϕ

max



g (Fz,z (t)) , g (Fz,Av (t)) ,
g (Fz,z (t))

1
2 [g (Fz,z (t)) + g (Fz,Av (t))] ,
min {g (Fz,z (t)) , g (Fz,Av (t))}√

g (Fz,z (t)) .g (Fz,Av (t)),
g(Fz,Az(t)).g(Fz,z(t))

g(FAv,z(t))





= ϕ

max


g (1) , g (Fz,Av (t)) , g (1)

1
2 [g (1) + g (Fz,Av (t))] ,min{g (1) ,

g (Fz,Av (t))}√
g (1) .g (Fz,Av (t)), g (1)




= ϕ

(
max

{
0, g (Fz,Av (t)) , 0,

1

2
g (Fz,Av (t)) , 0, 0, 0

})
= ϕ (g (Fz,Av (t))) .

Making use of Lemma 1, we get Av = Sv = z, which shows
v is a coincidence point of the pair (A,S) . As z ∈ T (X),
there exists a point u ∈ X such that Tu = z. We show that
Bu = Tu. Using the inequality (1) with x = vandy = u,
we get:

g (FAv,Bu (t))

≤ ϕ

max



g (FSv,Tu (t)) , g (FSv,Av (t)) ,
g (FTu,Bu (t))

1
2 [g (FSv,Bu (t)) + g (FTu,Av (t))] ,
min {g (FSv,Bu (t)) , g (FTu,Av (t))}√

g (FTu,Bu (t)) .g (FTu,Av (t)),
g(FSv,Av(t)).g(FSv,Bu(t))

g(FAv,Bu(t))



 ,

that is,

g (Fz,Bu (t))

≤ ϕ

max



g (Fz,Tu (t)) , g (Fz,z (t)) ,
g (Fz,Bu (t))

1
2 [g (Fz,Bu (t)) + g (Fz,z (t))] ,
min {g (Fz,Bu (t)) , g (Fz,z (t))}√

g (Fz,Bu (t)) .g (FTu,z (t)),
g(Fz,z(t)).g(Fz,Bu(t))

g(Fz,Bu(t))




= ϕ

(
max

{
g (1) , g (1) , g (Fz,Bu (t)) ,

1

2
g (Fz,Bu (t)) ,

g (1) , 0, g (1)
})

= ϕ (g (Fz,Bu (t))) .

Hence, by Lemma 1, we have Bu = Tu = z, which shows
that u is a coincidence point of the pair (B, T ) . In the case
when the pair (A,S) is weakly compatible, Av = Sv, which
implies that Az = ASv = SAv = Sz. Now, we can show
that z is a common fixed point of the pair (A,S). By putting
x = z and y = v in the inequality (1), we have

g (FAz,Bu (t))

≤ ϕ

max



g (FSz,Tu (t)) , g (FSz,Az (t)) ,
g (FTu,Bu (t))

1
2 [g (FSz,Bu (t)) + g (FTu,Az (t))] ,
min {g (FSz,Bu (t)) , g (FTu,Az (t))}√

g (FTu,Bu (t)) .g (FTu,Az (t)),
g(FSz,Az(t)).g(FSz,Bu(t))

g(FAz,Bu(t))



 ,
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implying that

g (FAz,z (t))

≤ ϕ

max



g (FAz,z (t)) , g (FAz,Az (t)) ,
g (Fz,z (t))

1
2 [g (FAz,z (t)) + g (Fz,Az (t))] ,
min {g (FAz,z (t)) , g (Fz,Az (t))}√

g (Fz,z (t)) .g (Fz,Az (t)),
g(FAz,Az(t)).g(FAz,z(t))

g(FAz,z(t))




= ϕ

(
max

{
g (FAz,z (t)) , g (1) , g (1) , g (FAz,z (t)) , g (1) ,

0, g (1)
})

= ϕ (g (FAz,z (t))) .

By Lemma 1, we have Az = z = Sz which shows that z is
a common fixed point of the pair (A,S) . Again, when the
pair (B, T ) is weakly compatible, Bu = Tu, which implies
that Bz = BTu = TBu = Tz. Now, we show that z is a
common fixed point of the pair (B, T ). By putting x = v
and y = z in the inequality (1), we have

g (FAv,Bz (t))

≤ ϕ

max



g (FSv,Tz (t)) , g (FSv,Av (t)) ,
g (FTz,Bz (t))

1
2 [g (FSv,Bz (t)) + g (FTz,Av (t))] ,
min {g (FSv,Bz (t)) , g (FTz,Av (t))}√

g (FTz,Bz (t)) .g (FTz,Av (t)),
g(FSv,Av(t)).g(FSv,Bz(t))

g(FAv,Bz(t))



 ,

that is

g (Fz,Bz (t))

≤ ϕ

max



g (Fz,Bz (t)) , g (Fz,z (t)) ,
g (FBz,Bz (t))

1
2 [g (Fz,Bz (t)) + g (FBz,z (t))] ,
min {g (Fz,Bz (t)) , g (FBz,z (t))}√

g (FBz,Bz (t)) .g (FBz,z (t)),
g(Fz,z(t)).g(Fz,Bz(t))

g(Fz,Bz(t))




= ϕ

(
max

{
g (Fz,Bz (t)) , g (1) , g (1) , g (Fz,Bz (t)) , g (1) ,

0, g (1)
})

= ϕ (g (Fz,Bz (t))) .

By Lemma 1, we have Bz = z = Tz which shows that z is
a common fixed point of the pair (B, T ) and z is a common
fixed point of the pairs (A,S) and (B, T ) . The uniqueness
of the common fixed point is an easy consequence of the
inequality (1) by Lemma 1. This concludes the proof.

The following proposition will help us to get further
results.

Proposition 1: Let A,B, S and T be four self mappings
of an N.A. Menger PM-space (X,𭟋,∆), where ∆ is a
continuous t-norm. Suppose that

1) the pair (A,S) satisfies the (CLRS) property (or the
pair (B, T ) satisfies the (CLRT ) property),

2) A (X) ⊂ T (X) (or B (X) ⊂ S (X)),
3) T (X) (or S (X)) is a closed subset of X ,
4) {Byn} converges for every sequence {yn} in X when-

ever {Tyn} converges (or {Axn} converges for every
sequence {xn} in X whenever {Sxn} converges),

5) the mappings A,B, S and T satisfy inequality (1) of
Theorem 10.

Then the pairs (A,S) and (B, T ) enjoy the (CLRST )
property.

Proof: If the pair (A,S) satisfies the (CLRS) property, then
there exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

where z ∈ S (X) . Since A (X) ⊂ T (X), hence for each
{xn} ⊂ X there corresponds a sequence {yn} ⊂ X such
that Axn = Tyn. Therefore, by the closedness of T (X) ,

lim
n→∞

Tyn = lim
n→∞

Axn = z,

where z ∈ S (X) ∩ T (X). Thus in all, we have Axn →
z, Sxn → z and Tyn → z as n → ∞. By part (4), the
sequence {Byn} converges and we just need to show that
Byn → z as n → ∞. By putting x = xn and y = yn in the
inequality (1), we get:

g (FAxn,Byn
(t)) ≤

ϕ

max



g (FSxn,Tyn
(t)) , g (FSxn,Axn

(t)) ,
g (FTyn,Byn (t))

1
2 [g (FSxn,Byn (t)) + g (FTyn,Axn (t))] ,
min {g (FSxn,Byn

(t)) , g (FTyn,Axn
(t))}√

g (FTyn,Byn (t)) .g (FTyn,Axn (t)),
g(FSxn,Axn (t)).g(FSxn,Byn (t))

g(FAxn,Byn (t))




Let Byn → l(̸= z) as n → ∞. Then, passing to the limit as
n → ∞, we get

g (Fz,l (t))

≤ ϕ

max



g (Fz,z (t)) , g (Fz,z (t)) ,
g (Fz,l (t))

1
2 [g (Fz,l (t)) + g (Fz,l (t))] ,
min {g (Fz,l (t)) , g (Fz,z (t))}√

g (Fz,l (t)) .g (Fz,z (t)),
g(Fz,z(t)).g(Fz,l(t))

g(Fz,l(t))




= ϕ

(
max

{
g (1) , g (1) , g (Fz,l (t)) , g (Fz,l (t)) ,

g (1) , 0, g (1)
})

= ϕ (g (Fz,l (t))) .

So, by Lemma 1, we have z = l. Hence the pairs (A,S)
and (B, T ) share the (CLRST ) property. The converse of
proposition 1 is not true. For a counterexample, see Example
3.5 in [14].

Theorem 2: Let A,B, S and T be four self-mappings
of an N.A. Menger PM-space (X,𭟋,∆) , where ∆ is a
continuous t-norm, satisfying all the hypotheses of Propo-
sition 1. Then A,B, S and T have a unique common fixed
point, Where the both pairs (A,S) and (B, T ) are weakly
compatible.
Proof This follows by combining Theorem 1 with proposi-
tion 1.

It is clear that, if the pairs (A,S) and (B, T ) satisfy the
common property (E.A), and, at the same time, S (X) and
T (X) are closed subsets of X , then the pairs (A,S) and
(B, T ) share the (CLRST ) property. Hence, we have the
following variant of Theorem 1.

Theorem 3: Let A,B, S and T be four self-mappings of
an N.A. Menger PM-space (X,𭟋,∆), where ∆ is a con-
tinuous t-norm, satisfying inequality (1) and the following
hypotheses holds:

1) the pairs (A,S) and (B, T ) satisfy the common prop-
erty (E.A);

2) S (X) and T (X) are closed subsets of X.
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Then (A,S) and (B, T ) have a coincidence point each.
Moreover A,B, S and T have a unique common fixed
point provided both pairs (A,S) and (B, T ) are weakly
compatible.
Next, we state two more variants of our results, which can
be proved by Theorems (2 and 3).

Corollary 1: The conclusions of Theorem 3 remain true
if condition (2) is replaced by the following condition:

A (X) ⊂ T (X) and B (X) ⊂ S (X) ,

where A (X) and B (X) denote the closure of ranges of the
mappings A and B.

Corollary 2: The conclusions of Theorem 3 remain true
if condition (2) is replaced by the following condition:

A (X) and B (X) are closed subsets of X,

and

A (X) ⊂ T (X) , B (X) ⊂ S (X) .

By choosing A,B, S and T suitably in Theorem 1, we can
deduce some corollaries for a pair as well as for a triple
of self mappings. Since the formulations of these results
are similar to those in [14], [15], we omit the details here.
Now we utilize this notion for six self-mappings in an N.A.
Menger PM-space.

Theorem 4: Let A,B,R, S,H and T be six self mappings
of an N.A. Menger PM-space (X,𭟋,∆), where ∆ is a
continuous t-norm. Suppose that

1) the pairs (A,SR) and (B, TH) satisfy the(
CLR(SR)(TH)

)
property,

2) the following inequality B hold:

g (FAx,By (t)) ≤

ϕ

max



g (FSRx,THy (t)) , g (FSRx,Ax (t)) ,
g (FTHy,By (t))

1
2 [g (FSRx,By (t)) + g (FTHy,Ax (t))] ,
min {g (FSRx,By (t)) , g (FTHy,Ax (t))}√

g (FSRx,THy (t)) .g (FTHy,Ax (t)),
g(FSRx,Ax(t)).g(FSRx,By(t))

g(FAx,By(t))




for all x, y ∈ X, t > 0, where g ∈ Ω and ϕ ∈ Φ.
Then (A,SR) and (B, TH) have a coincidence point each.
Moreover A,B,H,R, S and T have a unique common fixed
point provided AS = SA,AR = RA,SR = RS,BT =
TB,BH = HB and TH = HT.

Proof: By Theorem 1, A,B, SR and TH have a unique
common fixed point z in X . We show that z is a unique
common fixed point of the self mappings A,B,R, S,H and
T . By putting x = Rz and y = z in the inequality (2), we
get:

g
(
FA(Rz),Bz (t)

)
≤ ϕ

max



g
(
FSR(Rz),THz (t)

)
, g

(
FSR(Rz),A(Rz) (t)

)
,

g (FTHz,Bz (t))
1
2

[
g
(
FSR(Rz),Bz (t)

)
+ g

(
FTHz,A(Rz) (t)

)]
,

min
{
g
(
FSR(Rz),Bz (t)

)
, g

(
FTHz,A(Rz) (t)

)}√
g
(
FSR(Rz),THz (t)

)
.g
(
FTHz,A(Rz) (t)

)
,

g(FSR(Rz),A(Rz)(t)).g(FSR(Rz),Bz(t))
g(FA(Rz),Bz(t))


,

and

g (FRz,z (t))

≤ ϕ

max



g (FRz,z (t)) , g (FRz,Rz (t)) ,
g (Fz,z (t))

1
2 [g (FRz,z (t)) + g (Fz,Rz (t))] ,
min {g (FRz,z (t)) , g (Fz,Rz (t))}√

g (FRz,z (t)) .g (Fz,Rz (t)),
g(FRz,Rz(t)).g(FRz,z(t))

g(FRz,z(t))




= ϕ

(
max

{
g (FRz,z (t)) , g (1) , g (1) , g (FRz,z (t)) ,

g (FRz,z (t)) , g (FRz,z (t)) , g (1)
})

= ϕ
(
max

{
g (FRz,z (t)) , 0, 0, g (FRz,z (t)) ,

g (FRz,z (t)) , g (FRz,z (t)) , 0
})

= ϕ (g (FRz,z (t))) .

Using Lemma 1, we have z = Rz. Hence Sz = S (Rz) = z.
Therefore, we have z = Az = Sz = Rz. Now we assert that
z is a common fixed point of B, T and H. To accomplish
this, we use the inequality (2) with x = zandy = Hz we
obtain:

g
(
FAz,B(Hz) (t)

)
≤ ϕ

max



g
(
FSRz,TH(Hz) (t)

)
, g (FSRz,Az (t)) ,

g
(
FTH(Hz),B(Hz) (t)

)
1
2

[
g
(
FSRz,B(Hz) (t)

)
+ g

(
FTH(Hz),Az (t)

)]
,

min
{
g
(
FSRz,B(Hz) (t)

)
, g

(
FTH(Hz),Az (t)

)}√
g
(
FSRz,TH(Hz) (t)

)
.g
(
FTH(Hz),Az (t)

)
,

g(FSRz,Az(t)).g(FSRz,B(Hz)(t))
g(FAz,B(Hz)(t))

,


that is

g (Fz,Hz (t))

≤ ϕ

max



g (Fz,Hz (t)) , g (Fz,z (t)) ,
g (FHz,Hz (t))

1
2 [g (Fz,Hz (t)) + g (FHz,z (t))] ,
min {g (Fz,Hz (t)) , g (FHz,z (t))}√

g (Fz,Hz (t)) .g (FHz,z (t)),
g(Fz,z(t)).g(Fz,Hz(t))

g(Fz,Hz(t))




= ϕ

(
max

{
g (Fz,Hz (t)) , g (1) , g (1) , g (Fz,Hz (t)) ,

g (Fz,Hz (t)) , g (Fz,Hz (t)) , g (1)
})

= ϕ
(
max

{
g (Fz,Hz (t)) , 0, 0, g (Fz,Hz (t)) ,

g (Fz,Hz (t)) , g (Fz,Hz (t)) , 0
})

= ϕ (g (Fz,Hz (t))) .

Thus, by Lemma 1, we have z = Hz. Hence
Tz = T (Hz) = z. Therefore z is a common fixed
point of self mappings A,B,R, S,H and T. On the other
hand, the uniqueness of the common fixed point is an easy
consequence of inequality (2).

In view of Theorem 2, we can derive the fixed point
theorem for four finite families of self mappings.

Corollary 3: Let {Ai}mi=1 , {Br}nr=1 , {Sk}pk=1 and
{Th}qh=1 be four finite families of self-mappings of an N.A.
Menger space (X,𭟋,∆), where ∆ is a continuous t-norm,
with A = A1A2....Am, B = B1B2....Bn, S = S1S2....Sp

and T = T1T2....Tq satisfying the inequality (1) of Theorem
1 such that the pairs (A,S) and (B, T ) have the (CLRST )
property. Then {Ai}mi=1 , {Br}nr=1 , {Sk}pk=1 and {Th}qh=1
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have a unique common fixed point provided that the pairs
of families ({Ai}mi=1 , {Sk}pk=1) and ({Br}nr=1 , {Th}qh=1)
commute pairwise.

By setting A1 = A2 = ... = Am = A, B1 = B2 = .... =
Bn = B, S1 = S2 = .... = Sp = S and T1 = T2 = .... =
Tq = T in Corollary 1, we get that A,B, S and T have a
unique common fixed point provided that the pairs (Am, Sp)
and (Bn, T q) commute pairwise.

Corollary 4: Let A,B, S and T be self mappings of an
N.A. Menger PM-space (X,𭟋,∆) where ∆ is a continuous
t-norm. Suppose that:

1) The pairs (Am, Sp) and (Bn, T q) satisfying the
(CRLSp,T q ) property, where m,n, p, q are fixed pos-
itive integers.

2) The following inequality is held:
g (FAmx,Bny (t)) ≤ ϕ

max



g (FSpx,T qy (t)) , g (FSpx,Amx (t)) ,
g (FT qy,Bny (t))

1
2 [g (FSpx,Bny (t)) + g (FT qy,Amx (t))] ,
min {g (FSpx,Bny (t)) , g (FT qy,Amx (t))}√

g (FSpx,T qy (t)) .g (FT qy,Amx (t)),
g(FSpx,Amx(t)).g(FSpx,Bny(t))

g(FAmx,Bny(t))


,

for all x, y ∈ X, t > 0, g ∈ Ω where ϕ ∈ Φ. Then A,B, S
and T have a unique common fixed point provided AS = SA
and BT = TB.

Remark 2: The conclusions of Theorem 1 remain true if
we replace the inequality (1) with the following inequality:

g (FAx,By (t))

≤ ϕ

max


g (FSx,Ty (t)) , g (FSx,Ax (t)) ,

g (FTy,By (t))
1
2 [g (FSx,By (t)) + g (FTy,Ax (t))] ,√

g (FSx,Ty (t)) .g (FTy,Ax (t)),
g(FAx,Ty(t)).g(FSx,Ty(t))

g(FSx,Ty(t))



 ,

for all x, y ∈ X and t > 0, where g ∈ ω and ϕ belongs to
the class Φ.

IV. ILLUSTRATIVE EXAMPLES

In this section, we give some examples demonstrating the
validity of the hypotheses and the degree of generality of our
results over some recently established results.

Example 3: Let (X, d) be a metric space with the usual
metric d where X = [3, 12) and let (X,𭟋,∆) be the
induced N.A. Menger PM-space with g (t) = 1 − t and
Fx,y (t) = t

t+|x−y| for all x, y ∈ X and t > 0. Let
A,B, S and T be four mappings from X to itself defined

as: Ax =

{
3, if x ∈ {3} ∪ (6, 12),
9, if x ∈ (3, 6];

Bx =

{
3, if x ∈ {3} ∪ (6, 12),
5, if x ∈ (3, 6];

Sx =

 3, if x = 3,
10, if x ∈ (3, 6],
x+3
3 , if x ∈ (6, 12) ;

Tx =

 3, if x = 3,
7, if x ∈ (3, 6],

x− 3, if x ∈ (6, 12) .
Then we have A (X) = {3, 9} ⊈ [3, 9) = T (X) and

B (X) = {3, 5} ⊈ S (X) = [3, 5) ∪ {10}. Taking the
sequences {xn} =

{
6 + 1

n

}
, {yn} = {3} (or {xn} =

{3} , {yn} =
{
6 + 1

n

}
), the pairs (A,S) and (B, T ) satisfy

the (CLRST ) property, that is,

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn

= lim
n→∞

Tyn = 3 ∈ S (X) ∩ T (X) .

Now, define a function ϕ : [0,+∞) → [0,+∞) by:

ϕ (t) = kt, with
6

7
< k < 1, for all t ≥ 0.

Clearly, ϕ ∈ Φ. By a routine calculation, the first one can
easily verify the inequality (1). Thus, all the conditions of
Theorem 1 are satisfied, and 3 is a unique common fixed
point of the pairs (A,S) and (B, T ). It is noted in this
example that S (X) and T (X) are not closed subsets of
X . Also, all the involved mappings are even discontinuous
at their unique common fixed point 3.

In the following illustration, the importance of weakly
compatible assumptions for the validity of the result is
shown.

Example 4: Let (X, d) be a metric space with the usual
metric d where X = [0,+∞) and let (X,𭟋,∆) be the
induced N.A. Menger PM-space with g (t) = 1 − t and
Fx,y (t) = t

t+|x−y| for all x, y ∈ X and t > 0. Consider
the mappings A,B, S, T : X → X given by:

Ax = Bx = x+ 1 and Sx = Tx = 2x.

Then the pairs (A,S) and (B, T ) satisfy the (CLRST )
property. Indeed, consider two sequences, {xn} ={
1 + 1

n

}
n∈N and {yn} =

{
1− 1

n

}
n∈N, then we have:

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = 2,

where 2 ∈ S (X) ∩ T (X) . By a simple calculation, taking
ϕ (t) = kt with a suitable value of k, then the inequality (1)
is hold. Thus, all the conditions of the first part of Theorem 1
are satisfied. It can be noted, indeed, that 1 is a coincidence
point of (A,S) , as well as of (B, T ) . However, these pairs
are not weakly compatible and there is no common fixed
point of the pairs (A,S) and (B, T ) .
Note that Theorem 2 cannot be applied in the case of
mappings provided in Example 4, since conditions (2) and
(3) of proposition 1 do not hold. Such an example can show
when Theorem 2 can be used.

Example 5: In Example 3, replace the mappings S and
T with the following:

Tx =

 3, if x = 3,
9, if x ∈ (3, 6],

x− 3, if x ∈ (6, 12) ;

Sx =

 3, if x = 3,
5, if x ∈ (3, 6],

x−2
2 , if x ∈ (6, 12) .

Besides retaining the rest: {3, 9} ⊈ [3, 9) = T (X) and
B (X) = {3, 5} ⊈ S (X) = [3, 5) ∪ {10}. Then A (X) =
{3, 9} ⊂ [3, 9] = T (X) and B (X) = {3, 5} ⊂ [3, 5] =
S (X) hold; In fact S (X) and T (X) are closed subsets of
X. Thus, all the conditions of Theorem 1 are satisfied, and
so 2 is a unique common fixed point of the pairs (A,S) and
(B, T ) .
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The next example satisfies condition (1) of theorem 1 such
that it is only sufficient and not necessary.

Example 6: Let (X, d) be a metric space with the usual
metric d where X = [1, 10] and let (X,𭟋,∆) be the induced
N.A. Menger PM-space with g (t) = 1 − t and Fx,y (t) =

t
t+|x−y| for all x, y ∈ X and t > 0. Consider the mappings
A,B, S, T : X → X given by

Ax = Bx =

 1, if x = 1,
6, if 1 < x ≤ 4,
1, if 4 < x ≤ 10;

Sx = Tx =

 1, if x = 1,
6, if 1 < x ≤ 4,

x+2
2 , if 4 < x ≤ 10.

Then the pairs (A,S) and (B, T ) satisfy all the conditions of
Theorem 1, except the inequality (1) (take, e.g., x ∈ (1, 4]
and y = 1). However, these four mappings have a coinci-
dence at x = 1 which also remains their common fixed point.
This confirms that condition (1) of Theorem 1 is sufficient
and not necessary.

Our last example highlights the non-closedness of ranges
of S and T in X in corollaries 1 and 2.

Example 7: In Example 3, replace the mappings S and
T by the following:

Sx = Tx =

 3 if x = 3,
13 if x ∈ (3, 6],

3x−12
2 if x ∈ (6, 12) .

Then A (X) = {3, 9} ⊂ [3, 12) ∪ {13} = T (X) and
B (X) = {3, 5} ⊂ [3, 12) ∪ {13} = S (X). Actually, S (X)
and T (X) are not closed subspaces of X, but condition (2’),
resp, (2”) of Corollary 1, resp 2 is satisfied. Again, 2 is a
unique common fixed point of A,B, S and T .

V. AN APPLICATION TO FUNCTIONAL EQUATIONS

In this section, by using the fixed point results obtained
in the previous Section, we study the solvability of the
following system of functional equations arising in dynamic
programming:

q (x) = opty∈D {Gi (x, y, q (τ (x, y)))} , (3)

for x ∈ W and i ∈ {1, 2, 3, 4}, where U and V are Banach
spaces, W ⊆ U is a state space, D ⊂ V is a decision
space, while τ : W × D → W,Gi : W × D × R → Rare
mappings, i ∈ {1, 2, 3, 4} . Denote by X the set of all
bounded real-valued functions on W and, for h ∈ X , define
∥h∥ = supx∈W |h (x)|. Clearly, (X, ∥.∥) is a Banach space,
and the convergence in this space is uniform. Therefore, if
{hn} is a Cauchy sequence in X , then it converges uniformly
to a function h∗ ∈ X. The respective metric will be denoted
by d. Further, consider operators A,B, S, T : X → X given
by: 

Ah (x) = supy∈D {G1 (x, y, h (τ (x, y)))} ,
Bh (x) = supy∈D {G2 (x, y, h (τ (x, y)))} ,
Sh (x) = supy∈D {G3 (x, y, h (τ (x, y)))} ,
Th (x) = supy∈D {G4 (x, y, h (τ (x, y)))} ,

(4)

for h ∈ Xandx ∈ W . These mappings are well-defined if
the functions Gi are bounded. From the above discussion,

we can provide another theoretical result, reported below for
completeness.

Theorem 5: Let A,B, S, T : X → X given by (4) and
suppose that the following hypotheses hold:

(I) The functions Gi : W ×D × R → R, i ∈ {1, 2, 3, 4},
satisfy:

e

(
− t

supx∈W supy∈D|G1(x,y,h(x))−G2(x,y,k(x))|

)

≤ ϕ

max



g (FSh,Tk (t)) , g (FSh,Ah (t)) ,
g (FTk,Bk (t))

1
2 [g (FSh,Bk (t)) + g (FTk,Ah (t))] ,
min {g (FSh,Bk (t)) , g (FTk,Ah (t))}√

g (FSh,Tk (t)) .g (FTk,Ah (t)),
g(FSh,Ah(t)).g(FSh,Bk(t))

g(FAh,Bk(t))



 ,

for all h, k ∈ X and t ∈ [0, 1] , where g is given by g (t) =
1− t for t ∈ [0, 1] ;

(II) Gi : W × D × R → R are bounded functions, for
i ∈ {1, 2, 3, 4} ;

(III) There exist two sequences {hn} and {kn} in X and
h∗ ∈ X such that

lim
n→∞

Ahn = lim
n→∞

Bkn = lim
n→∞

Shn = lim
n→∞

Tkn = h∗;

(IV) ASh = SAh, whenever Ah = Sh for some h ∈ X;
(V) BTk = TBk, whenever Bk = Tk for some k ∈ X.
Then the system of functional equations (3) has a unique

bounded solution.
Proof: Define

Fh,k (t) =

{
1− exp

(
− t

d(h,k)

)
if 0 < t < d (h, k) ,

1 otherwise,

where h, k ∈ X such that h ̸= k. Then (X, ,∆) is a
complete N.A. Menger PM-space (induced by the metric d)
with ∆(a, b) = min {a, b} for a, b ∈ [0, 1] . By hypothesis
(III) the pairs (A,S) and (B, T ) share the common limit
range property with respect to (S, T ) . Now, let ε be an
arbitrary positive number, x ∈ W , and h, k ∈ X. Then there
exist y1, y2 ∈ D such that

Ah (x) < G1 (x, y1, h (τ (x, y1))) + ε, (5)

Ah (x) ≥ G1 (x, y2, h (τ (x, y2))) , (6)

Bk (x) < G2 (x, y2, k (τ (x, y2))) + ε, (7)

Bk (x) ≥ G2 (x, y1, k (τ (x, y1))) . (8)

Using (5) and (8), we obtain

Ah (x)−Bk (x)

< G1 (x, y1, h (τ (x, y1)))−G2 (x, y1, k (τ (x, y1))) + ε

≤
∣∣G1 (x, y1, h (τ (x, y1)))−G2 (x, y1, k (τ (x, y1)))

∣∣+ ε

≤ sup
y∈D

∣∣G1 (x, y, h (τ (x, y)))−G2 (x, y, k (τ (x, y)))
∣∣+ ε.

Analogously, by using (6) and (7), we get:

Bk (x)−Ah (x)

< sup
y∈D

|G1 (x, y, k (τ (x, y)))−G2 (x, y, h (τ (x, y)))|+ ε.

(9)
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From (9), we deduce that

|Ah (x)−Bk (x)|
< sup

y∈D
|G1 (x, y, h (τ (x, y)))−G2 (x, y, k (τ (x, y)))|+ ε.

It follows directly that

d (Ah,Bk)

≤ sup
x∈W

sup
y∈D

|G1 (x, y, h (τ (x, y)))−G2 (x, y, k (τ (x, y)))|

+ ε.

Since ε > 0 was taken arbitrary, we obtain that

d (Ah,Bk)

≤ sup
x∈W

sup
y∈D

|G1 (x, y, h (τ (x, y)))−G2 (x, y, k (τ (x, y)))|

(10)
In view of hypotheses (I) and (10), it follows easily that

g (FAh,Bk (t))

≤ ϕ

max



g (FSh,Tk (t)) , g (FSh,Ah (t)) ,
g (FTk,Bk (t))

1
2 [g (FSh,Bk (t)) + g (FTk,Ah (t))] ,
min {g (FSh,Bk (t)) , g (FTk,Ah (t))}√

g (FSh,Tk (t)) .g (FTk,Ah (t)),
g(FSh,Ah(t)).g(FSh,Bk(t))

g(FAh,Bk(t))



 .

Moreover, in view of hypotheses (IV) and (V), the pairs
(A,S) and (B, T ) are weakly compatible. Hence, Theorem 1
is applicable, and so A,B, S, and T have a unique common
fixed point, that is, the system of functional equations (3)
has a unique bounded solution.

VI. CONCLUSION

We prove the common fixed point theorems for weakly
compatible mappings in non-Archimedean Menger PM-
spaces, and we give some examples. In addition, we extend
our main result to four finite families of self-mappings by
the notion of pairwise commuting as we show. Also, we
introduce some applications for our main theorem.
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