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Abstract—Binocular vision-based obstacle detection system 

has a wide range of applications, such as intelligent vehicles, 

mobile robots and other fields. However, the system has a large 

blind area because of the fixed camera pose of the traditional 

binocular vision system. This limits the system to accurately 

obtain the depth information of obstacles only in the field of 

view where two cameras overlap, and it is not possible to obtain 

accurate information otherwise. Aiming at this problem, we 

propose a wide range multi-target active binocular vision 

obstacle detection method based on VIDAR (Vision-IMU based 

detection and range method) for intelligent vehicles. First, two 

separate cameras are used to detect the three-dimensional 

obstacles by VIDAR. Second, the optical axis angle of the 

camera is adjusted in real-time according to the position of the 

obstacle. This causes the target to be detected such that it always 

lies in the overlapping field of view of the two cameras, and the 

obstacle can be actively tracked. Third, the obstacle search 

strategy is proposed to maximize the number of obstacles 

detected by the active binocular system. Last, experimental 

results show that compared with the traditional obstacle 

detection method based on binocular vision, the proposed 

method can not only detect unknown types of obstacles, but also 

have a wider detection range and a guaranteed ranging 

accuracy. 

 
Index Terms—Active vision, Binocular vision, Morphological 

operation, VIDAR 
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I. INTRODUCTION 

inocular stereo vision is widely used in many fields. For 

example, a binocular vision system fixed on a welding 

robot was used by Chen et al. to compute the position 

information of a spatial seam with an error of less than 0.3 mm 

[1]. Ling et al. proposed a dual-arm cooperative approach for 

a tomato harvesting robot using a binocular vision sensor, 

which could carry out harvesting in an unstructured 

environment [2]. Jiang et al. proposed a gesture recognition 

system based on binocular vision using the Boyer-Moore 

(BM) algorithm for stereo matching [3].  

Many researchers have been working on improving the 

performance of binocular vision systems to obtain higher 

detection and measurement accuracy. Zhai et al. proposed an 

accurate stereo matching method to locate the 

three-dimensional (3D) position of crop rows. This research 

was based on the rank transformation, Harris detector and 

random sample consensus methods to reduce the 

computational complexity and improve the accuracy of image 

stereo matching [4]. Tippetts et al. provided an example of 

modifying an existing highly accurate stereo vision algorithm 

to increase its runtime performance while trying to limit the 

loss in accuracy [5]. 

The traditional binocular vision system consists of two 

cameras. The camera model can be described by a pinhole 

model when the lens distortion is either corrected or can be 

ignored without timing [6]. In the traditional binocular vision 

system, the relative attitude is fixed between two cameras. 

This feature limits the public field of view and its flexibility in 

practical application, and also causes inconvenience with 

respect to maintenance.  

Two images taken by a single camera from two viewpoints 

can also form a binocular stereo vision; however, the relative 

attitude of the camera from one viewpoint to another is not 

accurate, which seriously affects the measurement accuracy. 

In a binocular detection method, different baseline widths 

have different detection ranges and accuracy values. Previous 

studies have shown that on the premise of ensuring an 

effective binocular field, a wide baseline system has a higher 

detection accuracy than a narrow baseline system [7]-[17]. 

However, the growth of the baseline in the wide baseline 

system increases the blind area of the system. Although the 

research on binocular vision detection method is relatively 

mature, it still cannot effectively solve the problem of blind 

area in the binocular vision system.  

Biological vision has always been an important source of 

inspiration for computer vision algorithm design [18]-[22]. 
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Therefore, this paper applies the feature of flexible rotation in 

the horizontal direction of human eyeballs to the binocular 

detection system and builds a non-parallel binocular visual 

model [23]-[25]. The VIDAR is used to initially detect 3D 

obstacles [26], and subsequently, the position information of 

the obstacles is used to calculate the camera angle. In this way, 

the camera optical axis angle can be adjusted in real-time, and 

the blind area in the traditional binocular vision can be 

avoided. Consequently, the detection target always lies in the 

overlapping field of the two cameras. In addition to the 

aforementioned model, the active optical axis search strategy 

of the binocular camera is proposed to realize the optimal 

detection of multiple obstacles.  

The rest of the article is structured as follows. Section 2 

introduces the VIDAR obstacle detection principle and the 

binocular vision model. Section 3 describes the active 

obstacle detection method of binocular camera based on 

unmatched regions, and the active obstacle tracking method 

of binocular vision based on matched regions, and presents 

the design of the corresponding camera rotation algorithm. In 

Section 4, the simulation and real vehicle experiments are 

presented, and the experimental results are compared with 

those from the traditional binocular vision and active 

binocular vision based on YOLO V5S. The comparison 

verifies the superiority of the detection accuracy and range of 

the proposed method. Section 5 concludes this paper.  

 

II. PRINCIPLE OF VIDAR AND BINOCULAR VISION MODEL 

A. Principle of VIDAR 

In this paper, VIDAR is used to initially detect the 3D 

obstacles in front of the vehicle. Based on monocular vision, 

VIDAR is an effective obstacle detection algorithm with a 

simple operation and a high detection accuracy. It can 

accurately obtain the location information of target obstacles 

and detect unknown obstacles that cannot be identified by 

machine learning. The research methods developed in this 

paper are primarily based on VIDAR.  

During the process of obstacle detection by VIDAR, the 

feature points are extracted using the fast image region 

matching method based on maximally stable extremal regions 

(MSER), and two frames of images are matched [27]. On this 

basis, the discrimination principle of VIDAR 3D obstacles is 

used to eliminate non-obstacle points extracted via the MSER 

image region matching method, and the obstacles in the image 

can be detected directly and quickly. 

 

Calculation of the horizontal distance of obstacles 

The lowest point of MSER connected to the measured area 

is regarded as the intersection P between the obstacle and the 

road plane. The horizontal distance between the point P and 

the camera can be obtained as follows:  

For the convenience of calculation, it is assumed that the 

optical axis of the camera points at the point P exactly, as 

shown in Fig. 1. The effective focal length of the camera is 

denoted by f, the optical axis height between the camera lens 

and the ground is represented by h, the pixel size is given by μ, 

and the pitching angle of the camera is equal to ∂. The 

coordinate origin of the plane coordinate system 0 0( , )x y , i.e., 

the intersection between the image plane and the camera 

optical axis is usually set to (0,0). Given that the coordinates 

of the intersection point of the obstacle in front and the road 

plane in the imaging plane are denoted by (x,y), the horizontal 

distance d between the intersection point and the camera can 

be obtained from (1). 

 

 

 

𝑑 =
ℎ

𝑡𝑎𝑛(𝜕+𝑎𝑟𝑐𝑡𝑎𝑛[(𝑦0−𝑦)/𝑓])
            (1) 

 

Discrimination of 3D obstacles 

As Fig. 2 shows, the first imaging point of the obstacle is A, 

the y axis is moved from 1y  to 2y  in the image plane because 

of the camera’s movement, and the imaging point of the 

obstacle’s top is B. Suppose there is a two-dimensional (2D) 

obstacle on the road plane, and A' and B' are the points 

corresponding to A and B on the road plane, respectively. The 

horizontal distance between the camera to point A' and point 

B' are 
1d  and 

2d , respectively.  

The distances 
1d  and 

2d  can be obtained using (1). The 

camera moves a certain distance Δd between two consecutive 

images, and this distance can be obtained using the IMU. The 

relationship between 
1d  and 

2d  can be expressed as 

1 2d d d   . Actually, the obstacle is 3D and, therefore, 

1 2d d d l     . Thus, the target point is not on the road 

if
1 2d d d   , which can be used as the basis for 

distinguishing 3D obstacles. 
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Fig. 2. Schematic diagram of stationary obstacle imaging. 

 

In addition, the movement of an obstacle can also be used 

for obstacle determination in most environments. Relevant 

parameter descriptions and certification processes are 

described in [26] and [28]. 
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Fig. 1. Schematic diagram of 3D obstacle pinhole imaging. 
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B. Binocular vision model 

In the broad sense, binocular vision can be divided into 

parallel and non-parallel binocular vision. The binocular 

vision imaging model is also based on the pinhole imaging 

model. The 3D spatial coordinates of the points in the world 

coordinate system can be calculated according to the camera 

calibration parameters and parallax values of the left and right 

projection points.  

 

Parallel binocular vision model  

In the research method presented in this paper, the system 

can be regarded as a standard parallel binocular vision system 

at the initial moment, while slight errors are ignored. This 

scenario is shown in Fig. 3. The system assumes that the left 

and right cameras (denoted as cameras l and r, respectively) 

are in the same horizontal position, the optical axis is parallel 

and intersect vertically with the imaging plane, and the same 

object is being captured from different positions to obtain two 

images with a specific parallax. 

 

P

Z

T

lO rO

rP
lP

lx rx

Image plane of 

left camera
Image plane of 

right cameraf f

lZ rZ

Fig. 3. Parallel binocular vision model. 

 

The point P is a certain target point in space, 
lp and 

rp  are 

the pixels projected by P on the imaging plane, and 
lO  and 

rO  are the optical centers of the cameras l and r, respectively. 

The focal length of the camera is f, T is the baseline, 
lx  and 

rx  are the coordinates of 
lp  and 

rp  in the pixel coordinate 

system, respectively, and Z is the distance between P and the 

camera's light center in the world coordinate system. The 

depth value Z of P can be calculated according to the triangle 

similarity principle. The corresponding calculation formula is 

as follows:  

( )l r

l r

T x x T fT
Z

Z f Z x x

 
  

 
                 (2) 

 

Non-parallel binocular vision model 

Figure 4 shows that the two cameras have offsets in the 

X-axis, Y-axis and Z-axis directions, and the optical axis of 

camera r rotates by an angle θ  in the counterclockwise 

direction around the Y-axis. Similarly, with camera l 

coordinate system as the world coordinate system, the 3D 

coordinates of P can be calculated by the coordinates of 

projection point, rotation matrix and translation vector. 

 

In the active vision system studied in this paper, it is 

assumed that the optical axes of two cameras are coplanar and 

the visual frames coincide. The optical centers of cameras l 

and r are represented by the origins 
lO  and 

rO , respectively. 

In the initial state, Z denotes the optical axis direction towards 

the scene. The X-axis and Y-axis are the directions 

corresponding to the horizontal and vertical axes of the image, 

respectively. The camera rotates actively around the Y-axis 

when the active vision is triggered. Therefore, the 

non-parallel binocular vision model proposed in this paper 

only considers the rotation angle of the optical axis, and the 

other offsets are not considered. 
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Fig. 4. Non-parallel binocular vision model. 

 

III. MULTI-OBSTACLE DETECTION AND TRACKING BASED ON 

VIDAR AND ACTIVE BINOCULAR VISION 

A. Overview of obstacle detection and tracking based on 

unmatched region 

In this paper, first, the cameras l and r are used to detect 3D 

obstacles in front of the vehicle based on VIDAR. Second, 

feature points are matched between the two images obtained 

by the cameras l and r to determine the area where the 

obstacle is located. Last, the camera angle is calculated, and 

the camera optical axis is rotated so that most or even all 

obstacles are in the overlapping field of view of the two 

cameras. Subsequently, the binocular distance is measured.  

After feature point matching, the possible regions of 

obstacles can be divided into the following five scenarios, as 

shown in Fig. 5: (1) All obstacles are in the matching region; 

(2) All obstacles are in the unmatched region on one side; (3) 

The obstacles are in both the matching and unmatched regions 

on one side; (4) Obstacles are located in the unmatched and 

matching regions on both sides; (5) All obstacles are located 

in the unmatched regions on both sides. The obstacle can be 

directly tracked by the binocular distance measurement in 

scenario (1), whereas in scenarios (2) and (3), all the obstacles 

are in the field of view of one camera and only one camera 

needs to rotate to construct the binocular vision system. In 

scenarios (4) and (5), the situation is complicated as all the 

obstacles are scattered in the field of view of the cameras on 

both sides. Therefore, it is necessary to successively rotate the 

cameras on both sides to construct the binocular vision 

system.  
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Fig. 5. Classification diagram of the regions where obstacles are located. 
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Fig. 6. Flow chart of obstacle detection and tracking. 

 

Figure 6 shows the flow chart of obstacle detection and 

tracking, which is described as follows: 

(1) When t=0, cameras l and r collect the environmental 

information to obtain images ltI  and rtI , respectively. The 

VIDAR is used to effectively discriminate between all feature 

points and initially detect the 3D obstacles. 

(2) The obstacle feature points are matched in images ltI  

and rtI  to identify the region where the obstacle is located. 

(3) Let lN  and rN  be the number of unmatched points in 

ltI  and rtI , respectively, and lrN  be the number of matching 

points in ltI  and rtI . 

If 0lN   and =0rN , it indicates that all obstacles are 

within the matching region, and the binocular distance can be 

measured directly.  

If 0lN   and 0rN  , it indicates that the region where the 

obstacle is located is given by scenarios (2)b and (3)b, as 

shown in Fig. 5. Morphological operation is performed on the 

feature points in rtI  to obtain the distance of the lowest point 

of the obstacle 
rd . In addition, the optical axis angle l  of 

camera l is obtained using the camera rotation algorithm.  

If 0lN   and =0rN , it indicates that the region where the 

obstacle is located is given by scenarios (2)a and (3)a as 

shown in Fig. 5. Morphological operation is performed on the 

feature points in ltI  to obtain the distance of the lowest point 

of the obstacle 
ld . Furthermore, the optical axis angle r  of 

camera r is obtained using the camera rotation algorithm.  

If 0lN   and 0rN  , it indicates that scenarios (4) and (5) 

represent the region where the obstacle is located, as shown in 
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Fig. 5. Morphological operation is performed on the feature 

points in ltI  and rtI  to obtain the distance of the lowest point 

of the obstacles 
ld  and 

rd , respectively. The camera is 

rotated in turn according to the size relationship between 
ld  

and 
rd , and the camera rotation algorithm. 

(4) After rotating the optical axis of the camera, the 

obstacle is measured by the binocular ranging and the camera 

is reset at the same time. The obstacle target is segmented and 

the points with known distance are extracted as samples to 

generate the matching template.  

(5) As the vehicle moves, the identification and active 

detection of obstacles enter the next frame. When t t t   , 

ltI  and rtI  are compared with the template to update the 

sample location. Subsequently, the sample area is eliminated 

so that the repeated ranging does not affect the detection 

speed. Steps (2) and (3) shown in Fig. 6 are repeated to 

actively track samples and detect new obstacles. 

 

B. Active binocular vision obstacle search strategy based on 

unmatched region 

 

Active binocular obstacle search strategy in scenarios (2) 

and (3)  

Figure 5 shows that when the region of the obstacle is 

located according to scenario (3), the distance of the obstacle 

in the binocular matching region can be accurately measured 

by the binocular vision system without any camera rotation.  

On the other hand, the distance of the obstacle in the unilateral 

unmatched region should be measured by the camera rotation. 

As scenario (3) is consistent with the search strategy for 

scenario (2), we shall discuss them together. 

When the region of the obstacle is located according to 

scenarios a or b shown in Fig. 5, the obstacle search strategy 

and camera rotation algorithm in the two cases are completely 

identical except for the different rotation directions of the 

camera optical axis. Therefore, this paper only describes one 

of the scenarios in detail. 

Considering scenario (2)a as an example, the specific 

camera rotation algorithm is as follows: 
 

h
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 0 0,x yx

y



Image Plane

Road Plane d

Len's Center

 ,i ix y
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Fig. 7. Schematic diagram of point Pi pinhole imaging. 

 

The camera l first performs a morphological operation on 

the feature points in image ltI  after detecting the obstacle. 

The lowest point after the morphological operation is 

regarded as the intersection point iP  between the obstacle 

and the road plane, where i is the number of point P. Figure 7 

shows the projection of iP  on the camera l imaging plane, 

where i( , )ix y  are the coordinates of iP  in the imaging plane. 

The distance between the camera l and iP  can be calculated 

using (1). The horizontal distance between iP  and the optical 

axis of camera l is denoted by iw , which can be obtained 

based on the pinhole imaging principle and trigonometry 

given by (3). 

   

  
0 0

i

0tan arctan /

id x x h x x
w

f y y f

 



 
 

     

 (3) 

When 1i  , the position relationship between the obstacle 

and the cameras is shown in Fig. 8(a), where   is the field 

angle of the two cameras. At this time, only the field of view 

of camera r contains obstacles, therefore, the distance to the 

obstacles cannot be obtained by the binocular vision.  

Let 1'd d  and 1'w w . Subsequently, the rotation angle 

r  of the optical axis of camera r is 

 
'

=90 arctan
'

r

d

w T
 


                      (4) 

Where T is the distance between the optical centers of the 

two cameras, and 'd and 'w  are the intermediate variables 

used for calculating the camera angle. The camera r is actively 

rotated by an angle r  to align its optical axis with point 
1P  

so that the field of view of camera r also contains the obstacle. 

Figure 8(b) shows the ideal camera rotation results. 

βr

d1

T

d1

T

w1

1P 1P

   

w1

 (a)                                                        (b) 
Fig. 8. Schematic diagram of camera before and after rotation when i=1. 

 

Figure 9 shows the detection process diagram of the active 

binocular system based on VIDAR for i = 2. 

Generally, there are multiple obstacles on the road. 

Therefore, it is necessary to accurately rotate the camera so as 

to maximize the number of obstacles in the overlapping field 

of view of the two cameras, and obtain an optimal obstacle 

detection performance. When 2i  , the middle position of 

the area where the obstacle is placed is selected to locate the 

optical axis of the camera r. At this point, the values of 'd and 

'w  are shown by (5) and (6), respectively. The rotation angle 

of camera r is still calculated using (4). 

max( ) min( )
'

2

i id d
d


                       (5) 

max( ) min( )
'

2

i iw w
w


                       (6) 
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Fig. 9. Detection process diagram of active binocular system based on VIDAR when i=2. 
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 (a)                                                        (b) 

Fig. 10. Schematic diagram of camera before and after rotation when i=3. 

 

Figure 10 shows the ideal rotation diagram of the camera r 

when i = 3. It can be observed that after the camera angle 

adjustment, the lowest points 1 2 3P P P, ,  of the three obstacles 

are all in the overlapping area of the fields of view of the two 

cameras. Thus, the system can measure the binocular 

distance.  

 

Active binocular obstacle search strategy in scenarios (4) 

and (5)  

If all the obstacles are scattered in the field of view of the 

cameras on both sides, the two cameras should rotate 

respectively. Considering scenario (5) as an example and 

assuming i = 2, the position relationship between the obstacles 

and the camera is shown in Fig. 11. In the figure, the two parts 

of the obstacles are located in the separate fields of view of 

cameras l and r, respectively. The intersection points between 

the lowest point of the obstacle and the road plane are denoted 

by 1P and 2P , respectively, and the horizontal distances 

between these points and the camera are represented by 1d   

 

 

and 2d , respectively. When 1d <
2d , the rotation angle of 

camera r is calculated according to (4) considering 
1'd d , 

and the camera r is rotated according to this angle. After the 

camera r is reset, it is considered that 
2'd d  so that the 

camera l can rotate and its rotation angle of camera l can be 

obtained.  

However, as the intermediate variable 'd  used to calculate 

the rotation angle is obtained from the single visual distance, 

there will be a small error with respect to the real value. 

Furthermore, in the presence of multiple obstacles, the 

detection performance may not be optimal because the 

camera angle is calculated from the middle position of the 

area where the obstacles are located. Therefore, the camera 

angle is adjusted by rotating the camera by 10% of  to the 

left and right to ensure that the overlapping area of the fields 

of view of the two cameras contain all obstacles to the 

maximum extent. For example, assume that the number of 

obstacles in the matching area after the camera r rotates by r  

is m, and the numbers of obstacles in the matching area after 
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the camera r rotates by 10% of  to the left and right are n 

and 'n , respectively. If 

'

m n

and

m n




 

, the optical axis rotation of 

camera is kept as
r , and if 

'

m n

or

m n




 

, the rotation angle of 

camera r is finally determined as r . 

 

d1

T

w1

1P

 
d2

w2

1P

 
 

Fig. 11. Diagram of the position relationship between the obstacle and the 

camera in scenario (5). 

 

After the camera rotates, the binocular vision system can 

simultaneously find the distance to the obstacles and reset the 

camera to ensure that the binocular vision system has a larger 

field of vision. Subsequently, the depth information is used to 

segment the obstacle target. The obstacles with known 

distances are considered as samples, and the Kalman filter is 

used to track them, predict their positions, and establish 

matching templates. When t t t   , the target is located in a 

new frame of image and the sample position is updated. The 

effectiveness of the system can be ensured by eliminating the 

ranging area, i.e., the sample area. This elimination is used to 

judge whether there is a new 3D obstacle in the unmatched 

area in the next frame, which is used to decide whether to 

rotate the camera or not. Steps (2) and (3) shown in Fig. 6 are 

repeated to update the matching template in order to actively 

track the samples and detect the new obstacles. 

 

C. Binocular vision active obstacle tracking based on 

unmatched region 

If all the obstacles are in the binocular matching region 

during the obstacle detection process, the binocular distance 

is directly measured for all the obstacles, and subsequently it 

is segmented. In the next frame, when no obstacle appears in 

the unmatched regions, the Kalman filter is used to 

continuously track the obstacle. During the obstacle tracking 

process, the distance between the obstacles and the camera 

reduces continuously. This phenomenon either reduces the 

number of obstacles in the matching area or even makes them 

disappear.  

 

Therefore, during the tracking process, it is necessary to 

actively rotate the camera inward so that the overlapping area 

of the fields of view of cameras l and r can contain all the 

obstacles. It is assumed that there are multiple obstacles in the 

binocular matching area. The farther the obstacle is from the 

camera, the wider the overlapping range of the two cameras. 

In addition, for the consideration of driving safety, the 

autonomous vehicle can adopt the obstacle avoidance strategy 

in time. Therefore, the position of the lowest point 
QP  of the 

obstacle Q closest to the autonomous vehicle in the matching 

area is considered as the basis of active tracking trigger.  

As Fig. 12 shows, active tracking is started when the 

distance 
Qd  between the vehicle and 

QP  is detected to be less 

than a ( a h ). Figure 13 shows the tracking flow chart. 

 

T

1P

 

2P

QP

Qd

h

 

Fig. 12. Schematic diagram of active trace trigger condition. 

 

According to Fig. 12, the conditions for obstacles in the 

overlapping field of view of two cameras are as follows: 

tan( )and tan( )
2 2l r

d d

w w

 
                     (7) 

Substituting (1) and (3) into (7) and after simplification, we 

obtain: 

   
tan( )and tan( )

2 2

ol l or rx x x x

f f

   
            (8) 

Where  and l r   represent the horizontal distances 

between the lowest point 
QP  of the obstacle and the optical 

axes of cameras l and r, respectively. The abscissas of the 

origin in the image coordinate system of cameras l and r are 

denoted by  and ol orx x , respectively, and  and l rx x  represent  

the abscissas of the obstacle in the imaging planes of cameras 

l and r, respectively.   

The minimum rotation angles 
l  and 

r  of cameras l and r, 

respectively, are calculated after the vehicle moves forward a 

distance s. This calculation is such that the overlapping area 

of the fields of view of the two cameras can contain all 

obstacles. Using (8), the camera angle is calculated based on 

the critical condition that the obstacle exists in the 

overlapping area of the two cameras' fields of view. The 

calculations are carried out according to (9) and (10) as 

follows:  
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Fig. 13. Flow chart of active tracking. 
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Figure 14 shows the schematic diagram of binocular active 

tracking. 

s

l r

 
 

Fig. 14. Schematic diagram of binocular active tracking. 
 

IV. EXPERIMENTS AND RESULT ANALYSIS 

The experiments consist of two parts: simulation 

experiments in a controllable scene and real vehicle 

experiments. According to the experimental results, the 

proposed obstacle detection method can improve the 

detection range and reduce the miss ratio. 

A. Experiment preparation 

In this paper, experimental equipment is used to carry out 

simulation experiments in controllable scenes to verify the 

obstacle detection and tracking performance using the 

VIDAR and active binocular vision. The experimental 

equipment mainly includes a pure electric vehicle, two Da 

Ying cameras, two DS3115MG steering engines, a computer, 

a CRS07-11 IMU and a STM32 microcontroller.  
 

 
Fig. 15. Diagram of laboratory equipment. 

 

As Fig. 15 shows, the cameras used to collect the front 

image are installed in the front of the vehicle according to the 

ideal binocular system standard. The installation heights and  

the baseline lengths of the cameras are 1 m and 60 mm,  

 

respectively. The IMU is installed at the bottom of the vehicle 

and can locate itself in real-time, and obtain the attitude, 

speed and displacement information of the vehicle to provide 

information for the VIDAR. The computer runs a series of 

codes such as image acquisition and image processing to 

obtain detection results, and uses the RS232 protocol to 

transmit the signal to the STM32 microcontroller. In this 

paper, the PWM control strategy is used, the STM32 single 

chip microcomputer is utilized as the control core, and the 

output voltage is controlled using the RS232 data analysis. 

The steering gear controls the camera rotation angle based on 

the output voltage. 

It is necessary to calibrate the cameras in order to obtain 

their internal and external parameters, and subsequently 

obtain the conversion relationship between them. The camera 

calibration includes single target calibration and binocular 

stereo calibration, where the former is the basis of binocular 

calibration. In this paper, Zhengyou Zhang calibration 

method is used to calibrate the two cameras. Parts of the 

checkerboard calibration images are shown in Fig. 16, and the 

calibration results are shown in Fig. 17. 
 

 
Fig. 16. Parts of the checkerboard calibration images. 

 

 
Fig. 17. Calibration results. 

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_45

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

B. Simulation static experiments 

Verification of ranging accuracy and detection range  

A total of five obstacles are selected in this experiment, as 
shown in Fig. 18. The obstacles 1, 4 and 5 are known types of 

obstacles, 2 is a generalized obstacle, and 3 is a 

pseudo-obstacle without any height. Three groups of 

experiments are conducted respectively by placing obstacles 

in different positions and distances. Figure 18 shows the first 

group of experiments. 

 

 
Fig. 18. Images of the first group of static experiments. 

 

Figure 18 shows that the field of view of camera l contains 

obstacles 1, 2 and 3, and that of camera r contains obstacles 3, 

4 and 5 in the initial state. At this time, only the 

pseudo-obstacle 3 is in the overlapping area of the fields of 

view of cameras l and r. The system cannot carry out 

binocular distance measurement for the other 3D obstacles. 

After the camera r rotates to the left according to the camera 

rotation algorithm, obstacles 1 and 2 also appear in its field of 

view. Subsequently, the camera l rotates to the right based on 

the camera rotation algorithm, and obstacles 4 and 5 also 

appear in its field of view. Therefore, utilizing the rotation of 

cameras on both sides, the distances to obstacles 1, 2, 3 and 5 

can be measured by the binocular distance, which increases 

the detection range. 

Table 1 shows the results of the three groups of static 

experiments. The serial number 1-1 represents obstacle 1 in 

the first group of experiments, and the actual value of the 

obstacle distance is measured manually. In the three groups of 

experiments, the experimental vehicle is in the same position 

and kept stationary. In the second and third groups of 

experiments, the distances between obstacles 1, 2 and the 

experimental vehicle remain constant in the Z-axis direction, 

and the distances between obstacles 4, 5 and the experimental 

vehicle change in both the X-axis and Z-axis directions.  

Consider the first group as an example. Initially, as the 

overlapping area of the fields of view of cameras l and r only 

contains obstacle 3, the distance of other obstacles cannot be 

obtained by the traditional binocular system and is replaced 

by “/”. However, the active binocular system proposed in this 

paper has the advantage of eliminating false obstacles. 

Therefore, obstacle 3 will not be within the range of the active 

binocular system. In this case, “/” is also used. Table 1 shows 

that the ranging accuracy of the active binocular system 

proposed in this paper has no large error compared with the 

traditional binocular ranging. This is because the relative 

posture of the camera from one viewpoint to another is known, 

which can ensure the ranging accuracy. In addition, the 

proposed method significantly improves the detection range 

owing to the rotation of the cameras, and can detect obstacles 

only existing in the field of view of monocular camera by 

stereo vision. 
 

TABLE Ⅰ. 

RESULTS OF THREE GROUPS OF EXPERIMENTS 

Serial 

number 

Actual 

value 

(cm) 

Traditional 

binocular 

vision (cm) 

Error 

(%) 

Proposed 

method 

(cm) 

Error 

(%) 

1-1 80.98 / / 82.05 1.32 

1-2 68.71 / / 69.14 0.63 

1-3 79.65 80.12 0.59 / / 

1-4 87.18 / / 87.74 0.64 

1-5 93.45 / / 94.64 1.27 

2-1 80.98 / / 82.14 1.41 

2-2 68.71 / / 69.23 0.76 

2-3 79.65 80.12 0.59 / / 

2-4 67.14 / / 67.73 0.88 

2-5 63.65 / / 64.11 0.72 

3-1 80.98 80.76 0.27 81.65 0.83 

3-2 68.71 69.09 0.55 69.11 0.58 

3-3 79.65 80.12 0.59 / / 

3-4 66.53 66.24 0.44 66.96 0.65 

3-5 73.45 / / 74.02 0.78 

 

Analysis of distance-measuring error  

Table 1 shows that on the one hand, the 

distance-measurement error increases with the increase of 

obstacle depth. On the other hand, in the three groups of 

experiments, the distances of obstacles 1 and 2 remain 

unchanged with respect to the experimental vehicle, but the 

experimental error of the second group is significantly higher 

than that of the other two groups. This is because the camera 

rotation angle of the second group is larger than those of the 

other two groups, and it is difficult to ensure that the rotation 

axis of the camera passes through the projection center or 

optical axis of the camera. In other words, the rotation axis of 

the camera deviates from its optical axis, causing errors in the 

baseline T that ultimately leads to ranging errors. In addition, 

in the three groups of experiments, the measured distance 

obtained by the proposed method is larger than the actual 

distance, which is due to the larger baseline T caused by the 

camera's inward rotation. 

C. Simulation dynamic experiments 

The experiments select a section of 100 meters of flat road 

in the laboratory building No. 6 of Shandong University of 

Technology, China. The locations of the obstacles are fixed. 

The total number of known types of obstacles is 100, and the 

total number of generalized obstacles is 10. The experimental 

vehicle moves at a speed of 2 m/s. The research method 

proposed in this paper considers the detection of obstacles by 

the active binocular vision system as the standard, and 

compares the detection results of the four detection methods, 

which are shown in Table 2. A comparison of the detection 

results of the four methods shows that the stability of the  

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_45

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

 
TABLE Ⅱ. 

RESULTS OF THREE GROUPS OF EXPERIMENTS 

Detection method 
Number of known types 

of obstacles 

Number of generalized 

obstacles 
TP TN FP FN 

Traditional binocular vision 

based on YOLO v5s 
100 10 83 4 6 17 

Traditional binocular vision 

based on VIDAR 
100 10 90 8 2 10 

Active binocular vision 

based on YOLO v5s 
100 10 88 3 7 12 

Active binocular vision 

based on VIDAR 
100 10 96 9 1 4 

 

proposed method is higher than that of the other three 

methods. The YOLO v5s lacks training with respect to 

unknown types of obstacles. As a result, it cannot detect  

generalized obstacles and will consequently offer reduced 

safety when used in realistic vehicle situations. The VIDAR 

method does not require training and can detect all 

generalized obstacles.  

However, the optical axis of the camera in the 

aforementioned two methods is fixed in the traditional 

binocular system, which limits the field of view of the camera 

and causes missed detection of obstacles. Therefore, the 

traditional binocular vision detection method based on YOLO 

v5s has the largest number of errors and missed detections. 

The proposed active binocular vision detection method has 

the advantage of VIDAR in detecting generalized obstacles. 

Furthermore, it can enlarge the camera's field of vision and 

reduce the missed detection of obstacles, thus ensuring the 

effectiveness of obstacle detection results on the road. 

In the analysis of results, accuracy (A), precision (P) and 

missing rate (M) are used as evaluation indices for the four 

obstacle detection methods, as shown in Table 3. The results 

in Tables 2 and 3 show that misjudgment or misdetection may 

occur during vehicle movement due to vehicle fluctuation and 

other factors. Compared with YOLO v5s, relying on the 

ability of VIDAR to eliminate the false obstacles on road 

surface, the proposed method in this paper is mainly 

advantageous in terms of detection accuracy. Compared with 

traditional binocular vision, the proposed method mainly 

improves the missing rate of the detection method. Compared 

with the traditional binocular vision detection method based 

on YOLO v5s, the accuracy, precisions of obstacle detection 

method proposed in this paper improve by 16.4%, 5.7%, 

respectively, and the missing rate reduce by 10.9%.  

 
TABLE Ⅲ. 

EVALUATION INDICES OF FOUR DETECTION METHODS 

Detection method A (%) P (%) M (%) 

Traditional binocular vision 

based on YOLO v5s 
79.09 93.26 15.45 

Traditional binocular vision 

based on VIDAR 
90.07 97.83 9.09 

Active binocular vision 

based on YOLO v5s 
82.72 92.63 10.91 

Active binocular vision 

based on VIDAR 
95.45 98.97 4.55 

D. Real vehicle experiments 

In order to verify the reliability and feasibility of practical  

applications of the distance measurement method proposed in 

this paper, a group of outdoor obstacle detection experiments 

are carried out for real vehicles. A pure electric vehicle with a 

laser radar is used as the experimental vehicle. A total of five 

two-lane roads near the east gate of Shandong University of 

Technology are selected for testing. They include: Nanjing 

Road (1.2 km), Shiji Road (1.2 km), Renmin West Road (1.2 

km), Gongqingtuan Road (1.3 km) and Xincun West Road 

(1.3 km). The obstacles on the test roads include pedestrians, 

cars, bicycles, buses and other generalized obstacles. Figure 

19 shows the experimental vehicle and roadmap. 

 

Laser radar CameraIMU Steering engine Steering engine 

 
Fig. 19. Experimental vehicle and roadmap. 
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Fig. 20. Parts of the detection results. 

 

Parts of the detection results are selected and compared 

with the laser radar ranging results, as shown in Fig. 20. 

Experimental results show that the error of the method 

proposed in this paper is less than 5% at a short distance (<20 

m). According to [29-30], this measurement error meets the 

existing requirements of vision-based ranging. Therefore, 

these results show that the proposed active binocular distance 

measurement algorithm based on VIDAR meets the 

requirements of measurement accuracy and can achieve 

accurate distance measurement of obstacles. 

V. CONCLUSIONS 

The main contribution of this paper was the development of 

new obstacle detection method based on VIDAR and active 

binocular vision. In this paper, the VIDAR detection method 

was used to initially detect 3D obstacles, avoiding the 

shortcomings of the machine learning methods that could only 

detect known types of obstacles. In order to accurately obtain 

the driving information of the vehicle in VIDAR, other 

sensors could also be combined with IMU and the choice of 

sensors was relatively flexible. For example, if the 

combination of wheel encoder and IMU was used, the 

accuracy of self-propelled vehicle velocity and moving 

distance estimation would be improved. An obstacle search 

strategy based on active binocular vision was proposed, 

which solved the problem of a large blind area in the 

traditional binocular vision and made it possible to measure 

the distance of the obstacle in the non-matching area. The 

effectiveness of the proposed method was verified by the 

simulation experiment under controllable scenes and outdoor 

real vehicle experiment. Experimental results showed that the 

proposed method could improve the flexibility of binocular 

vision system and significantly increase the detection range. 

Compared with the traditional obstacle detection method 

based on binocular vision, the missing rate of the proposed 

method was reduced by 10.9% and the ranging accuracy 

could also be ensured.  

The method proposed in this paper provided a way to 

improve the integration of artificial intelligence and vehicles. 

This method would help the driver to judge the obstacle 

location more accurately in order to take the next avoidance 

measures, which could considerably improve the vehicle 

driving safety. In the future, accurate location of the camera 

pose and improvement of the ranging accuracy will be 

considered. 
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