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Abstract—In this work, we obtain necessary and sufficient
conditions for the oscillation of all solutions of delay fractional
differential equation of the form

Tα(Tαy(t)) + q(t)yγ(τ(t)) = 0,

where 0 < α ≤ 1, 0 < γ =
odd integer
odd integer . Furthermore, we

supplement the theoretical aspects with numerical simulations
and illustrations.

Index Terms—oscillation, fractional differential equation,
necessary and sufficient condition, delay.

I. INTRODUCTION

ARBITRARY order differential and integration gener-
alizations of integer order derivatives and n−fold in-

tegrals. The history goes back to the derivative of order
α = 1/2 proposed by Leibniz. Fractional calculus has gar-
nered phenomenal interest because of its various applications
in multiple areas of science and engineering ranging from
electric circuits, signal and image processing to viscoelas-
ticity, industrial robotics and numerous other branches of
both physical and biological sciences [1]–[3]. Furthermore,
fractional calculus can also provide an excellent instrument
for the description of memory and hereditary properties of
various materials and processes due to the existence of a
‘memory’ term in the model [4]–[7].

The study of oscillation behavior as a part of the qualitative
theory of the solutions for various including ordinary and
partial differential equations, dynamic equations on time
scales, difference equations is an exciting field of research
with a broad range of applications. However, to the best of
our knowledge, there are few results on the oscillation of
fractional differential equations. We refer to [8]–[17] and the
references therein.

In 2019, Feng et al. [18] studied the oscillation behavior
of the following fractional differential equations

T t0α x(t) +
m∑
i=1

pi(t)x(τi(t)) = 0, t ≥ t0,

T t0α (r(t)(T t0α x(t) + p(t)x(τ(t)))
β
)

+q(t)xβ(σ(t)) = 0, t ≥ t0,
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and

T t0α (r2T
t0
α (r1(T t0α y)

β
))(t) + p(t)(T t0α y(t))

β

+q(t)f(y(g(t))) = 0, t ≥ t0,

where Tα denotes the conformable differential operator of
order α, 0 < α ≤ 1. The authors generalized the oscillatory
criterion of ordinary differential equations to conformable
fractional derivative.

In 2020, Zheng and Feng [19] are concerned with os-
cillation of a class of fractional differential equations with
damping term as follows

Dα
t (r(t)Dα

t x(t)) + p(t)Dα
t x(t) + q(t)f(x(t)) = 0,

t ≥ t0, 0 < α < 1,

where Dα
t (·) denotes the conformable fractional derivative

with respect to the variable t. Based on certain Riccati trans-
formations, inequality and integration average technique, the
authors obtained some sufficient conditions. In [20], [21],
the authors investigated oscillation of the following two
fractional differential equations

Dα
ax(t) + q(t)f(x(t)) = 0

and

(D1+α
0+ y)(t) + p(t)(Dα

0+y)(t) + q(t)f(y(t)) = g(t)

where the fractional derivative is defined in the sense of the
Riemann-Liouville derivative.

In this paper, we study the oscillation criteria of con-
formable fractional differential equation,

Tα(Tαy(t)) + q(t)yγ(τ(t)) = 0. (1)

A solution y(t) is called oscillatory if and only if it has
arbitrarily large zeros on [0,∞). An equation is said to be
oscillatory if all its solutions of this equation are oscillatory.

The paper is organized as follows. In Sect. 2, we introduce
some notation and definitions of conformable fractional
integrals. In Sect.3, we present the main theorems on 2α-
order equations. Finally, we give some examples and simple
numerical simulation to supplement the theoretical analysis.

II. BRIEF ON CONFORMABLE FRACTIONAL CALCULUS

Definition 2.1. [22] Given a function f : [0,∞) → R.
Then the conformable fractional derivative of f of order α
is defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
,

for all t > 0, α ∈ (0, 1). If f is α-differentiable in some
(0, a), a > 0, and lim

t→0+
Tαf(t) exists, then we define

Tαf(0) = lim
t→0+

Tαf(t).
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Definition 2.2. [22] The Conformable fractional integral
operator of order α, α ∈ (0, 1), of a function f is defined as

Iaα(f)(t) = Ia1 (tα−1f) =

∫ t

a

f(x)

x1−α
dx,

where the integral is defined in the sense of the improper
Riemann integral.

Lemma 2.1. [22] Let α ∈ (0, 1] and f , g be α-differentiable
at a point t > 0. Then
(1) Tα(af + bg) = aTα(f) + bTα(g) for all a, b ∈ R.
(2) Tα(tp) = ptp−α for all p ∈ R.
(3) Tα(λ) = 0, for all constant functions f(t) = λ.
(4) Tα(fg) = fTα(g) + gTα(f).
(5) Tα( fg ) =

gTα(f)−fTα(g)
g2 .

(6) If f is differentiable, then Tαf(t) = t1−αf ′(t).

Lemma 2.2. [22] (Rolle’s Theorem for Conformable Frac-
tional Differentiable Functions). Let a > 0 and f : [a, b] →
R be a given function that satisfies
(i). f is continuous on [a, b],
(ii). f is α-differentiable for some α ∈ (0, 1),
(iii). f(a) = f(b).
Then, there exists c ∈ (a, b), such that Tαf(c) = 0.

Lemma 2.3. [22] (Mean Value Theorem for Conformable
Fractional Differentiable Functions). Let a > 0 and f :
[a, b]→ R be a given function that satisfies
(i). f is continuous on [a, b],
(ii). f is α-differentiable for some α ∈ (0, 1),
Then, there exists c ∈ (a, b), such that

Tαf(c) =
f(b)− f(a)
1
αb

α − 1
αa

α
.

Lemma 2.4. [23] Let a > 0 and f : [a, b]→ R be a given
function that satisfies
(i). f is continuous on [a, b],
(ii). f is α-differentiable for some α ∈ (0, 1),
If Tαf(t) = 0 for all t ∈ (a, b), then f is a constant on [a, b].

Lemma 2.5. [23] Let a > 0 and f : [a, b]→ R be a given
function that satisfies
(i). f is continuous on [a, b],
(ii). f is α-differentiable for some α ∈ (0, 1),
Then we have the following:
1) If Tαf(t) > 0 for all t ∈ (a, b), then f is increasing on
[a, b].
2) If Tαf(t) < 0 for all t ∈ (a, b), then f is decreasing on
[a, b].

III. 2α-ORDER CONFORMABLE FRACTIONAL
DIFFERENTIAL EQUATIONS WITH DELAY

In this section, we mainly consider fractional differential
equations of the form

Tα(Tαy(t)) + q(t)yγ(τ(t)) = 0, t ≥ t0 > 0, (2)

where Tα denotes the conformable differential operator of
order α ∈ (0, 1]. q(t) and τ(t) are real-valued and continuous
on [t0,∞). The constant γ is the ratio of odd integers and
satisfies γ > 0. In this paper, y(t) is differentiable on [t0,∞).
We make the following assumptions:
(A1) q(t) ≥ 0 for sufficiently large t, q(t) is not identically

zero in any neighborhood of infinity.
(A2) τ(t) ≤ t, lim

t→∞
τ(t) =∞.

Lemma 3.1. Assume that (A1) and (A2) hold. If y(t) is an
eventually positive solution of (2), then there exists a constant
T > t0 such that

y(t) > 0, Tαy(t) > 0 and Tα(Tαy(t)) ≤ 0, t ≥ T.

Proof. Since y(t) is an eventually positive solution of (2), we
can obtain that there exists a T , T > t0, such that y(t) > 0
and y(τ(t)) > 0 for t ≥ T . From (2), it follows that

Tα(Tαy(t)) = −q(t)yγ(τ(t)) ≤ 0 for t ≥ T.

Therefore, by Lemma 2.5, Tαy(t) is nonincreasing. We claim
that Tαy(t) > 0 for t ≥ T . We argue by contradiction.
Assume that Tαy(t) ≤ 0 for t ≥ T and consider the
following scenarios:
• If Tαy(t) = 0 for t ≥ T we can obtain Tα(Tαy(t)) = 0

for t ≥ T . This is obviously impossible.
• If Tαy(t) < 0 for t ≥ T , then we can find t∗ ≥ T

and c1 > 0 such that Tαy(t) ≤ −c1 for all t ≥ t∗.
Integrating the inequality y′(t) ≤ −c1tα−1, from t∗ to
t(t > t∗), we obtain

y(t) ≤ y(t∗) +
c1
α

(t∗α − tα)→ −∞,

as t → ∞. This contradicts y(t) being a positive
solution.

Therefore we obtain Tαy(t) > 0 for t ≥ T and conclude the
proof.

Lemma 3.2. Let (A2) holds and assume y(t) ∈ C2α[T,∞)
satisfies

y(t) > 0, Tαy(t) > 0 and Tα(Tαy(t)) ≤ 0, t ≥ T.

Then for each k1 ∈ (0, 1) there is a Tk1 ≥ T such that

y(τ(t)) ≥ k1(τ(t))
α

tα
y(t), t ≥ Tk1 .

Proof. It suffices to consider only those t for which τ(t) < t.
Then we have for t > τ(t) ≥ T , y(t) − y(τ(t)) ≤
Tαy(τ(t))( 1

α t
α − 1

α (τ(t))
α

) by Lemma 2.3 and the mono-
tonicity of Tαy(t). Hence,

y(t)

y(τ(t))
≤ 1 +

Tαy(τ(t))

y(τ(t))
(

1

α
tα− 1

α
(τ(t))

α
), t > τ(t) ≥ T.

Moreover, we can obtain by using y(τ(t)) − y(T ) ≥
Tαy(τ(t))( 1

α (τ(t))
α − 1

αT
α) that, for any k1 ∈ (0, 1), there

is a Tk1 ≥ T such that

y(τ(t))

Tαy(τ(t))
≥ k1

1

α
(τ(t))

α
, t ≥ Tk1 .

Hence, from the two inequalities above, we obtain

y(t)

y(τ(t))
≤ tα

k1(τ(t))
α , t ≥ Tk1 .

This completes the proof.

Lemma 3.3. Let y(t) ∈ C2α[T,∞), satisfies

y(t) > 0, Tαy(t) > 0 and Tα(Tαy(t)) ≤ 0, t ≥ T.

Then for each k2 ∈ (0, 1) there is a Tk2 ≥ T such that

y(t) ≥ k2tαTαy(t), t ≥ Tk2 .
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Proof. Suppose t > T . Then by Lemma 2.3 we have

y(t)− y(T ) = Tαy(c)(
1

α
tα − 1

α
Tα), for some c ∈ (T, t).

From this we obtain

y(t) ≥ Tαy(t)(
1

α
tα − 1

α
Tα).

Now for any k2 ∈ (0, 1), there is a Tk2 = T

(1−kα)
1
α
> T

such that t ≥ Tk2 ,

y(t) ≥ k2tαTαy(t).

The proof is complete.

Theorem 3.1. Let 0 < γ < 1. Equation (2) is oscillatory if
and only if∫ +∞

T

q(t)ταγ(t)

t1−α
dt = +∞, for all T > t0. (3)

Proof. We first show that condition (3) is sufficient. Assume
that there exists a solution y(t) to equation (2) which is not
zero for large t. Since−y(t) is also a solution, we can assume
that y(t) > 0 for large t. By Lemma 3.1, there exists a
T > t0 such that y(t) > 0, Tαy(t) > 0 and Tα(Tαy(t)) ≤ 0
for t ≥ T , and meanwhile, we assume that q(t) ≥ 0 for
t ≥ T . Multiply both sides of equation (2) by (Tαy(t))

−γ

and use Lemma 3.2 and Lemma 3.3, we obtain

Tα(Tαy(t))

(Tαy(t))
γ + (k1k2)

γ
q(t)ταγ(t) ≤ 0, t ≥ t1 ≥ T. (4)

Integrating both sides of inequality (4), we see that

It1α (
Tα(Tαy(x))

(Tαy(x))
γ ) + (k1k2)

γ
It1α (q(x)ταγ(x)) ≤ 0. (5)

From (5) it follows that

1

1− γ
[(Tαy(t))

1−γ − (Tαy(t1))
1−γ

]+

(k1k2)
γ
∫ t

t1

q(x)ταγ(x)

x1−α
dx ≤ 0.

(6)

Consequently the left hand side term of (6) is bounded
by terms which are either constants or positive. But since
condition (3) holds we eventually have a contradiction and
hence equation (2) is oscillatory.

In order to prove necessity we only need to construct a
non-oscillatory solution on some half-line [t1,∞), t1 > t0.
Suppose that

∫ +∞ q(t)ταγ(t)
t1−α dt < +∞. Choose t1 so large

that ∫ +∞

t1

q(t)ταγ(t)

t1−α
dt <

αγ

2
. (7)

Consider the solution y(t) which is defined by the initial data

Tαy(t1) = 1, y(t) = 0, t ≤ t1. (8)

We claim that this solution dose not vanish on [t1,∞) and
argue by contradiction. If, on the contrary, y(t2) = 0 for
some t2 > t1 (assume that there is no other zero point
between t1 and t2) then, by Lemma 2.2, there must be some
point c ∈ (t1, t2) for which Tαy(c) = 0. However, this will
be in contradiction to the following fact: the function Tαy(t)
can never vanish on [t1, t2). According to the initial data and

(A2) we obtain Tα(Tαy(t)) ≤ 0 on (t1, t2), by integrating
this term twice we have

y(t) ≤ 1

α
(tα − t1α) ≤ 1

α
tα, t1 ≤ t ≤ t2. (9)

From equation (2),

Tαy(t) = 1−
∫ t

t1

q(x)yγ(τ(x))

x1−α
dx

≥ 1− 1

αγ

∫ ∞
t1

q(x)ταγ(x)

x1−α
dx ≥ 1

2
.

(10)

Hence Tαy(t) never vanishes and the proof of this Theorem
is complete.

Theorem 3.2. Let γ = 1. Equation (2) is oscillatory if

lim
t→+∞

sup tα
∫ +∞

t

q(s)τα(s)

s
ds > 1. (11)

Proof. Suppose that (11) does not hold, then there exists
a non-oscillatory solution y(t) of (2). Without loss of gen-
erality we may assume that y(t) is eventually positive. By
Lemma 3.1, there exists a constant T > 0 such that y(t) > 0,
Tαy(t) > 0 and Tα(Tαy(t)) ≤ 0 for t ≥ T . Multiply both
terms of equation (2) by tα−1 and integrate from t to +∞,
t ≥ T , we have

Tαy(t) ≥
∫ +∞

t

q(s)y(τ(s))

s1−α
ds. (12)

According to Lemma 3.3 there exists a number t2 ≥ T and
k2 ∈ (0, 1) such that y(t) ≥ k2t

αTαy(t) for t ≥ t2. Then
the inequality (12) yields

y(t) ≥ k2tα
∫ +∞

t

q(s)y(τ(s))

s1−α
ds, t ≥ t2. (13)

Using Lemma 3.2 and (13), we obtain

y(t) ≥ k2tα
∫ +∞

t

q(s)τα(s)y(s)

s
ds, t ≥ t3 ≥ t2, (14)

where k = min{k1, k2}. Since the function y(t) is positive
and increasing, it follows from the above inequality (14) that

1 ≥ k2tα
∫ +∞

t

q(s)τα(s)

s
ds. (15)

From (15) it follows that

lim
t→+∞

sup tα
∫ +∞

t

q(s)τα(s)

s
ds < +∞. (16)

If we suppose

lim
t→+∞

sup tα
∫ +∞

t

q(s)τα(s)

s
ds = l (17)

and suppose that (11) holds, then there exists a sequence of
points {bp} such that lim

p→+∞
bp = +∞ and

lim
p→+∞

sup bαp

∫ +∞

bp

q(s)τα(s)

s
ds = l > 1. (18)

So for ε = l−1
2 > 0 there exists a number P such that for

every p > P we have

bαp

∫ +∞

bp

q(s)τα(s)

s
ds >

l + 1

2
. (19)

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_47

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 



Now if we choose p > P so that bp ≥ t3 and moreover,
numbers k1, k2 ∈ (0, 1) such that

√
2
l+1 < k < 1, then (19)

implies

k2bαp

∫ +∞

bp

q(s)τα(s)

s
ds >

l + 1

2
k2

>
l + 1

2
· 2

l + 1
= 1,

(20)

which contradicts (15). This completes the proof.

Theorem 3.3. Let γ > 1, assume τ(t) = t − θ(t), 0 <
θ(t) ≤ M (M is a constant) and θ(t) is continuous function
on [t0,∞). Equation (2) is oscillatory if and only if∫ +∞

T

q(s)

s1−2α
ds = +∞, for all T > t0. (21)

Proof. To prove sufficiency, assume that y(t) is a nonoscil-
latory solution of (2). Without loss of generality we may
assume that y(t) is eventually positive. By Lemma 3.1, there
exists a constants T > M such that y(t) > 0, Tαy(t) > 0
and Tα(Tαy(t)) ≤ 0 for t ≥ T . We multiply both terms of
(2) by tαy−γ(τ(t)) and integrate,

Icα

[
tα
Tα[Tαy(t)]

yγ(τ(t))

]
+ Icα(q(t)tα) = 0, (22)

where c is fixed and c� T . Since y(t) is increasing we see
that y(t−M) < y(τ(t)) and hence

Icα

[
tα
Tα[Tαy(t)]

yγ(t−M)

]
+ Icα(q(t)tα) ≤ 0. (23)

We can then obtain from integration by parts,

tα
Tαy(t)

yγ(t−M)

∣∣∣∣t
c

− Icα(Tαy(t)Tα(
tα

yγ(t−M)
))

+Icα(q(t)tα) ≤ 0

tα
Tαy(t)

yγ(t−M)

∣∣∣∣t
c

− Icα(αy−γ(t−M)Tαy(t))

+Icα(γy−γ−1(t−M)y′(t−M)tTαy(t))

+Icα(q(t)tα) ≤ 0. (24)

From (24),

Icα(αy−γ(t−M)Tαy(t))

=

∫ t

c

sα−1αy−γ(s−M)(Tαy)(s)ds

≤
∫ t

c

sα−1αy−γ(s−M)(Tαy)(s−M)ds

≤
∫ t

c

αy−γ(s−M)y′(s−M)ds

=
α

1− γ
y−γ+1(s−M)

∣∣∣∣t
c

,

then we obtain

tα
Tαy(t)

yγ(t−M)

∣∣∣∣t
c

+
α

γ − 1
y−γ+1(s−M)

∣∣∣∣t
c

+

Icα(γy−γ−1(t−M)y′(t−M)tTαy(t))

+Icα(q(t)tα) ≤ 0.

(25)

Consequently the left side of (25) are either constant or
positive. But since condition (21) holds we eventually have
a contradiction as t→ +∞ and equation (2) is oscillatory.

Next, we show that (21) is necessary. Assume that (21)
does not hold; so there exists T > t0 such that∫ +∞

T

q(s)

s1−2α
ds <

α

2γ
. (26)

Define

S =
{
y ∈ C([t0,∞), R) : 1− 1

2γ ≤ y(t) ≤ 1, t ≥ t0
}
,

‖y(t)‖ = sup{|y(t)| : t ≥ t0}.
Let Φ : S → S be such that

(Φy)(t) =


(Φy)(T ), t ∈ [t0, T ],

1− 1

α

∫ +∞

t

(sα − tα)
q(s)yγ(τ(s))

s1−α
ds, t ≥ T.

For every y ∈ S, (Φy)(t) ≤ 1 and (Φy)(t) ≥ 1− 1
2γ implies

that (Φy)(t) ∈ S. Now for y1, y2 ∈ S, we have

|(Φy1)− (Φy2)|

=

∣∣∣∣∫ +∞

t

1

α
(sα − tα)

q(s)

s1−α
[y1

γ(τ(s))− y2γ(τ(s))]ds

∣∣∣∣
≤
∫ +∞

t

1

α
(sα − tα)

q(s)

s1−α
ds · ‖y1(t)− y2(t)‖ γ

≤
∫ +∞

t

1

α

q(s)

s1−2α
ds · ‖y1(t)− y2(t)‖ γ

≤ 1

2
‖y1 − y2‖ .

Therefore, |(Φy1)− (Φy2)| ≤ 1
2 ‖y1 − y2‖ implies that Φ is

a contraction. It follows, by Banach’s contraction mapping
principle, that Φ has a unique fixed point y(t) ∈ S which
is a nonoscillatory solution. Hence, (21) is the necessary
condition for oscillation. This completes the proof of the
theorem 3.3.

IV. EXAMPLE

Example 4.1. Consider the following fractional differential
equation

T 7
9
[T 7

9
y(t)] + (1 + sin t)y

1
3 (

99t

100
) = 0 (27)

and
T 1

3
[T 1

3
y(t)] +

1

t
y

1
3 (t) = 0. (28)

By Theorem 3.1, for ∀T > t0 we have∫ +∞

T

(1 + sin(t))
(
99t
100

) 7
27

t
2
9

dt

=

(
99

100

) 7
27
∫ +∞

T

(1 + sin(t))t
1
27 dt = +∞,∫ +∞

T

t−1t
1
9

t
2
3

dt =
9

5
T−

5
9 < +∞,

then equation (27) is oscillatory and (28) is not. Taking
the initial condition ϕ(t) = t for t ≤ 1 and t0 = 1. The
oscillatory behavior of (27) and (28) is illustrated in Fig.1
and Fig.2.
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Fig. 1. The Oscillatory Behavior of Solutions for Equation (27).
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Fig. 2. The Oscillatory Behavior of Solutions for Equation (28).

Example 4.2. Consider the following fractional differential
equation

T 1
3
[T 1

3
y(t)] + t

1
3 y3(t− 0.2) = 0 (29)

and
T 1

3
[T 1

3
y(t)] + t−2y3(t− 0.2) = 0. (30)

By Theorem 3.3, ∀T > t0, we have∫ +∞

T

s
1
3

s
1
3

ds = +∞,∫ +∞

T

s−2

s
1
3

ds =
3

4
T−

4
3 < +∞,

then equation (29) is oscillatory while (30) is not. Taking
the initial condition ϕ(t) = −1 for t ≤ 5 and t0 = 5. The
oscillatory behavior of (29) and (30) is illustrated in Fig.3
and Fig.4.

0 100 200 300 400 500 600 700 800 900 1000

t

-1.5

-1

-0.5

0

0.5

1

y

Fig. 3. The Oscillatory Behavior of Solutions of Equation (29).
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Fig. 4. The Oscillatory Behavior of Solutions of Equation (30).

Example 4.3. Consider the following fractional differential
equation

T1[T1y(t)] +
3

t2
y(t) = 0. (31)

By Theorem 3.2, we have

lim
t→+∞

sup t

∫ +∞

t

3

s2
ds = 3 > 1,

then equation (31) is oscillatory. Taking the initial condition
y(1) = 0, y′(1) = 1 and t0 = 1. The equation can be solved
by Matlab as y = 2√

11

√
t sin(

√
11 ln t
2 ), which satisfies the

conditions of Theorem 3.2 and is therefore oscillatory. The
oscillatory behavior of (31) is illustrated in Fig.5.
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Fig. 5. The Oscillatory Behavior of Solutions of Equation (31).
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