
 

 

Abstract—For graph G (p, q), if there is a mapping 

f:E(G) → {1,2, ,k} , make any adjacent same-degree vertex 

u and v, where S(u)={f(uv) | uv E(G)} , satisfies S(u)=S(v) , 

then it is called Adjacent Vertex Reducible Edge Coloring. A 

new  algorithm based on stepwise optimization is designed to 

color graphs within 15 vertices. We found the coloring 

regulation of four types of joint graphs, and we proved the 

related theorems. 
Index Terms—adjacent vertex reducible edge coloring; 

algorithm; stepwise optimization; joint graphs 

 

I. INTRODUCTION 

he four-color theorem is the source of the coloring 

problem, which has historically been a major 

component of graph theory[1-2] . More scholars are 

starting to examine vertex coloring and edge coloring as a 

result of the four-color conjecture problem. Thus, other 

conditional coloring were developed, including Total 

Coloring[3]. In 2006, Professor Zhong-Fu Zhang and 

coworkers proposed D(β)-vertex distinguishing edge 

coloring, which is distinguishable edge coloring with the 

distance between any two vertices no more than β[4]. With a 

distance of 1, the adjacent strong edge coloring [5-6] can be 

considered the vertex distinguishing edge coloring. In 2009, 

Professor Zhong-Fu Zhang proposed a series of new 

coloring concepts[7], such as adjacent vertex reducible total 

coloring, vertex reducible total coloring, vertex reducible 

edge coloring and adjacent vertex reducible edge coloring [8] 

- [11]. In real life, many objects are classified according to 

certain rules, which has a significant practical impact, such 

as transport networks[12] - [15]. The network can be abstracted 

as a random graph, then the nodes can be classified 

according to their importance in real life, and a reasonable 

scheduling plan can be designed to effectively alleviate 

congestion.  

As a result of this study, we can solve the problem using 

the reducible coloring of graphs. Thus, Xiao-Hui Li[17]-[20] 

investigated the reducibility algorithm for random graphs in 

2015 by coloring the edges (or vertices and edges) with k 

different colors, ensuring that all vertex with the same 
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degree in the graph have the same set of colors, and 

ensuring that k is the maximum value satisfying the 

coloring condition, and a reasonable scheduling scheme can 

be designed based on the value of k. According to The 

Three Degrees of Influence Rule, the connection is 

strongest within three degrees. Therefore, we will focus on 

the case of a distance of one-degree distance. 

With reference to the above-mentioned coloring concept, 

an algorithms for adjacent vertex reducible edge coloring is 

proposed in literature, and its advantages are verified by the 

experimental results. This paper summarizes and proves 

some theorems about the coloring regulation of several 

types of joint graphs. 

II. PRELIMINARY KNOWLEDGE 

This paper is primarily concerned with the Adjacent 

Vertex Reducible Edge Coloring of joint graphs. Graphs G 

(V, E) are simple undirected-joint graphs with p vertices 

and q edges, where d(x) represents the degree of x. 

Definition 1: Suppose that G(V,E)  is a simple graph. 

If there is a positive integer k(1 k E )   and a mapping 

f : E(G) {1,2,....,k}→ . For any two adjacent vertices are 

u, v V(G) , when d(u) d(v)= , there are S(u) S(v)= , 

where uw E(G)S(u) {f (uw)}=  , and d(u)  represents the 

degree of u . Then f  is called the Adjacent Vertex 

Reducible Edge coloring, referred to as AVREC and 

avrec (G) max{k | k AVREC of  G} = −  is called Adjacent 

Vertex Reducible Edge chromatic number. 

Definition 2: Suppose that the vertex set of the star graph 

mS  is  0 1 mw , w ,..., w , and the vertex set of m nC  is 

 11 12 1n 21 22 2n m1 m2 mnu ,u ,..., u ;u ,u ,..., u ;u ,u ,..., u , nC

mS  

expresses that m  nodes in the star graph 
mS  except the 

center node are connected to a cycle graph. The sample 

diagram is shown in Fig. 1. 
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Definition 3: nC
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the circle graph 
tC . The sample diagram is shown in Fig. 

2. 
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Definition 4: Connect the endpoints of the road graph to 

any vertex of the circle graph, and set the connection vertex 

as 1 1u v , then reconnect a fan graph (non-central node) at 

the connection vertex, this type of graph is called 

( ) ( )mn, t k F a−  , ( ) ( )mn, t k F b−  , ( ) ( )mn, t k F c−  . 

Some samples are shown in Fig. 3. 
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(a) The maximum-degree vertex of ( )n, t k−  connects to the 

minimum-degree vertex of 
mF , which is expressed as ( ) ( )mn, t k F a−  . 
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(b) The maximum-degree vertex of ( )n, t k− connects to the 3-degree 

vertex adjacent to the minimum-degree vertex of 
mF , which is expressed 

as ( ) ( )mn, t k F b−  . 
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(c) The maximum-degree vertex of ( )n, t k−

 
connects to the 3-degree 

vertex whose distance from the minimum-degree vertex is greater than or 

equal to 2 of 
mF , which is expressed as ( ) ( )mn, t k F c−   

Fig. 3 
m

(n, t) k F (c)− 
   

 

Definition 5: Connect the central node of the star graph 

mS  to the central node of the fan graph 
nF , which is 

denoted as 0 0/w u . Then connect one end of tP
 

to any 

vertex of 
nF  (except the central node), thus this type of 

the joint graph is denoted as ( )m n tS F P a  , 

( )m n tS F P b  , ( )m n tS F P c  . Some samples are 

shown in Fig. 4. 
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(a) The minimum-degree vertex of 
m nS F

 
is connected to the 1-degree 

vertex of 
tP , which is expressed as 

m n tS F P (a)   
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(b) The 3- degree vertex adjacent to minimum-degree vertex of 
m nS F  

connects the 1-degree vertex of 
tP , which is expressed as 

( )m n tS F P b  . 
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(c) The 3-degree vertex with a distance greater than or equal to 2 from the 

minimum-degree vertex of the 
m nS F

 
connects the 1-degree vertex of 

tP , which is expressed as ( )m n tS F P c  . 

Fig. 4 ( )m n tS F P c 
  

 

III. AVREC ALGORITHM 

A. Basic principle  

The AVREC algorithm is based on the definition of 

Vertex Reducible Edge Coloring. It uses the adjustment 

function to break the balance in turn, and then establishes 

iterations through the balance function, gradually tending to 

the optimal solution. These graphs can be colored this 

manner. The main procedure is as follows: 

(1) Preprocessing function: input the adjacency matrix of 

the graph G(p,q) for preprocessing. Calculate the number 

of edges, the degree sequence, the maximum degree in the 

graph G(p,q) , and divide the classification set by adjacent 

vertices. 

(2) Prepare three preparatory functions before coloring: 
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balance function, adjustment function, continuous function, 

and set an intermediate matrix: Adjust. 

(3) Start coloring from the first non-zero edge chromatic 

number of the upper triangle of the matrix. When the 

coloring meets the adjustment function or does not meet the 

continuous function, the previous chromatic number needs 

to be restored to the latest state, and coloring must begin 

from the next edge. Use the intermediate matrix Adjust to 

record this matrix when the adjacent vertices of the same 

degree meet the balance function. 

(4) Output the middle balance matrix Adjust. When all 

the edges in the matrix cannot increase the chromatic 

number. And this is what we need. 

B.  Pseudocode 

Input: The adjacency matrix of the graph G(p,q)  

output: The adjacency matrix that satisfies the 

adjacent  

vertex reducible edge coloring  

begin 

solve the distance matrix M1  of the graph G according 

to M, and initialize a RecordMatrix 

while (the edges in the graph G are not all colored) 

            for i 0 to n  

            ei + +  

if ( ei++  does not satisfy the condition of 

AVREC) 

ei--  

end if  

if (M1) satisfies the balance function isBalance) 

                  RecordMatrix M1
 

end if
 

if (M1  satisfies the balance function isBalance 

and meets the maximum chromatic number of  

coloring) 

output balance matrix RecordMatrix 

end for  

end while  

output the adjacency matrix RecordMatrix that finally 

satisfies the adjacent vertex reducible edge coloring 

end  

C. The results of the Adjacent Vertex Reducible Edge 

Coloring algorithm 

We analyzes the algorithm results from the chromatic 

number, edge density, and average degree[21]. Fig. 5 shows 

the curve about the maximum chromatic number and total 

number of graphs. As can be seen from Fig. 5, due to the 

influence of edges, increase first and then decrease 

phenomenon occurs. Fig. 6 shows the edge density with the 

number of edges from 7 vertices to 10 vertices and the 

maximum chromatic number. Fig. 7 shows the average 

degree with the number of edges from 7 vertices to 10 

vertices and the proportion of AVREC graphs that can be 

colored to the maximum chromatic number to the total 

number of graphs. It can be seen from Fig. 7, the proportion 

of AVREC graphs always fixes in a range. 
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Fig. 5 Line chart of chromatic number 
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Fig. 6 Bar chart of edge density 
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IV. EXPERIMENTAL RESULTS  

A. Data statistics 

 

The experimental results are listed in Table Ⅰ, Table Ⅱ, 

Table Ⅲ

TABLE Ⅰ. COLORING SITUATION OF GRAPHS FROM 3 VERTICES TO 6 VERTICES 

(p, q) Total ∆ k (p, q) Total ∆ k 

(3,2) 1 2 2 (5,10) 1 4 2 

(3,3) 1 2 1 (6,5) 6 5 3 

(4,3) 2 3 1 (6,6) 13 5 5 

(4,4) 2 3 3 (6,7) 19 5 5 

(4,5) 1 3 3 (6,8) 22 5 5 

(4,6) 1 3 3 (6,9) 20 5 6 

(5,4) 3 4 3 (6,10) 14 5 5 

(5,5) 5 4 3 (6,11) 9 5 5 

(5,6) 5 4 3 (6,12) 5 5 6 

(5,7) 4 4 4 (6,13) 2 5 4 

(5,8) 2 4 4 (6,14) 1 5 3 

(5,9) 1 4 3 (6,15) 1 5 3 

(∆=Maximum degree) 

 

TABLE Ⅱ. COLORING SITUATION OF DOUBLE CIRCLE GRAPH WITHIN 10 VERTICES 

Double 

circle graph 

Total Coloring situation of double circle graph/k 

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

(4,5) 1 —— —— 1      

(5,6) 5 —— 3 1 1     

(6,7) 19 —— 7 8 3 1    

(7,8) 67 2 24 25 14 2    

(8,9) 236 3 88 79 52 10 1 3  

(9,10) 797 11 312 278 122 56 11 5 2 

(10,11) 2687 52 974 961 423 177 65 18 8 

 
TABLE Ⅲ. COLORING SITUATION OF SINGLE CIRCLE GRAPH WITHIN 10 VERTICES 

Single 

Circle 
graph 

Total Coloring situation of single circle graph/k 

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 

(3,3) 1 1          

(4,4) 2 —— 1 1        

(5,5) 5 1 1 3        

(6,6) 13 —— 5 7 —— 1      

(7,7) 33 1 16 10 4 2      

(8,8) 89 1 35 30 18 4 1     

(9,9) 240 3 105 67 44 17 4     

(10,10) 657 14 257 207 109 41 21 8    

B. Give example of some graphs 

IAENG International Journal of Applied Mathematics, 53:1, IJAM_53_1_49

Volume 53, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

3

6

11

7
98

11

11

1

10

5
11

5
111

4
2

  
G (9,17) 

6

8

5

7

6
2

8
1

5
25 1

3

9

2

8

7

6

1

2
4

3

42

 
G (10,24) 

 

2

5

3 4 3
1

6 33

4 1
5

2
3

9 2

3

6

1

10 7
4

8
1

2

 
G (10,25) 

Fig. 8 The examples of graphs 

C. Comparison  

1. Comparison of two AVREC algorithms 

We analyze and compare 12205208 result sets within 10 

vertices using two AVREC algorithms. The AVREC 

algorithm has two edge constraints based on the objective 

functions: the edge constraint function and the color set 

constraint function. As a result, the edge constraint function 

Ye and the color set constraint function Yc jointly determine 

the final objective function Y, where Y=Ye+Yc. However, 

as the number of edges and vertices increases, the 

calculation of the objective function becomes increasingly 

difficult. Thus, we have improved the algorithm and 

designed a step-by-step optimization algorithm, as well as a 

balance operator and an adjustment operator, which ensured 

that each step was optimal. By doing so, we can greatly 

increase our efficiency. 

In this study, we compare and analyze the coloring results 

from the performance and efficiency of the algorithms. 

(1) From the performance of the algorithms: we mainly 

analyze the accuracy of the algorithm (referring to the 

proportion of the result set that is closest to the theoretical 

chromatic value in the atlas). It can be seen from Fig. 9, the 

accuracy of AVREC based on stepwise optimization is 

higher.The accuracy of two AVREC algorithms as can be 

seen in Fig. 9. 

(2) From the efficiency of the algorithm: we mainly 

analyze the time complexity 

a. AVREC algorithm based on objective function: For a 

complete graph with n  vertices, the number of exchanges 

is n (n 1) (n 2) −  − , and the worst case in the mutation 

process is to mutate n  times, so the total number of 

mutations is n n  at most. The time complexity is 
3T [n (n 1) (n 2) n n] O(n )=  −  − +  = . 

b. AVREC algorithms based on stepwise optimization: 

Since the maximum number of mutations of an element is n , 

and the maximum number of mutations is max n  times. 

The time complexity is 
2T [n (max n)] O(n )=   = . 

2. The comparison of different algorithms for the same 

joint graph 

The same joint graph is colored using different algorithms, 

and the results are also different. Nevertheless, from a 

practical point of view, we must also consider the carrying 

capacity of the current situation, and the k which is colored 

should not be excessive.The experimental data information 

is listed in Table Ⅳ. 
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Fig. 9 The accuracy of algorithm 

 
TABLE Ⅳ. A COMPARISON OF THE MAXIMUM CHROMATIC NUMBER OF 

DIFFERENT ALGORITHMS IN SEVERAL TYPES OF JOINT GRAPHS 
The type of graph Maximum chromatic number of different 

algorithms 

AVREC AVSR 

nC

mS  3m  3m  

nC

m tS C  3m+2  3m+2  

( ) mn, t k F−   13  2m 3+  

m n tS F P   11 m+  2n m+  

 

D. Conclusions 

Theorem 1: For joint graphs nC

m )S m( 4,n 3  , there is 

( )nC

avrec mS 3m,m 4,n 3 =    

Proof: Suppose the vertex set of 
mS  is  0 1 mw , w ,..., w , 

and the vertex set of m  
nC  is 

11 12 1n 21 22 2n{u ,u ,...,u ;u ,u ,....,u ; m1 m2 mnu ,u ,...., u } , where 

m h1w u ,i h 1,2,....,m= = = . 

The joint graph nC

mS  satisfies f  coloring rule: 

( )0 if w w i,i 1,2,...,m= =  

( )
( )

( )
h1 hn

m 2h 1,n 1 mod 2
f u u  h 1,2,...,m

m 2h 2,n 0 mod 2

+ + 
= =

+ + 

 

( )
( )

( )
hi hi 1

m 2h 1,i 1 mod 2
f u u h 1,2,...,m;

m 2h,i 0 mod 2
+

+ − 
= =

+ 

 

i 1,2,...,n 1= −  

In the joint graph nC

mS , the distance between all 3-degree 

vertices is greater than 1, and the distance between all 

2-degree vertices is 1. And because adjacent vertices in the 

same degree must have the same color sets, where chromatic 

number is the maximum, the color sets of the 3-degree 

vertices are different. According to the definition of AVREC, 
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color sets of all 2-degree must be the same, so 

( )nC

avrec mS 3m = . Fig. 10 shows the result of nC

mS . 
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Theorem 2: For joint graphs nC

m t )S C n 3 2( , t 3,m     

there is 

( )nC

avrec m tS C 3m 2,n 3, t 3,m 3  = +     

Proof: Suppose the vertex set of 
mS  is  0 1, ,..., mw w w , 

and the vertex set of tC  is 
0 1 t}u ,u , ,u{  , and the vertex 

set of m  nC  is 

 11 12 1n 21 22 2n m1 m2 mnu ,u ,..., u ;u ,u ,..., u ;u ,u ,..., u , where 

i h1 0 1w u , w u ,i h 1,2,....,m= = = = . 

The joint graph nC

m tS C
 
satisfies f  coloring rule: 

( )0 if w w i,i 1,2,...,m= =  

( )
( )

( )
1 t

m 1, t 1 mod 2
f u u

m 2, t 0 mod 2

+ 
= 

+ 

 

( )
( )

( )
i i 1

m 1,i 1 mod 2
f u u

m 2,i 0 mod 2
+

+ 
= 

+ 

 

( )
( )

( )
h1 hn

m 2h 1,n 1 mod 2
f u u

m 2h 2,n 0 mod 2

+ + 
= 

+ + 

 

( )
( )

( )
hi hi 1

m 2h 1,i 1 mod 2
f u u h 1,2,...,m

m 2h 2,i 0 mod 2

i 1,2,...., n 1

+

+ + 
= =

+ + 

= −  

It is known that the joint graph nC

m tS C  has a 

maximum-degree vertex, that the distance between m  

3-degree vertices is 2, and that the distance between all 

2-degree vertices is 1 in tC  and nC . On the one hand, 

adjacent vertices of the same degree should have the same 

color sets, On the other hand, the chromatic number to be 

colored should be maximized, so the color sets of m 

3-degree vertices must be different. According to the 

definition of AVREC, the color sets of all the 2-degree 

vertices must be same; such as ( )3 4f u u 3m 3= + , at the 

moment, at least two 2-degree vertices 3u , 4u  and t 2−  

2-degree vertices have different color sets, and the 

chromatic numbers is discontinuous, which contradicts the 

hypothesis, so ( )nC

avrec m tS C 3m 2  = + .Fig. 11 shows the 

result of nC

m tS C  . 
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Theorem 3: For joint graphs 

( ) mn, t k F ( )n 3, t 3,m 6  −  , there are 

( ) ( )( )avrec mn, t k F a 6,9,n 3 t 3,m   − =   

( ) ( )( ), 3, 3,11, 6 −   =avrec mn t k F b n t m  

( ) ( )( )avrec mn, t k F c 6,13 3,m,n 3 t   − =   

Proof: Suppose the vertex set of ( )n, t k−  is 

( ) ( )n t 1 2 n 1 2 t{ }V V C  V P  u ,u , , u , v , v , , v= =   , and the 

vertex set of 
mF

 
is 

0 1 m{ }V w , w , , w=  . 

(1) Proof of class (a) graph  

The joint graph ( ) ( )mn, t k F a− 
 

satisfies f  coloring 

rule: 

( )0 1f w w 5= , ( )0 mf w w 9=  

( )

( )

( )

( )

0 i

6,i 0 mod3

f w w 8,i 1 mod3 i 2,3,...,m 1

7,i 2 mod3




=  = −




 

( )

( )

( )

( )

i i 1

6,i 1 mod3

f w w 8,i 2 mod3 i 2,3,...,m 1

7,i 0 mod3

+




=  = −




 

( )
( )

( )
i i 1

1,i 1 mod 2
f v v i 1,2,..., t 1

3,i 2 mod 2
+


= = −



 

( )
( )

( )
1 n

2,n 0 mod 2
f u u

4,n 1 mod 2


= 



 

( )
( )

( )
i i 1

4,i 1 mod 2
f u u i 1,2,..., n 2

2,i 0 mod 2
+


= = −



 

The joint graph ( ) mn, t k F (a)−   has one maximum 

degree vertex, m 2−  3-degree vertices, n t 2+ −  

2-degree vertices and two 1-degree vertices. The color set of 

any adjacent 3-degree vertex in mF  must be the same, and 
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the color set of any adjacent 2-degree vertex in 
nC , 

tP
 

must be the same according to the definition of AVREC. 

This kind of graph can be colored up to 9 different colors 

in accordance with the fundamental coloring rule. Assuming 

that any edge chromatic number is 12, there will be different 

color set of adjacent vertices in the same degree; such 

as ( )0 2f w w 10= , there is at least one 3-degree vertex 2w  

and m 3−  3-degree vertices color sets differ, and does not 

satisfy the coloring rule of 8, 6, 7, and the chromatic number 

is discontinuous, which contradicts the assumption, 

therefore ( ) ( )( )avrec mn, t k F a 9 −  = . Fig. 12 shows the 

result of ( ) mn, t k F (a)−  . 

(2) Proof of class (b) graph 

The joint graph ( ) mn, t k F (b)− 
 

satisfies f  coloring 

rule: 

( ) ( ) ( )0 1 0 2 1 2 0 mf w w 5,f w w 7,f w w 6,f (w w ) 11= = = =  

( )
( )

( )
i i 1

1,i 1 mod 2
f v v i 1,2,..., t 1

3,i 0 mod 2
+


= = −



 

( )
( )

( )
1 n

2,n 0 mod 2
f u u

4,n 1 mod 2


= 



 

( )
( )

( )
i i 1

2,i 1 mod 2
f u u i 1,2,...,m 1

4,i 0 mod 2
+


= = −



 

( )

( )

( )

( )

0 i

9,i 0 mod3

f w w 8,i 1 mod3 i 1,2,...,m 1

10,i 2 mod3




=  = −




 

( )

( )

( )

( )

i i 1

8,i 2 mod3

f w w 9,i 0 mod3 i 2,3,...,m 1

10,i 1 mod3

+




=  = −




 

The joint graph ( ) ( )mn, t k F b−   has one maximum 

degree vertex, 3m −  3-degree vertices, n t 1+ −  2-degree 

vertices and two 1-degree vertices. The color set of any 

adjacent 3-degree vertex in mF  must be the same, and also 

the color set of any adjacent 2-degree vertex in nC , tP  

must be the same according to the definition of AVREC. 

This kind of graph can be colored up to 11 different 

colors in accordance with the fundamental coloring rule. 

Assuming that any edge chromatic number is 12, there will 

be different color set of adjacent vertices in the same degree; 

for example ( )2 3f u u 12= , there are at least two 2-degree 

vertices 2u , 3u
 

and n 3−  2-degree vertices color sets 

differ, which contradicts the assumption. If ( )0 4f w w 12= , 

there is at least one 3-degree vertex 2w
 
and m 4−  

3-degree vertices color sets differ, and 

( ) ( ) ( )0 3 0 4 0 m t, ,f w w f w w ., w. w. f −  does not satisfy the 

coloring regulation of 9, 8, 10, and the chromatic number is 

discontinuous, therefore ( ) ( )( )avrec mn, t k F b 11 −  = .Fig. 

13 shows the result of ( ) mn, t k F (b)−  . 

(3) Proof of class (c) graph 

The joint graph ( ) mn, t k F (c)− 
 

satisfies f
 

coloring 

rule: 

( )0 1 0 mf w w 5,f (w w ) 13= =  

( )0 i 1 tf w w 9(v / w ,i t, 2 t n 1)= =   −  

( )
( )

( )
1 n

2,n 1 mod 2
f u u

4,n 0 mod 2


= 



 

( )
( )

( )
i i 1

2,i 1 mod 2
f u u i 1,2,..., n 1

4,i 0 mod 2
+


= = −



 

( )
( )

( )
i i 1

1,i 1 mod 2
f v v i 1,2,..., t 1

3,i 0 mod 2
+


= = −



 

( )

( )

( )

( )

0 i

7,i 2 mod3

f w w 6,i 0 mod3  2 i t

8,i 1 mod3




=   




 

( )

( )

( )

( )

0 i

11,i 0 mod3

f w w 10,i 1 mod3  t i n 1

12,i 2 mod3




=    −




 

( )

( )

( )

( )

i i 1

6,i 1 mod3

f w w 8,i 2 mod3  1 t i

7,i 0 mod3

+




=   




 

( )

( )

( )

( )

i i 1

10,i 2 mod3

f w w 12,i 0 mod3  i t n 1

11,i 1 mod3

+




=    −




 

The joint graph ( ) mn, t k F (c)−   has one maximum 

degree vertex, m 3−  3-degree vertices, n t 1+ −  2-degree 

vertices and two 1-degree vertices. The color sets of any 

adjacent 3-degree vertex in mF  must be the same, and the 

color sets of any adjacent 2-degree vertex in nC  and tP  

must be the same according to the definition of AVREC. 

This kind of graph can be colored up to 13 different 

colors in accordance with the fundamental coloring rule. 

Assuming that any edge chromatic number is 14, there will 

be different color set of adjacent vertices in the same degree; 

for example ( )3 4f u u 14= , there are at least two 2-degree 

vertices 3u , 4u
 

and n 3−  2-degree vertices color sets 

differ, which contradicts the assumption. If ( )0 7f w w 14= , 

there is at least one 3-degree vertex 2w
 
and 4m −  

3-degree vertices color sets differ, and 

( ) ( ) ( )0 4 0 5 0 m t, ,f w w f w w ., w. w. f −  does not satisfy the 

coloring rule of 10, 11, 12, and the chromatic number is 

discontinuous, therefore ( ) ( )( )avrec mn, t k F c 13 −  = .Fig. 

14 shows the result of ( ) mn, t k F (c)−  . 
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Fig. 14 
m(n, t) k F (c)−   

 

Theorem 4: For joint graph m n tS F P (n 3, t 3,m 2)     , 

there are 

( )( )avrec m n tS F P a 5,n 3, t 3,m 2   =     

( )( )avrec m n tS F P b 9 m,n 3, t 3,m 2   = +     

( )( )avrec m n tS F P c 11 m,n 3, t 3,m 2   = +     

Proof: Suppose the vertex set of 
mS  is 

0 1 m{ }V w , w , , w=  , and the vertex set of nF  is 

 1 2 nV u ,u , ,u=  , and the vertex set of 
tP  is 

 1 2 tV v , v , , v=   

(1)  Proof of class (a) graph 

The joint graph ( )m n tS F P a 
 

satisfies f
 

coloring 

rule: 

( )0 1f u u 3= , ( )0 nf u u 5=  

( )0 if w w 5 i,i 1,2,......,m= + =  

( )
( )

( )
i i 1

2,i 0 mod 2
f v v i 1,2,..., t 1

1,i 1 mod 2
+


= = −



 

( )

( )

( )

( )

0 i

3,i 1 mod3

f u u 1,i 2 mod3 i 1,2,..., n 1

4,i 0 mod3




=  = −




 

( )

( )

( )

( )

i i 1

4,i 1 mod3

f u u 3,i 2 mod3 i 1,2,..., n 1

1,i 0 mod3

+




=  = −




 

The joint graph 
m n tS F P (a)   has one maximum 

degree vertex, n 1−  3-degree vertices, t 1−  2-degree 

vertices and m  1-degree vertices. The color sets of any 

adjacent 3-degree vertices must be the same, and the color 

sets of any adjacent 2-degree vertices in 
tP  must be the 

same according to definition of AVREC. 

This kind of graph can be colored up to 5 m+  different 

colors in accordance with the fundamental coloring rule. 

Assuming that any edge chromatic number is 6 m+ , there 

will be different color set of adjacent vertices in the same 

degree; for example ( )1 2f u u 6 m= + , there are at least two 

2-degree vertices 1u , 2u  and n 3−  3-degree vertices 

color sets differ, and does not satisfy the coloring regulation 

of 1, 3, 4, which contradict  the assumption. 

If ( )2 3f v v 6 m= + , there is at least two 2-degree vertices 

1v , 2v  and t 2−  2-degree vertices color sets differ and the 

chromatic number is discontinuous, therefore 

( )( )avrec m n tS F P a 5 m   = + .Fig. 15 shows the result of 

( )m n tS F P a  .
 

(2) Proof of class (b) graph 

The joint graph ( )m n tS F P b  satisfies f coloring 

rule: 

( )0 1f u u 7= , ( )0 2f u u 8= , ( )1 2f u u 6=  

( )0 if w w 9 i,i 1,2,...m= + =  

( )
( )

( )
i i 1

1,i 1 mod 2
f v v i 1,2,..., t 1

2,i 0 mod 2
+


= = −



 

( )

( )

( )

( )

0 i

3,i 0 mod3

f u u 5,i 1 mod3 i 3,4,..., n 1

4,i 2 mod3




=  = −




 

( )

( )

( )

( )

i i 1

4,i 0 mod3

f u u 3,i 1 mod3 i 2,3,..., n 1

5,i 2 mod3

+




=  = −




 

The joint graph ( )m n tS F P b   has one maximum 

degree vertex, one 4-degree vertices, n 3−  3-degree 

vertices , t  2-degree vertices and m 1+  1-degree vertices. 

The color sets of any adjacent 3- degree vertices in nF
 

must be the same, and the color sets of 2-degree vertex in 

tP  must be the same according to definition of AVREC. 

This kind of graph can be colored up to 9 m+  different 

colors in accordance with the fundamental coloring rule. 

Assuming that any edge chromatic number is 10 m+ , there 

will be different color sets of adjacent vertices in the same 
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degree; for example ( )3 4f v v 10 m= + , there are at least 

two 2-degree vertices 
3v

 
, 

4v
 

and 4t −  2-degree 

vertices color sets differ, which contradicts the assumption. 

If ( )0 7f u u 10 m= + , there is at least one 3-degree vertex 

7u
 

and m 4−  3-degree vertices color sets differ, and 

( ) ( ) ( )0 3 0 4 0 m t, ,f u u f u u ., u. u. f −  does not satisfy the 

coloring regulation of 3, 5, 4, and the color number is 

discontinuous, therefore 

( )( )avrec m n tS F P b 9 m   = + .Fig. 16 shows the result of 

( )m n tS F P b  .
 

(3) Proof of class (c) graph 

The joint graph ( )m n tS F P c 
 

satisfies f  coloring 

rule: 

( )0 1f u u 10=  

( )0 nf u u 11= , ( )0 if u u 6,i t, 2 t n 1= =   −  

( )0 if w w 11 m,i 1,2,...,m= + =
 

( )
( )

( )
i i 1

2,i 0 mod 2
f v v i 1,2,..., t 1

1,i 1 mod 2
+


= = −



 

( )

( )

( )

( )

0 i

5,i 2 mod3

f u u 4,i 0 mod3  2 i t

3,i 1 mod3




=   




 

( )

( )

( )

( )

0 i

8,i 1 mod3

f u u 7,i 2 mod3  t i n 1

9,i 0 mod3




=    −




 

( )

( )

( )

( )

i i 1

3,i 1 mod3

f u u 5,i 2 mod3  1 i t 1

4,i 0 mod3

+




=    −




 

( )

( )

( )

( )

i i 1

7,i 0 mod3

f u u 9,i 1 mod3  t 1 i n 1

8,i 2 mod3

+




=  +   −




 

The joint graph ( )m n tS F P c   has one maximum 

degree vertex, one 4-degree vertices, n 3−  3-degree 

vertices, t  2-degree vertices and m 1+  1-degree vertices. 

The color sets of the 3-degree vertices must be the same, 

and the color sets of the 2-degree vertex in tP  must be the 

same according to the definition of AVREC. 

This kind of graph can be colored up to 11 m+  different 

colors in accordance with the fundamental coloring rule. 

Assuming that any edge chromatic number is 12 m+ , there 

will be different color sets of adjacent vertices in the same 

degree and the chromatic number is discontinuous; for 

example ( )0 3f w w 12 m= + ,there are at least one 1-degree 

vertex 3w  and m 1−  1-degree vertices color sets 

different and the color number is discontinuous, which 

contradicts the assumption. If ( )3 4f u u 12 m= + , there is at 

least two 3-degree vertices 3u , 4u  and n 5−  3-degree 

vertices color sets differ, therefore 

( )( )avrec m n tS F P c 11 m   = + . Fig. 17 shows the result of 

( )m n tS F P c  . 
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V. CONCLUSION 

In this paper, we designed a coloring algorithm for 

adjacent vertex reducible edge coloring for random graphs. 

And use this algorithm to find the coloring rules on special 

joint graph within 15 vertices, analyze the results to derive 

the staining properties of several types of joint graphs and 

prove them.  
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