

Abstract—�(�, �) represents the basic chart without circle, if

existing a one-to-one mapping �: � � → {�, �, …, |�|} , for any
two vertices in the diagram, in the event that �(�) = �(�) ,
� � = �(�) ,where � � = ��∈�(�) �(��)� , �(�) represents
the degree of the vertex �, then call the mapping � : Adjacent
Vertex Reducible Edge Labeling (alluded as AVREL). In graph
theory, graph coloring and graph labeling are two research
directions of graph theory, and there is little correlation
between the two in previous research results. In the process of
researching the concept of Adjacent Reducible Edge Coloring
proposed by Professor Zhang Zhongfu, we found that there are
several graph classes whose coloring number reaches the sum of
the number of vertices and edges, so we propose a new concept
of Adjacent Reducible Edge Labeling. In the transportation
network, the edge weight represents the transportation capacity,
and the node transportation capacity is represented by the sum
of its associated edges. Two nodes with the same degree of
adjacency require the transportation capacity to be as equal as
possible, which can be described by the Adjacent Vertex
Reducible Edge Coloring model. when the road diversity
reaches the extreme value, it can be described by the Adjacent
Vertex Reducible Edge Labeling model. In this paper, designing
and using Adjacent Vertex Reducible Edge Labeling algorithm
(abbreviation: AVREL algorithm). The algorithm recursively
looks through the arrangement space of the Adjacent Reducible
Edge Label through the underlying label of the edge, lastly sifts
through the graph book fulfilling the edge label and results as a
label matrix. In the wake of examining the algorithm results,
some special graphs such as Petersen-pyramid graphs, ��� ����
ladder graphs, bicyclic graphs, and some joint graphs in various
situations are summed up, the proofs and conjectures are given.

Index Terms—special graph; joint graph; Adjacent Vertex
Reducible Edge Labeling; labeling algorithm

I. INTRODUCTION
S a branch of graph theory, graph labeling is of great

theoretical and practical importance. Many real-life
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problems can be transformed into icon-number problems to
be solved, such as frequency allocation of communication
segments, graph cryptography, resource allocation, traffic
scheduling, etc. The concept of icon symbol was first
proposed in 1967 by Rosa and others in the beautiful
conjecture, that is, "every tree is beautiful". On the basis of
the beautiful guess, some scholars put forward the graceful
label and the later vertex magic label. In 2009, Professor
Zhang Zhongfu proposed the notion of reducible coloring
series of graphs.
The new concept of Adjacent Vertex Reducible Edge

Labeling proposed in this paper is generated on the magic
vertex full labeling and adjacent vertex reducible edge
coloring of the graphs. By using the design ideas of random
search algorithms such as bee colony algorithm and genetic
algorithm, a new algorithm can be designed to solve the
adjacent point reducible edge labeling of special graphs and
their associated graphs. Then, summarize and prove several
labeling theorems for the class of graphs by analyzing the set
of labeling results of the algorithm.

II. BASIC KNOWLEDGE

This paper mainly discusses special graphs such as road,
star, fan, wheel, tree, etc. and the adjacent reducible edge
labeling of their associated graphs.
Definition 1: Let �(�, �) be a simple graph, if there is a

one-to-one mapping � : �(�) → {1,2, …, |�|} ,such that for
any two points u� ∈ �(�), if �(�) = �(�), there is � � =
�(�) , where � � = ��∈�(�) �(��)� , �(�) represents the
degree of the vertex � , then � is called Adjacent Vertex
Reducible Edge Labeling of � (Adjacent Vertex Reducible
Edge Labeling referred to as AVREL) .
Definition 2[4]: Graph kite ((n.t.r)-K) is a graph consisting

of a cycle graph �� with n vertices and � path graphs �� with
length t.
Definition 3: Petersen-pyramid graph is called graph

��(�,2) , assuming vertex � (not part of the Petersen graph,
�(�,2)) is connected to all vertices on the outermost circle of
the Petersen graph (�(�,2) ), and vertex ℎ (not part of the
Petersen graph, �(�,2) ) is connected to all vertices on the
innermost circle of Petersen graph (�(�,2)). Petersen-pyramid
graph ��(�,2) is formed by the set of vertices � = {�} ∪
{ℎ} ∪ {�1, �2, …, ��} ∪ {�1, �2, …, ��} , and set of edges � =
{���, � = 1,2, …, �} ∪ {ℎ��, � = 1,2, …, �} ∪ {����, � = 1,2, …,
�} ∪ {����+2, � = 1,2, …, � − 2} ∪ {��−1�1} ∪ {���2} ∪ {��
��+1, � = 1,2, …, � − 1} ∪ {���1}. As shown in figure 1.
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Fig. 1. Example of ��(�,2) graph

Definition 4: Joint graph ��
���(� ≥ 2, � ≥ 4) , the

vertices set of �� is � = {�0, �1, …, ��}, the edges set of ��
is � = {�0��, � = 1,2, …, �}, the vertices set of ��� is: � =
� 1�� ∪ � 2�� ∪ . . . ∪ � ��� = {�0} ∪ {ℎ��, ℎ = 1, 2,
… , � , � = 1,2, …, �} , the edges set of m �� is � =
{�0ℎ��, ℎ = 1,2, …, �, � = 1,2, …, �} ∪ {ℎ��ℎ��+1, ℎ = 1, 2,
…, �, � = 1,2, …, � − 1}. As shown in figure 2.

Fig. 2. Examples of ��
��� graph

Definition 5[10]: The Mo�bius ladder graph ��� � ≥ 2
is obtained by adding edges ���1 and ���1 to the ladder
graph ��, the vertices set of ��� is � = { ��, � = 1,2, …, �} ∪
{ ��, � = 1,2, …, �}. As shown in figure 3.

Fig. 3. Examples of Mo�bius ladder graph ���

Definition 6: The associative graph consisting of a 1-order
null graph �1 and a n-order Cycle ��, is called a wheel graph,
denoted �� , �� = �1 ∪ �� , where V(�1) = {�0} and
V(��) = {��, � = 1,2, …, �}. The Circle �� of the wheel graph
�� , with a point cut out on each edge, the joint graph is
called a Multi-circle gear graph ��� � ≥ 3 , where the
interior point of the path of the join point �� and ��+1 of length
2 is denoted by �� , and here the subscript takes a module n.
The V(���) = {�0} ∪ {��, � = 1,2, …, �} ∪ {��, � = 1,2, …, �
}, �(���) = {�0��, � = 1,2, …, �} ∪ {����+1, � = 1,2, …, � −
1} ∪ {���1} ∪ {����, � = 1,2, …, �} ∪ {����−1, � = 2,3, …, �}
∪ {����}. As shown in figure 4.

Fig. 4. Examples of Multi-circle gear graph ���

III. ALGORITHM

A. Preparation
As indicated by the meaning of Adjacent Vertex Reducible

Edge Labeling, all graphs are separated into two classes, one
for graphs with adjacent degree vertices and the other for
graphs without adjacent degree vertices. In this paper, we
build a graph classification function Classify, which
performs a search in the solution space during the process of
determining which graph satisfies the labeling condition. The
last label success condition is the statement that the labels of
adjacent degree vertices are equivalent and that the number of
labels is continuous.

B. Principles for the AVREL Algorithm
According to definition 1, u� ∈ �(�), if �(�) = �(�),

then � � = �(�), summation formula (1),
� � = ��∈�(�) �(��)� = �(�) = ��∈�(�) �(��)� (1)

The idea of the AVREL algorithm is to transform the
adjacency matrix of a graph into an initial eigenmatrix to
satisfy the AVREL requirement, the solution space of
adjacent reducible edges labeling is recursively searched, and
the equilibrium operator is used to judge whether the labeling
matrix is in equilibrium, finally, the graph set fulfilling the
Adjacent Reducible Edge Labeling is chosen, then, yield as a
labeled matrix.

C. AVREL pseudo code
The idea of AVREL algorithm is to transform the

adjacency AVREL algorithm description:
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AVREL algorithm
Input: adjacency matrix of graph �(�, �)
Output: AVREL label matrix or non-AVREL matrix

(1) read the adjacency matrix (AdjustMatrix) of
graph �, initializing the label matrix
(LabelAdjust)

(2) get p, q, degree, isBalance, �(�, �) Classify
(3) while �(�, �) ! = null
(4) search �(�, �)
(5) If �. isBalance ← true
(6) LabelAdjust ← AdjustMatrix
(7) break
(8) endif
(9) endwhile
(10) if �. isBalance ← false
(11) Output this graph is a non-AVREL graph
(12) endif
(13) else
(14) Output LabelAdjust
(15) endelse
(16) end

IV. CONCLUSION AND PROOF

Theorem 1: For Petersen-pyramid graph ��(�,2), if � ≥ 5,
all are AVREL graphs.
Proof:
By definition 3, assuming the vertices set of ��(�,2) is � =

{�} ∪ {ℎ} ∪ {��, � = 1,2, …, �} ∪ {��, � = 1,2, …, �} , where
�����=4 = {��, ��|� = 1,2, …, �|� ≥ 5} , the edges set of
��(�,2) is � = {���, � = 1,2, …, � } ∪ {ℎ��, � = 1,2, …, � } ∪ {
����, � = 1,2, …, �} ∪ {����+2, � = 1,2, …, � − 2} ∪ { �1��−1}
∪ {���2} ∪ {����+1, � = 1,2, …, � − 1} ∪ {���1} . Examples
of ��(�,2) are shown in figure 5 (1), (2).
Discuss the following two situations:
Case1: When � ≡ 1 ��� 2 :
Through formula (1) and the algorithm results, consider

the following edge labeling scheme:
� ��� = 3� + 1 − �, 1 ≤ � ≤ �

� ℎ�� =
(� + �)/2 + 1, � ≡ 1(���2)

�/2 + 1, � ≡ 0(���2) , 1 ≤ � ≤ � − 1

1, � = �
� ����+1 = 3� + � + 1,1 ≤ � ≤ � − 1

� ���1 = 3� + 1
� ���� = 2� − �, 1 ≤ � ≤ � − 1

2�, � = �

� ����−�+2 =

(18� + 2)/4, � ≡ 1(���4)
(18� − 2)/4, � ≡ 3(���4) , � = � − 1

(17� + 3)/4, � ≡ 1(���4)
(19� + 3)/4, � ≡ 3(���4) , � = �

� ����+2 =

(17� + � + 3)/4, � ≡ 0(���4)
(16� + � + 3)/4, � ≡ 1(���4)
(19� + � + 3)/4, � ≡ 2(���4)
(18� + � + 3)/4, � ≡ 3(���4)

,

1 ≤ � ≤ � − 2, � ≡ 1(���4)
(19� + � + 3)/4, � ≡ 0(���4)
(16� + � + 3)/4, � ≡ 1(���4)
(17� + � + 3)/4, � ≡ 2(���4)
(18� + � + 3)/4, � ≡ 3(���4)

,

1 ≤ � ≤ � − 2, � ≡ 3(���4)

From this, the edges labeling set of the Petersen-pyramid
graph:

Fig.5 ��(�,2) (n ≥ 5)

� � = 3�, 3� − 1, …, 2� + 1 ∪ { (� + 3)/2, (� + 5)/2 ,
…, �, 2,3, …, (� + 1)/2,1} ∪ {3� + 2, 3� + 3, …, 4�
} ∪ {3� + 1 ∪ {2� − 1,2� − 2, …, � + 1,2� } ∪ {4�
+ 1,4� + 2,4� + 3,4� + 4, …, 5� − 1,5�}.

It can be seen from the exhaustive method that � � →
1, 5� .
The label sum of {�����=4} �4:

�4 = |{
��∈�� ��

� ��� + � ��� ||
��∈�� ��

� ���

+ � ℎ�� |1 ≤ � ≤ �}|

= |{
��∈�� �1

� ��� + �(��1)}||…||{
��∈�� ��

� ���

+ �(���)}||{
��∈�� �1

� ��� + �(ℎ�1)} || . . . || {

��∈�� ��
� ��� + �(ℎ��)}|

(1) ��(10,2)

|�(�)| = � + � + � + � + � = 5�

(2) ��(11,2)

|�(�)| = � + � + � + � + � = 5�
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= |{3� + 2� − 1 + 3� + 1 + 3� + 2}||…||{2� + 1 + 3� +
1 + 4� + 2�}||{(� + 1)/2 + (16� + 4)/4 + (18� + 2)
/4 + 2� − 1 + 1}||…||{2� + (17� + 3)/4 + (18� + �
− 2 + 3)/4 + 1}|

= |{11� + 2}|| … ||{11� + 2}||{11� + 2}|| … ||{11� + 2}|
= | 11� + 2 |
= 11� + 2.
So �4 is a constant while � ≡ 1 ��� 2 . From the above,

the AVREL scheme is established.
Case2: When � ≡ 0 ��� 2 :
Through formula (1) and the algorithm results, consider

the following edge labeling scheme:

� ��� =

2� + 3, � = 1
2� + 2, � = 2
2� + 1, � = 3

3� − � + 4, 4 ≤ � ≤ �
� ℎ�� = � − � + 1, 1 ≤ � ≤ �

� ����+1 =
4� − 1, � = 1

4�, � = 2
3� + � − 2, 3 ≤ � ≤ � − 1

� ���1 = 4� − 2

� ���� =
� + 2, � = 1
� + 1, � = 2

2� − � + 3, 3 ≤ � ≤ �
� ����+2 = 4� + �, 1 ≤ � ≤ � − 2
� ����−�+2 = 5� − 1, � = � − 1

5�, � = �
From this, the edges labeling set of the Petersen-pyramid

graph:
� � = 2� + 3, 2� + 2,2� + 1, 3�, 3� − 1, …, 2� + 4 ∪ {

�, � − 1, …, 1} ∪ {4� − 1, 4�, 3� + 1,3� + 2, …, 4�
− 3 ∪ 4� − 2 ∪ {� + 2, � + 1, 2�, 2� − 1, …, � +
3} ∪ {4� + 1,4� + 2, …, 5� − 2} ∪ {5� − 1,5�}.

It can be seen from the exhaustive method that � � →
1, 5� .
The label sum of {�����=4} �4:

�4 = |{ � ��� +
��∈�� ��

� ��� || � ℎ�� +

��∈�� ��

� ��� |1 ≤ � ≤ � }|

= |{
��∈�� �1

� ��� + �(��1)}||… ||{�(���) +

��∈�� ��

� ��� }||{
��∈�� �1

� ��� + �(ℎ�1)

}||. . . ||{
��∈�� ��

� ��� + �(ℎ��)}|

= |{2� + 3 + 4� − 1 + 4� − 2 + � + 2}||…||{3� − � + 4
+ 3� + � − 1 − 2 + 4� − 2 + 2� − � + 3}||{� − 1 + 1
+ � + 2 + 4� + 1 + 5� − 1}||{� − � + 1 + 2� − � + 3
+ 4� + � − 2 + 5�}|

= |{11� + 2}||…||{11� + 2}||{11� + 2}||…||{11� + 2}|

= | 11� + 2 |
= 11� + 2.
So �4 is a constant while � ≡ 0 ��� 2 . From the above,

the AVREL scheme is established.

As evidenced by the above, all Petersen-pyramid graphs
��(�,2) are AVREL graphs.
Theorem 2: For joint graphs �� ↑ ��, if � ≥ 3, � ≥1, all

are AVREL graphs.
Proof:
Assuming the vertices set of �� ↑ �� is � = {��, � =

0,1, …, �} ∪ {�ℎ, ℎ = 0,1, …, �} , where �����=3 = {��, � =
1,2, …, � − 1} (� ≥ 3, � ≥ 1) , the edges set of �� ↑ �� is
� = {�0��, � = 1,2, …, � } ∪ {�0��, � = 1,2, …, � } ∪ {����+1,
� = 1,2, …, � − 1}. An example of �� ↑ �� is shown in figure
6.

|�(�)| = � + (� − 1) + � = 2� + � − 1
Fig.6 �� ↑ �� (� ≥ 3, � ≥ 1)

Discuss the following two situations:
Case1: When � ≡ 1 ��� 2 :
Through formula (1) and the algorithm results, consider

the following edge labeling scheme:
� �0�� = 2� − 1, � = 1,2, …, �

� ����+1 = 2� − 1 − �, � ≡ 1 ��� 2 ;
� + 1 − �, � ≡ 0 ��� 2 . � = 1, 2, …, � − 1

� �0�� = 2� + ℎ − 1, ℎ = 1,2, …, �
From this, the edges labeling set of the �� ↑ �� graph:

�(�) = {1, 3, …, 2� − 1} ∪ {2� − 2, 2� − 4, …, � + 2, � +
1} ∪ {� − 1, � − 3, …, 4, 2} ∪ {2�, 2� + 1, …, 2� +
� − 1}.

It can be seen from the exhaustive method that � � →
[1,2� + � − 1].
The label sum of {�����=3} �3:

�3 = |{
��∈�� ��

� ��� |1 ≤ � ≤ � − 1}|

= |{�(�0��) + �(��−1��) + �(����+1)|1 ≤ � ≤ � − 1}|
= |{2� − 1 + 2� − 1 − � + 1 + � + 1 − �}|
= |{3�}|
= 3�.
So �3 is a constant while � ≡ 1 ��� 2 . From the above,

the AVREL scheme is established.
Case2: When � ≡ 0 ��� 2 :
Through formula (1) and the algorithm results, consider

the following edge labeling scheme:
� �0�� = 2�, � = 1,2, …, � − 1

� �0�� = 2� − 1

� ����+1 = � − �, � ≡ 1 ��� 2 ;
2� − 1 − �, � ≡ 0 ��� 2 ; � = 1,2, …, � − 1

� �0�� = 2� + ℎ − 1, ℎ = 1,2, …, �
From this, the edges labeling set of the �� ↑ �� graph:

�(�) = {2, 4, …, 2� − 2} ∪ {2� − 1} ∪ {� − 1, � − 3, …, 3,1
} ∪ { 2� − 3, 2� − 5, …, � + 3, � + 1} ∪ { 2�, 2� +
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1, …, 2� + � − 1}.
It can be seen from the exhaustive method that � � →

[1,2� + � − 1].
The label sum of {�����=3} �3:

�3 = |{
��∈�� ��

� ��� |1 ≤ � ≤ � − 1}|

= |{�(�0��) + �(��−1��) + �(����+1)|1 ≤ � ≤ � − 1}|
= |{2� + � − � + 1 + 2� − 1 − �}|
= |{3�}|
= 3�.
So �3 is a constant while � ≡ 0 ��� 2 . From the above,

the AVREL scheme is established.
As evidenced by the above, all joint graphs �� ↑ �� are

AVREL graphs.
Theorem 3: For joint graphs ��

�� , if � ≥ 2, � ≥ 3, � ≠
� + 1, all are AVREL graphs.
Proof:
By definition 4, assuming the vertices set of ��

�� (� ≥
1, � ≥ 3 ) is � = {��, � = 0, 1, …, �} ∪ {�ℎ, ℎ = 0, 1, …, �} ,
where �����=3 = {ℎ��|� − 1 ≥ � ≥ 2, � ≥ ℎ ≥ 1} (� ≥ 1,
� ≥ 3), the edges set of ��

�� is � = {�0ℎ��, � = 1,2, …, �, �
≥ ℎ ≥ 1} ∪ {ℎ��ℎ��+1, � = 1,2, …, � − 1, � ≥ ℎ ≥ 1} ∪ {
�0�ℎ, ℎ = 1, …, �}. Examples of ��

�� are shown in figure 7
(1), (2).
Discuss the following two situations:
Case1: When � ≡ 1 ��� 2 :
Through formula (1) and the algorithm results, consider

the following edge labeling scheme:
� �0�� = 2ℎ�, ℎ = � = 1, 2, . . . , m

� ℎ�0ℎ�� = 2� − 1 + 2 ℎ − 1 �, ℎ = 1, 2, 3, …, �, � = 1,
2, . . . , �

� ℎ��ℎ��+1 =

2ℎ� − 1 − �, ℎ = 1, 2, 3, …, �,
� ≡ 1 ��� 2

2ℎ − 1 � + 1 − �, ℎ = 1, 2, 3, …, �,
� ≡ 0 ��� 2

, � =

1, 2, . . . , � − 1
From this, the edges labeling set of the ��

��� graph:
�(�) = {2�, 4�, …, 2��} ∪ {1, 1 + 2�, …, 2�� − 1} ∪ {2�

− 2, 4� − 4, …, 2�� − � + 1} ∪ {� − 1, 3� − 3, …,
2�� − 2� + 2}.

It can be seen from the exhaustive method that f E → [1,
2��].
The label sum of {�����=3} �3:

�3 = |{
��∈�� ��

� ��� | 2 ≤ � ≤ � − 1, 1 ≤ ℎ ≤ � }|

= |{� ℎ��−1ℎ�� + � ℎ��ℎ��+1 + � ℎ�0ℎ�� |2 ≤ � ≤ � −
1, 1 ≤ ℎ ≤ �}|

= |{2ℎ� − 1 − � + 1 + 2ℎ� − � + 1 − � + 2� − 1 + 2ℎ� −
2�}|

= |{(6ℎ − 3)�}|
= (6ℎ − 3)�.
So �3 is a constant while � ≡ 1 ��� 2 . From the above,

the AVREL scheme is established.
Case2: When � ≡ 0 ��� 2 :
Through formula (1) and the algorithm results, consider

the following edge labeling scheme:
� �0�� = 2ℎ� − 1, ℎ = � = 1, 2, …, �

� ℎ�0ℎ�� = 2� + 2 ℎ − 1 �, ℎ = 1, 2, 3, …, �, � = 1,2,
…, �

Fig.7 ��
��� (� ≥ 2, � ≥ 3)

� ℎ��ℎ��+1 =

2ℎ − 1 � − �, ℎ = 1, 2, 3, …, �,
� ≡ 1 ��� 2

2ℎ� − 1 − �, ℎ = 1, 2, 3, …, �,
� ≡ 0 ��� 2

, � =

1,2, . . � − 1
From this, the edges labeling set of the ��

�� graph:
�(�) = {2� − 1,4� − 1, …, 2�� − 1} ∪ {2,4 + 2�, …, 2��

} ∪ � − 1, 3� − 3, …, 2�� − 2� + 1 ∪ {2� − 3,
2� − 5, …, 2�� − � + 1}.

It can be seen from the exhaustive method that � � → [1,
2��].
The label sum of {�����=3} �3:

�3 = |{
��∈�� ��

� ��� | 2 ≤ � ≤ � − 1, 1 ≤ ℎ ≤ � }|

= |{� ℎ��−1ℎ�� + � ℎ��ℎ��+1 + � ℎ�0ℎ�� |2 ≤ � ≤ � −
1, 1 ≤ ℎ ≤ �}|

= 2ℎ� − � − � + 1 + 2ℎ� − 1 − � + 2� + 2ℎ� − 2�
= |{(6ℎ − 3)�}|
= (6ℎ − 3)�.
So �3 is a constant while � ≡ 0 ��� 2 . From the above,

the AVREL scheme is established.

(1) �3
3�5

|�(�)| = � + �(� + (� − 1)) = 2��

(2) �4
4�6

|�(�)| = � + �(� + (� − 1)) = 2��
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As evidenced by the above, all joint graphs �� ↑ �� are
AVREL graphs.
Theorem 4: For joint graphs �� ↑ (3, 2, 2) − �, if � ≥ 3,

all are AVREL graphs.
Proof:
Assuming the vertices set of �� ↑ (3, 2, 2) − � (� ≥ 3) is

� = {�0 �1 , �1, …, ��} ∪ {�2 �1 , �3(�1')} ∪ { �2, �2'},wh
ere �����=3 = {��|� − 1 ≥ � ≥ 2} (� ≥ 3), �'����=3 = {�2(
�1), �3(�1')}, the edges set of �� ↑ (3, 2, 2) − � is � =
{�0��, � = 1,2, …, �} ∪ {����+1, � = 1,2, …, � − 1} ∪ {�1�2,
�1�3, �2�3} ∪ {�1�2, �1'�2'} . Examples of �� ↑ (3, 2, 2) −
� are shown in figure 8(1), (2).
Discuss the following two situations:
Case1: When � ≡ 1 ��� 2 :
Through formula (1) and the algorithm results, consider

the following edge labeling scheme:
� �0�� = 2� − 1, � = 1,2, …, �

� ����+1 = 2� − � − 1, � ≡ 1 ��� 2
� − � + 1, � ≡ 0 ��� 2 , � = 1,2,

…, � − 1
� ����+1 = 2�, � = 1

2� + 2, � = 2
� �1�3 = 2� + 1
� �1�2 = 2� + 4
� �1'�2' = 2� + 3

From this, the edges labeling set of the �� ↑ (3, 2, 2) − �
graph:
�(�) = {1, 3, …, 2� − 1} ∪ {2� − 2, 2� − 4, …, � + 1} ∪ {n

− 1, � − 3, …, 2} ∪ {2�, 2� + 2} ∪ {2� + 1 } ∪ {2�
+ 4} ∪ {2� + 3}.

It can be seen from the exhaustive method that � � → [1,
2� + 4].
The label sum of {�����=3} �3, {�'����=3} �'3:

�3 = |{
��∈�� ��

� ��� | 2 ≤ � ≤ � − 1, 1 ≤ ℎ ≤ �}|

= |{� ��−1�� + � ����+1 + � �0�� |2 ≤ � ≤ � − 1, 1
≤ ℎ ≤ �}|

= |{2� − � + 1 − 1 + � − � + 1 + 2� − 1}|
= |{3�}|
= 3�.
�'3 = |{

��∈�� �2(�1)
� ��� ||

��∈�� �3(�'1)
� ��� }|

= |{� �1�2 + � �2�3 + � �1�2 }||{� �1�3 + � �2�3
+ � �1'�2' }|

= |{2� + 2� + 2 + 2� + 4}||{2� + 1 + 2� + 2 + 2� + 3}|
= |{6� + 6}||{6� + 6}|
= |{6� + 6}|
= 6� + 6.
So �3 and �'3 are constant while � ≡ 1 ��� 2 . From the

above, the AVREL scheme is established.
Case2: When � ≡ 0 ��� 2 :
Through formula (1) and the algorithm results, consider

the following edge labeling scheme:
� �0�� = 2�, � = 1,2, . . , � − 1

� �0�� = 2� − 1

� ����+1 = � − � � ≡ 1 ��� 2
2� − � − 1 � ≡ 0 ��� 2 , � = 1,2, …,

� − 1
� ����+1 = 2�, � = 1

2� + 2, � = 2
� �1�3 = 2� + 1

Fig.8 �� ↑ (3, 2, 2) − � (� ≥ 3)

� �1�2 = 2� + 4
� �1'�2' = 2� + 3

From this, the edges labeling set of the �� ↑ (3, 2, 2) − �
graph:
�(�) = {2, 4, …, 2� − 2} ∪ {2� − 1} ∪ {n − 1, n − 3, …, 1}

∪ {2n − 3, 2n − 5, …, � + 1} ∪ {2�, 2� + 1} ∪ {2�
+ 2} ∪ {2� + 3} ∪ {2� + 4}.

It can be seen from the exhaustive method that � � → [1,
2� + 4].
The label sum of {�����=3} �3, {�'����=3} �'3:

�3 = |{
��∈�� ��

� ��� | 2 ≤ � ≤ � − 1, 1 ≤ ℎ ≤ �}|

= |{� ��−1�� + � ����+1 + � �0�� |2 ≤ � ≤ � − 1, 1
≤ ℎ ≤ �}|

= |{2� − � + 1 − 1 + � − � + 1 + 2� − 1}|
= |{3�}|
= 3�.
�'3 = |{

��∈�� �2(�1)
� ��� ||

��∈�� �3(�'1)
� ��� }|

= |{� �1�2 + � �2�3 + � �1�2 }||{� �1�3 + � �2�3
+ � �1'�2' }|

= |{2� + 2� + 2 + 2� + 4}||{2� + 1 + 2� + 2 + 2� + 3}|
= |{6� + 6}||{6� + 6}|
= |{6� + 6}|

(1) �7 ↑ (3, 2, 2) − �
|�(�)| = � + (� − 1) + 3 + 2 = 2� + 4

(2) �8 ↑ (3, 2, 2) − �
|�(�)| = � + (� − 1) + 3 + 2 = 2� + 4
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= 6� + 6.
So �3 and �'3 are constant while � ≡ 0 ��� 2 . From the

above, the AVREL scheme is established.
As evidenced by the above, all joint graphs �� ↑

(3, 2, 2) − � are AVREL graphs.
Theorem 5: For bicyclic graphs, if 4 ≤ � ≤ 15 , are

AVREL graphs.
Proof:
The results from the AVREL algorithm of bicyclic graphs

are shown in Table 1.

Table 1 AVREL for bicyclic graphs when 4 ≤ � ≤ 19
(�, � + 1) Graph number GraphAVREL Graph Non-AVREL

(4, 5) 1 1 0
(5, 6) 5 3 2
(6, 7) 19 7 12
(7, 8) 67 23 44
(8, 9) 236 73 163

(9, 10) 797 219 578
(10, 11) 2678 694 1984
(11, 12) 8833 2046 6787
(12, 13) 28908 6106 22802
(13, 14) 93569 17988 75581
(14, 15) 300748 52372 248376
(15, 16) 959374 150546 808828

From the data in Table 1, the proportion of the bicyclic
graphs that satisfying the AVREL is shown in figure 9.

Fig.9 Proportion of bicyclic graphs that meet the AVREL

Bicyclic graphs labeling results are shown in figure 10.
As per the outcomes acquired by the algorithm, it can be

inferred that all graphs within 15 vertices fulfill this AVREL
condition. However, because of the constraints of the PC and
the efficiency of the algorithm, the larger vertices of bicyclic
graphs are not tested.
Conjecture 1: For bicyclic graphs, if � ≥ 16, are AVREL

graphs.
Theorem 6: For Mo�bius ladder graphs ��� , if � ≡

1 ��� 2 , all are AVREL graphs, if 2 ≤ � ≤ 19 and � ≡
0 ��� 2 , all are not AVREL graphs.
Proof:
Assuming the vertices set of Mo�bius ladder graph

��� (� ≡ 1(��� 2)) is � = {��, ��|� ≥ � ≥ 1}(� ≡ 1(���
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Fig.10 Partial Bicyclic graphs labeling results

2)), where �����=3 = {��, ��|� ≥ � ≥ 1} (� ≥ 3), the edges
set of ��� is � = {����, � = 1,2, …, �} ∪ {����+1, � = 1,2, …
, � − 1} ∪ {����+1, � = 1,2, …, � − 1} ∪ {�1��, �1��}.Exampl
es of ��� are shown in figure 11 (1), (2).
Discuss the following two situations:
Case1: When � ≡ 1 ��� 2 :
Through formula (1) and the algorithm results, consider

the following edge labeling scheme:
� ���� = 3� − � + 1, � = 1,2, …, �

� ���1 = (� + 1)/2
� ���1 = (3� + 1)/2

� ����+1 =
(� + 1)/2, � ≡ 1 ��� 2 ;

(3� + � + 1)/2, � ≡ 0 ��� 2 . � = 1,2, …,

� − 1

Fig.11 ��� (� ≡ 1(��� 2))

� ����+1 =
(2� + � + 1)/2, � ≡ 1 ��� 2 ;
(� + � + 1)/2, � ≡ 0 ��� 2 . � = 1,2, …,

� − 1
From this, the edges labeling set of the ��� ( � ≡

1(��� 2)) graph:
� � = 3�, 3� − 1, …, 2� + 1 ∪ {(� + 1)/2} ∪ {(3� + 1)

/2} ∪ {1,2, …, (� − 1)/2, (3� + 3)/2, (3� + 5)/2,
…, 2�} ∪ {� + 1, � + 2, …, (3� − 1)/2, (� + 3)/2,
(� + 5)/2, …, �}.

It can be seen from the exhaustive method that � � →
[1, 3�].
The label sum of {�����=3} �3:

�3 = |{
��∈�� ��

� ��� ||
��∈�� �3(��)

� ��� }|

= |{� ���� + � ��−1�� + � ����+1 || � ���� +
� ��−1�� + � ����+1 }|

= |{3� − � + 1 + (� + 1)/2 + (3� + � − 1 + 1)/2 ||3� − �
+ 1 + (2� + � + 1)/2 + (� + � − 1 + 1)/2}|

= |{(9� + 3)/2||(9� + 3)/2}|
= |{(9� + 3)/2}|
= (9� + 3)/2.
The calculated set of edge labels is �(�):
So �3 is a constant while � ≡ 1 ��� 2 . From the above,

the AVREL scheme is established.
Case2: When � ≡ 0 ��� 2 :
The results from the AVREL algorithm of the

Mo�bius ladder graphs ��� (2 ≤ � ≤ 19) are shown in Table
2:

Table 2 AVREL for ��� while 2 ≤ � ≤ 19
��� AVREL(�) Non − AVREL(�)

2 ≤ � ≤ 19 3, 5, 7, 9, 11, 13, 15, 17, 19 2, 4, 6, 8, 10, 12, 14, 16, 18

(1) ��5
� � = � + � + � = 3�

(2) ��7
� � = � + � + � = 3�
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From Table 2, the proportion of the Mo�bius ladder graphs
that satisfy the AVREL is shown in figure 12.

Fig.12 Proportion of Mo�bius ladder graphs that meet the labeling

From figure 12, it can be clearly seen that the results for
ladder graphs up to 19 vertices show a distinct odd-even
distribution. The results of the odd-numbered vertex graphs
all meet the condition AVREL, and the even-numbered
vertex graphs are not AVREL graphs.
As evidenced by the above, all Mo�bius ladder graphs

��� (� ≡ 1(��� 2)) are AVREL graphs; Mo�bius ladder
graphs ��� (� ≡ 0 ��� 2 , 2 ≤ � ≤ 19) are not AVREL
graphs.
Conjecture 2: For Mo�bius ladder graphs ���, if � ≡

0 ��� 2 , all are not AVREL graphs.
Theorem 7: For Multi-circle gear graph ��� , if � ≥

3, � ≠ 5 , all are AVREL graphs, when � = 5 , the
Multi-circle gear graph ��5 is not AVREL graph.
Proof:
Assuming the vertices set of Multi-circle gear graph ���

(� ≥ 3) is � = {��, ��|� ≥ � ≥ 1} ∪ {�0} (� ≡ 1(��� 2)),
where �����=5 = {��|� ≥ � ≥ 1} (� ≥ 3, � ≠ 5) or �����=5

= {��|� ≥ � ≥ 1} ∪ {�0} (� = 5) the edges set of ��� is
� = {�0��, � = 1,2, …, �} ∪ {����+1, � = 1,2, …, � − 1} ∪ {��
�1} ∪ {����, � = 1,2, …, �} ∪ {����−1, � = 2,3, …, �} ∪ {����} .
Examples of MGn are shown in figure 13 (1), (2).
Discuss the following three situations:
Case1: When � ≡ 1 ��� 2 , � ≠ 5:
Through formula (1) and the algorithm results, consider

the following edge labeling scheme:
� ����+1 = 2� − 1, � = 1,2, …, � − 1

� ���1 = 2� − 1
� �0�� = 2� − 2� + 2, � = 1,2, …, �

� ���� =
3� − � + 2, � ≡ 1(��� 2)
4� − � + 2, � ≡ 0(��� 2) , � ≥ � ≥ 1

� ����−1 = 4� − � + 2, � ≡ 1(��� 2)
3� − � + 2, � ≡ 0(��� 2) , � ≥ � ≥ 2

� �1�� = 2� + 1
From this, the edges labeling set of the ��� ( � ≡

1(��� 2), � ≠ 5) graph:
� � = 1,3, …, 2� − 3 ∪ {2� − 1} ∪ {2�, 2� − 2, …, 2} ∪

{3� + 1,3� − 1, …, 2� + 2, 4�, 4� − 2, …, 3� + 3}
∪ {4� + 1, 4� − 1, …, 3� + 2, 3�, 3� − 2, …, 2� +
3} ∪ {2� + 1}.

(1) ��3
� � = � + � + 2� = 4�

(2) ��4
� � = � + � + 2� = 4�

Fig.13 ��� (� ≥ 3)

It can be seen from the exhaustive method that � � →
[1, 4�].
The label sum of {�����=5} �5:

�5 = |{
��∈�� ��

� ��� |� ≥ � ≥ 1, � ≥ 3, � ≠ 5}|

= |{� �0�� + � ���1 + � ����+1 + � �1�� + � ���� |�
= 1||� �0�� + � ��−1�� + � ����+1 + � ����−1 +
� ���� }|� − 1 ≥ � ≥ 2||� �0�� + � ��−1�� + � ���1
+ � ����−1 + � ���� |� = �||

= |{2� + 2� − 1 + 1 + 2� + 1 + 3� + 1||2� − 2� + 2 +
2� − 3 + 2� − 1 + 3� − � + 2 + 4� − � + 2||2 + 2� −
3 + 2� − 1 + 4� − � + 2 + 3� − � + 2}|

= |{9� + 2||9� + 2||9� + 2}|
= |{9� + 2}|
= 9� + 2.
The calculated set of edge labels is �(�):
So �5 is a constant while � ≡ 1 ��� 2 , � ≠ 5. From the

above, the AVREL scheme is established.
Case2: When � ≡ 0 ��� 2 :
Through formula (1) and the algorithm results, consider

the following edge labeling scheme:
� ����+1 = 2� − 1, � = 1,2, …, � − 1

� ���1 = 2� − 1
� �0�� = 2� − 2� + 2, � = 1,2, …, �

� ����−1 = 3� − � + 2, � ≡ 1(��� 2)
4� − � + 2, � ≡ 0(��� 2) , � ≥ � ≥ 2
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� ���� =
3� + 1, � = 1
4� − � + 2, � ≡ 1(��� 2)
3� − � + 2, � ≡ 0(��� 2), � ≥ � ≥ 2

� �1�� = 2� + 1
From this, the edges labeling set of the ��� (� ≡

0(��� 2)) graph:
� � = 1,3, …, 2� − 3 ∪ {2� − 1} ∪ {2�, 2� − 2, …, 2} ∪

{3� + 1,4� − 1,4� − 3, …, 3� + 3,3�, 3� − 2…, 2�
+ 2} ∪ {3� − 1,3� − 3, …, 2� + 3,4�, 4� − 2, …, 3�
+ 2} ∪ {2� + 1}.

It can be seen from the exhaustive method that � � →
[1, 4�].
The label sum of {�����=5} �5:

�5 = |{
��∈�� ��

� ��� |� ≥ � ≥ 1, � ≥ 3}|

= |{� �0�� + � ���1 + � ����+1 + � �1�� + � ���� |�
= 1||� �0�� + � ��−1�� + � ����+1 + � ����−1 +
� ���� }|� − 1 ≥ � ≥ 2||� �0�� + � ��−1�� + � ���1
+ � ����−1 + � ���� |� = �||

= |{2� + 2� − 1 + 1 + 2� + 1 + 3� + 1||2� − 2� + 2 +
2� − 3 + 2� − 1 + 4� − � + 2 + 3� − � + 2||2 + 2� −
3 + 2� − 1 + 4� − � + 2 + 3� − � + 2}|

= |{9� + 2||9� + 2||9� + 2}|
= |{9� + 2}|
= 9� + 2.
The calculated set of edge labels is �(�):
So S5 is a constant while n ≡ 0 mod 2 . From the above,

the AVREL scheme is established.
Case3: When � = 5:
Prove by contradiction: when � = 5, the Multi-circle gear

graph ��5 is not AVREL graph.
Assume when � = 5 , the Multi-circle gear graph ��5 is

AVREL graph. Then the �����=5 = {��|5 ≥ � ≥ 1} ∪ {�0} ,
according to the formula (1), the following conditions must
be satisfied: � �1 = � �2 = � �3 = � �4 = � �5 =
� �0 , and the edge label sum of ��5 is ��� = (20 × 21)/
2 = 210.

We assume that � = � �1�1 + � �2�1 + � �2�2 +
� �3�2 + � �3�3 + � �4�3 + � �4�4 + � �5�4 + �(
�5�5) + � �1�5 , the label sum of the remaining edges is �,

��� = � + � (2)
Based on the geometric properties of the graph ��5 ,

� �1 + � �2 + � �3 + � �4 + � �5 + � �0 = �1
= 2� + � = ��� × 2 − �, get the following formula (3):

(��� × 2 − �)���6 = 0 (3)
That is

(0 − ����6)���6 = 0 (4)
According to formula (3), the following is obtained:

����6 = 0 (5)
Assuming that �1 is maximized, then � is minimized, the

label set of the set of edges covered by � is {1, 2, …, 9,10},
the label sum is � = 55, however, according to formula (5),
we could get the ���� = 60, then the �1��� = 360, while
���� = �1/2 = 180.
According to formula (2), the ����

' = 210 − � = 150.
For ���� ≠ ����

' and ���� > ����
' , the result contradicts the

premise of the hypothesis, the hypothesis does not hold. So
when � = 5, the Multi-circle gear graph ��5 is not AVREL
graph.
As evidenced by the above, all Multi-circle gear graph

��� (� ≥ 3, � ≠ 5) are AVREL graphs; when � = 5 , the
Multi-circle gear graph ��5 is not AVREL graph.

V. CONCLUSION
The findings introduced in this article rich our

understanding of reducible series, a new concept of Adjacent
Vertex Reducible Edge Labeling was proposed based on the
current concept of reducible labeling, and a new heuristic
algorithm was proposed which depended on the intelligent
algorithm, and the Adjacent Vertex Reducible Edge Labeling
algorithm has been utilized to calculate all non-isomorphic
graphs within finite vertices, some theorems and guesses
were given.
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