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Abstract--This article considers the tracking control problem

in nonlinear systems, and thus designs a novel
high-gain-observer based adaptive tracking controller. For
optimal control problems in the case of parameter
perturbations in nonlinear systems, the adaptive control
method which designs readily adjustable control laws and
adaptive parameters is adopted in backstepping. To address the
problem of containing immeasurable states in physical systems,
a high gain observer is designed to obtain unknown states. The
high gain parameters can better regulate the observed
performance of the system. Meanwhile, by introducing the
fuzzy logic system (FLS), the unknown construction in the
system is estimated. In addition, an event triggering strategy
with a fixed threshold is included to conserve network resources.
Furthermore, the command filter is used in the controller
design to solve “over-complication” and “excess
parameterization” problems in the backstepping. Through the
Lyapunov function and the recursive deduction of the
command filter, the signals in the close loop system (CLS) are
all ultimately bounded while the tracking error can converge to
a small area. Ultimately, the effectiveness of the design method
is demonstrated by simulations.

Index Terms—adaptive control; backstepping; high gain
observer; event triggering strategy; command filter

I. INTRODUCTION

t is known that nonlinear systems play an important role in
describing real physical systems. Nowadays, the tracking

control of nonlinear systems [1-3] receives increasing
attention. In this context, many scholars have designed
different controllers to solve this problem. Among the
methods, the design of controllers based on backstepping
method [4] is gradually applied more widely. It derives the
control laws of the system in a step-by-step approach. For the
problem of systems with parameters to be designed, an
adaptive control method based on backstepping [5-9] is
proposed. This method can design adaptive parameters upon
derivation, while the control law is always updated to meet
the requirements of system control. Due to the immeasurable
states and uncertain structures in the system, the high gain
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observer and the fuzzy logic system (FLS) [10-12] are
adopted in the controller. With this method, the complexity
caused by the unknown systems is solved. Moreover, the
repeated partial differential of the control laws will occur
when we deduce the control laws by using backstepping. If
the order of the system is higher, it will cause great trouble to
derive the theory. For this reason, the command filter [13-16]
is developed to simplify the process of deriving control laws.
In most cases, the controller does not need to provide the
control input at all times. Frequent updates of input may lead
to wasted communication resources. Thus, the event
triggering strategy [17-20] containing a fixed threshold are
brought into the design process. It can save communication
resources to improve system performance. The fixed-time
output feedback controller designed by Hou et al. [15]
utilizes command filter to reduce the complexity of the
derivation, but does not consider the problem of wasted
communication resources due to continuous input. Pang et al.
[4] designed a suspension system controller which can
achieve better tracking performance. However, it is not
suitable when the states are immeasurable. It can be known
that no articles in the current literature works aiming for the
design of nonlinear system controllers with unknowns and
obtaining the simplification of the design complexity and the
optimization of the system performance simultaneously.
Therefore, a novel high-gain-observer based output feedback
controller which can save system resources is designed.
Finally, all bounded signals can be uniformly contained in the
CLS and the controller can achieve good tracking
performance.

II. PROBLEM DESCRIPTION AND PREPARATION

To better solve the problem, we consider the output
feedback nonlinear system in the following form:
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In the system, 1[ ,..., ] ( 1, 2,..., )T
k kx x x k n  is the system

state vector. 1y x and ( )u t represent the output and input of
the nonlinear system respectively, where ( )u t satisfies

( ) 0u t  when 0t  . Besides, ( ) ( =1,2,...,n)kf k denotes the
unknown nonlinear functions that exists universally in real
systems and it has (0) 0kf  .

For the system (1), we propose the following control
objectives:

High-Gain-Observer-Based Output Feedback
Adaptive Controller Design with Command

Filter and Event-Triggered Strategy
Zhanbo Xu, Chuang Gao and Haizhi Jiang

I

IAENG International Journal of Applied Mathematics, 53:2, IJAM_53_2_02

Volume 53, Issue 2: June 2023

 
______________________________________________________________________________________ 

mailto:xuzhanbo2002@163.com


 Under the condition that the system states 2 3, ,... nx x x are
immeasurable, design an adaptive controller with
backstepping method to ensure the output y can track the
reference signal ry . Meanwhile, the tracking error can
converge to a small area which can be described ultimately.
 The signals in the CLS are all bounded.
When system communication resources are limited, the

controller can use an event-triggered strategy to adjust input
changes, ultimately reducing wasted resources and
improving system performance.
 In the process of designing the control laws, the

complexity of the design can be simplified by using the
command filter design method.

For a better derivation, we have the following lemma and
assumption:
Lemma 1 [17]: For random p R and 0  , there is the
following inequality:

tanh( ) 0.2785 .pp p  


(2)

Assumption 1: Suppose that the setting signal ry and its
derivative ( )k

ry are continuous and bounded.

III. DESIGN OF HIGH GAIN OBSERVER

Fuzzy logic system is a kind of system with fuzzy logic
and fuzzy concept. The fuzzy logic system has the following
four components: fuzzy inference engine, knowledge base,
fuzzifier ， and defuzzier. The knowledge base has the
following reference laws:

lR : 1X represents 1
kH , 2X represents 2

kH , and,..., nX

represents k
nH , then 1[ ,..., ]TnX X X is the input of the FLS.

Y stands for kP , which is the output of the FLS.  stands for
the number of reference laws. Furthermore, kP and

1 2, ,...,k k k
nH H H both refer to fuzzy sets of the system. To

better give the mathematical definition of the fuzzy logic
system, we express FLS as:
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where
_

max ( )k
y RY P y  , and fuzzy membership

functions are represented by ( )k
i iH X and ( )kP y . Fuzzy

membership functions are determined by the fuzzy sets.
Thus, we have the following equations:
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Then, we can express (3) as:
(( )ˆ) T XY ，   (5)

where  1 2( ) ( ), ( ),..., ( ) TX X X X    , and
_ _

1 1
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T
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.

Lemma 2 [12]: For any real number  , there is a
continuous function  f x that satisfies the following
equation:

          .T

R
sup f


    


  (6)

According to the above lemma, the unknown functions can
be replaced by the FLS described as below.

   ˆ ˆ ˆˆ ˆ|i i i i i i
Tx xf ，  (7)

We can define the optimum parameter i
 in i as follows:

 
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ii i

i i i i i i
x x

x xf f


 

 

    
   

(8)

where i is a closed mathematical set of i . Likewise, i is
a closed mathematical set of ˆ

ix and ix . Finally, we can
express the approximation error as:

    * *ˆ |  ( )ˆ | | , 0i i i i i i ii if x f x      (9)

From (1), we define  1 2, ,... T
nx x x x . Therefore, the

derivative of x is transformed as:
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where
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, 2
1 2

Tn
nW d l d l d l     ,

1

0,0,...,1,...,0
T

i

i n

H


 
  
  
 ,  0, ...,1 TR  .

Then, we construct the following high gain observer to
estimate immeasurable states.

1 1 1 1 1 2

2
2 2 1 2 2 3

1

ˆ ˆˆ ˆ( ) ,
ˆ ˆˆ ˆ( ) ,
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

   


(11)

where 1 1 1̂e x x  , l is a constant set to be greater than 1 in
the later procedure and ( 1,..., )id i n are given parameters.

From (11), (10) is denoted as:

 
1

ˆ ˆˆ ˆ ,
n

i i i i
i

x A x W y H f x Ru


     (12)

We define  1,...,
T

ne e e to represent the error of the the
state observation. It has:

ˆ.e x x  (13)
Then, we have:

 
i 1

ˆ ˆ ,
n

T
i i i ie X X A e H x  


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where * ( 1,..., )i i i i n     and 1,

T

n      .
Select the following coordinate transformation:

1 , 1, 2,..., ,i
i i

e
i n

l
   (15)

where  1 2, ,..., T
n    is defined as the scaling error

vector.
According to (12), the following result is obtained:
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n

T
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is a strict Hurwitz matrix,

2
1 1, ,

T
n
nl l


  

     
 satisfies    and 0  .

From [12], it is can be known that if A is a strict Hurwitz
matrix by designing suitable parameters there exist positive
definite matrices TO O and TP P concluding:

2 .TAP PA O   (17)
The Lyapunov function is chosen for scaling error vector

as:

0
1 .
2

TV P  (18)

Thus, 0V is obtained as:
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In the above equation,  ˆi ix is selected as a Gaussian

function so that    ˆ ˆ 1T
m m m mx x   . From Young’s

inequality, one has:
2 2 21 1 ,

2 2
TP P      (20)
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Thus, from (20) and (21), (19) can be transformed as:
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Since min ( )O is the minimum eigenvalue of O ,

0 min
1min ( ) 0

2 2
np l O     

 
and 2 21

2
P  .

IV. FUZZY ADAPTIVE CONTROLLER DESIGN

In this part, to ensure that the system is ultimately stable,
an observer-based controller is constructed by using adaptive
backstepping approach. The control laws can be designed in
each step of the derivation. In order to avoid the burden
caused by repeated derivations of the control laws and to
conserve system communication resources, we apply
command filter and event triggering strategy to the design of
the controller. Finally, we perform stability analysis on the
designed controller to illustrate the rationality and
effectiveness of the controller design method

Based on the method of the command filtered
backstepping, we have the following coordinate
transformation.

1 1 1 1, ( )
ˆ ,
ˆ ,

r

i i i

n n n

z x y
z x
z x

 



  
  
  

(23)

where i represents the output of the command filter
associated with i . Thus, we define the first-order command

filter as:
 ,  (0) (0)i i i i i i       (24)

where 0i  are the parameters that can be designed.
Lemma 3[13]: There is a known constant i , and its

relationship to the filter output error is 1 1i i i     .
Step 1:
According to (11) and (23), one yields

1 1 1

2 2 1 1 1

2 2 2 2 2 1 1 1

ˆ ˆˆ    =x ( )

ˆ ˆ    =z ( ) .

r

r

z x

l f x y

l f x y



  

     





 

   

      






(25)

To address the effect the of the the filter’s output error
( 2 2  ), the compensating signal 1 is introduced.

1 1 1 2 2 2 ,          (26)

where 1 is a known constant and its initial value is zero.
Therefore, we define the compensating error as:

1 1 1.z   (27)
By plugging (25) and (26) into (27) yields

1 2 2 2 1 1 1

1 1 2 2 2

2 2 2 1 1 1 1 1

ˆ ˆz ( )
        

ˆ ˆ    = ( ) .
r

r

l f x
y
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    

    

     





(28)

The Lyapunov function constructed for step 1 is the
following equation:

2
1 1 1

1

1 1 ,
2 2

TV w
a
     (29)

where *
1 1 1̂    and 1a is a positive parameter that needs to

be selected.
Based on the above, we can obtain 1V as:

1 1 1 1
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1 2 2 2 1 1 1 1 1 1

1 1 1 1 1
1

1

1

1 ˆ
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1 ˆ ˆ       ( ).
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 

     

 

 


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(30)

According to Young’s inequality, it gives

2 2
1 1 1

22 2
1 2 1  .

1 1 .   

1 1
2

2

2

2

l l   
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 


(31)

We design the virtual control law 2 as:

2 1 1 1 1 1 1
ˆ ˆ( ) .T

rx y z         (32)

Design the adaptive law 1̂ as follows.

1 1 1 1 1 1 1
ˆ ˆˆ( ) ,a x b    (33)

where 1b is a design parameter which is positive.
Based on above, one produces

2 1
1 1 2 1 1 1 1

1

22 2

1 ˆ
2

1 1     
2 2

Tb
V

a

l
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 

  

 



(34)

Step i :
Consistent with Step 1, from (10) and (23), we have the
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derivative of iz as

1 1

1 1 1 1 1
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i
i i i i i i i i
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

   

   

     

 
 (35)

To address the effect the of the the filter’s output error
( 1 1i i   ), introduce the i as

1 1 1 1 ,i i i i i i i              (36)

where i is a known constant and its initial value is zero.
The compensating error gives

.i i iz   (37)
By substituting (34) and (35) into (37) yield:

1 1

1 1

ˆ ˆ     = ( )
       .

i i i

i
i i i i i

i i i i

z
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

 

 

  

  

 
 (38)

Select the following Lyapunov function for step i .
2

1
1 1 .
2 2

T
i i i i i

i

V V
a

       (39)

From (39), iV is obtained as:
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1 1 1 1 1
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1 ˆ ˆ ˆ     ( ) ( ).

T
i i i i i

i

i T
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T T T
i i i i i i i i i i

i

i

V
a
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x x
a
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         
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
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  
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  

 

 

  



(40)
Similar to (21), it gives

2 .1 1ˆ( )
2 2i i i i i i

T T
ix        (41)

For system stability, the 1i  is designed as:

1 1 1
1ˆ ˆ( ) ,
2

T i
i i i i i i i i i ix z z d l              (42)

The î for step i is designed as:

ˆ ˆˆ( ) ,i i i i i i ia x b    (43)

where ib is a positive parameter that needs to be selected..
Based on the above design, it produces

2
1

1 1

22 2

2

1 ˆ
2

1 1 1        .
2 2 2

i i
m

i i i m m m m
m m m

i
T

m m
m

b
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a

l
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Step n：
In the last step, the controller with update event triggering

strategy is derived.
Similar to Step i , we yield the derivative of nz as:

1

ˆ
ˆ ˆ    =u+d ( ) .

n n n

n
n n n n

z x

l f x



 
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 

 

 (45)

Then, we introduce the compensating signal as:

1,n n n n       (46)

where n is a known constant.
We define the following compensated error:

n n nz   (47)
By substituting (45) and (46) in (45), it gives

1 1
ˆ ˆ     =u+d ( ) .

n n n

n
n n n n n n n

z

l f x

 

     

 

   

 
 (48)

The 1n  is designed as follows:

1 1 1
1ˆ ˆ( ) .
2

T n
n n n n n n n n n nx z z d l              (49)

In this case, an event triggering strategy which has the
fixed threshold is introduced. This strategy is considered
when the controller error reaches a set value. Thus, we design
the following adaptive controller.

1( ) tanh( ).n
nt


   




 (50)

Meanwhile, we design the adaptive law n̂ as:

ˆ ˆˆ( ) .n n n n n n na x b     (51)
The event triggering form is constructed as follows

    1( ),   ,k k ku t t t t t    (52)

 1 inf ( )kt t R t ，     (53)

where  ,  , and  are all positive parameters and it has
  . The controller error is specified as ( ) ( ) ( )t t u t  .

In the above formula,  kt k Z  represent the updating time.

When the error ( )t reaches the critical threshold b , the
event will be updated to the latest time 1kt  . The controller
will be adjusted to 1( )ku t  . In the condition of  1,k kt t t  ,

the controller will be kept as ( )kt .
Design the Lyapunov function for the last step as:

2
0 1

1 1 .
2 2

T
n n n n

n

V V V
a

       (54)

From above, the derivative of V gives

1

1

0 1 1

0
1 ˆ

    = ( )

     

ˆ ˆu+d ( )
1 ˆ ˆ ˆ( ) ( . ) 

n T
n n n n n n n n

T T T
n n n n n

T
n n n n n

n

n n

n n n n n
n

l x

x x
a

V V V

V V

 

      

   

 




   



    

 

   













 











(55)
From (52) and (53), we know that when the time is in the

range between kt and 1kt  , then there is ( ) ( )t u t    .

Therefore there is a function ( )t that satisfies the following
rules between trigger times kt and 1kt  .

( ) 0,
( 1) 1,
( ) 1.

k

k

t
t
t






 


 
 

(56)

Then, ( )t is transformed as:
( ) ( ) ( )t u t t    . (57)

From Young’s inequality, one gives
2 .1 1ˆ( )

2 2n n n n n n
T T

nx         (58)

2

1 1 1

1 1ˆ .
2 2

n n n
T T
i i i i i

i i i

     

  

       (59)

According to (49), (50), (51), (55), (57), (58), (59), and
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Lemma 1, one has:

1

22

22

0
1

1 2

2 1
2

1 1      0.2785 .
2

2

2 2 i

n n
i

i
T
i i

n n
Ti

m m
i m

i
i i i

i

b
V V

b

l

a

a
    

   

 



 



   





 

 

   

 
(60)

Substituting (19) into (59) gives
2

22 2
0

22

1

2

1 1

2

1 1
1

2
1

2

1 1( ) ( )
2 2 2

       +

.

1 1 0.2785
2 2 2

   

T
i i

n n
Ti

i m m
i mi

n n
T T

m m m

i

i m

n n
i

i i
i i

i i

b
V P p l

b
a

q
a

b

 

   

   

 

 










 



  

  



  

 

     

 







  

 

   

(61)

where
2

1
1

1

1
2 2
b

P
a
  ,

21 1 ( 2,3,..., )
2 2 2m
m

m

b
P m n

a
    

2
0

1( )
2

p l  , and
22

1

1 0.2785
2 2

n
i

i
i i

b
qb

a
  



    .

Appropriate parameters are designed to make 1 0  ,
0m  , and 0  . Then, we set
 minmin 2 / ( ), , , 1,. .2 . ,2i i ik n P ia    . Thus (61) has

the new form as
.V kV b   (62)

Thus, from(57) it produces

   00 ( ) 0 ,k t t bV t e
k

V   � � (63)

where 0t is the initial time. From (63), it can prove 2
1 will

be bounded by a function and it will converges to a compact

set  2
1 1 82 2 ( ) /0.27 5qbz z k

k



    


  at a rate of k by

exponential form.
To prove that iz is bounded, i also needs to be proven to

be bounded. To prove the conclusion, we again choose the
Lyapunov equation as:

2
1

1

1 .
2

n

n i
i

V 


 (64)

From (26), (36), and (46), the derivative of the above
yields

1
1

1 1 1 2 2 2 2 2 2 3 3 3 1

1
1

2
1 1

1 1

       = ( ) ( )
         ...+ ( )

       =- ( ).

n

n i i
i

n n n n
n n

i i i i i
i i

V  

            
   

    








 
 



          

 

 



 



(65)
From Young’s inequality, it gives

1 1 1
2 2

1 1 1

1 1 .
2 2

n n n

i i i i
i i i
   

  

  

    (66)

From Lemma3 and (66), (65) can be obtained as:
1

2 2
1

1 1

1 1- ( ) .
2 2

n n

n i i i
i i

V   



 

    (67)

The above inequality will be chosen by suitable parameters

satisfying 1
2i  . Similar to (62) and (63), we can prove

that i is convergent to a compact set ultimately. Due to

i i iz    , the tracking errors iz will be bounded finally.
According to the above, ix , i , and i can all be proven to
be bounded apparently. Thus, all the signals of the CLS are
bounded.

Then, we should prove a 0t  exists and satisfies

1 ( )k kt t t k Z 
     . From ( ) ( ) ( )t t u t  , the

following formula can be obtained.
1
2( ) ( ) .d d sign

dt dt
         (68)

Thus the derivative of ( )t yields

2
1 .

cosh ( )

n
n

n





  



 
 (69)

From the above, we can know that  is continuous and

bounded. Therefore, there is a constant 0 satisfying    .

It can be noted that ( ) 0kt  and
1

lim ( )
kt t

t


  . So we have

/t   . Based on above, we can avoid the Zeno-behavior
[17] effectively.

V. SIMULATION PROOF

The validity of this controller will be tested in this section.
For better argument, a physical second-order nonlinear
system is used for simulation. The system is provided as:

1 2

1
2

1

sin( )1 ( ) ,
2

x x
mmgl xx u

M
y x


  






 (70)

where 0.05mm  , 0.5l  , 1M  , 9.8g  are system
parameters.

In the simulation, we set ( ) sin( )ry t t . The controller
parameters are 1 1.5  , 2 0.5  . The high gain observer
parameters are 1 2d  , 2 1.5d  , and 2l  . The command
filter parameters are 2 0.05  . The adaptive parameters are

1 0.8a  , 2 0.8a  , 1 80b  , 2 80b  . The event-triggering
strategy with fixed threshold parameters are

10 , 0.5 , 8  . The initial condition 1(0) 1.5x  ,

2 (0) 1.5x  , 1̂(0) 1.5x  , 2ˆ (0) 1.5x  , 1(0) 0  , 2 (0) 0  ,

1̂(0) 0  , 2̂ (0) 0  , 2 (0) 0  . Then, we choose the
following fuzzy membership function.

   2ˆ 3
ˆ exp ,

4Z
i

i
iF

x Z
x

  
  
 
 

(71)

where 1,2i  and 1,2,3,4,5Z  .
By selecting the above parameters, we can get the

following simulation results. Fig.1 displays the tracking
situation between the output y and the ry under the
designed controller. From fig.1, it is known that y can
effectively follow the reference signal.

Fig.2 and Fig.3 perform the observation performance of
the high gain observer respectively. From the figures, we can
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know that the proposed controller can estimate the
immeasurable states. As a result, the controller can be used in
more applications. Fig.4 plots the curves of the actual control
law ( )t and event triggering control law ( )u t . Fig.5 shows
the event triggering intervals. The number of triggering
events is 172. From them, it can be known that the event
triggering strategy can free up the storage of system
communication resources and thus save network space.

Fig.1. Controller tracking situation

Fig.2. Observation performance of 1x

Fig.3. Observation performance of 2x

Fig. 4. Curve of the control signal

Fig.6 illustrates the systematic tracking error. According
to the figure, the controller can achieve good tracking
performance. Fig.7 shows the curve of the compensating
signals 1 and 2 . Obviously, the compensation signals are
bounded and eventually oscillate within a fixed region. Fig.8
describes the variation of the adaptive laws. Based on the
figures, it can be shown that the controller is appropriate for
this nonlinear system.

Fig. 5. Time intervals of triggered events

Fig. 6. Tracking error of the system
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Fig.7. Curve of the compensating signals

Fig.8. Curve of adaptive laws

VI. CONCLUSION

For the tracking control problem of nonlinear system, a
novel adaptive controller based on high gain observer is
developed in this paper. Firstly, since the nonlinear system
contains unknown parameters to be designed, the adaptive
control based on backstepping is adopted. Then, for the
existence of the uncertainty, a high gain observer with FLS is
introduced in the controller. In addition, the command filter
backstepping is used in derivation. It can avoid the problem
of excess complexity caused by repeated partial derivatives
in the procedure of finding control laws effectively.
Furthermore, a event triggering strategy is proposed to
conserve network resources. The controller allows all signals
in the CLS to be bounded and achieves the tracking goal by
converging the tracking error ultimately. The effectiveness
and reasonableness of the controller was finally proven by
observing the simulation results.
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