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Abstract—Nowadays, Device to Device (D2D) communication
becomes a crucial technology in 5G wireless systems. It is
intended to improve the system performance, enhance the user
experience and offer a large variety of applications, that is why
it attracts more attention. Motivated by the machine learning
successful applications to many practical domains, researchers
have proposed its application in wireless communication topics,
especially in D2D communications. One of the scenarios of
D2D communications is underlaid in-band, when each resource
block is shared between the D2D and cellular users, thus
co-channel interference is a challenging problem. To manage
interference mitigation with power allocation technique, we
propose, in this paper, a new power control algorithm based
on Safe Q-learning algorithm. Our goal is to maximize, in the
same time, the throughput of D2D users and the device lifetime
metrics, while guaranteeing the required SINR for the cellular
communications. It has been demonstrated that through our
algorithm, D2D users equipments are able to learn their power
in a self-organized manner, in addition to achieving better
device lifetime metrics than that based on an enhanced Q-
learning algorithm.

Index Terms—D2D communications, Reinforcement learning,
Safe Q-learning, Device lifetime optimization.

I. Introduction

The rise of the number of mobile users has given the
impulse to the demand for proximity services with high data
rates. The 5th-generation (5G) networks pledge to introduce
new technologies according to the future expected demands
in order to provide effective and resource-efficient solutions.
Device to device (D2D) communication has been proposed
the first time in release 12 of 4G mobile networks, and
it will play a significant role in 5G wireless systems, as
it offers a variety of services with high data rate and low
latency [1]. In cellular networks case, D2D communication is
seen as direct communication between two proximate mobile
equipments without the need of involving the Base Station
(BS). Generally, D2D communications are non-transparent
to the cellular infrastructure and it can take place on the
cellular spectrum (that is, in-band) or unlicensed spectrum
(that is, out-band). Hence, D2D communications can likely
improve spectral efficiency, throughput, energy consumption
efficiency, transmission delay, and fairness [2]. In an un-
derlaid in-band setting, when the D2D users compete with
the cellular users (CUs) to use the same resources, the
major challenge is the existing of interference due to the
aggressive frequency reuse. It is crucial to design an powerful
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interference management plan to mitigate the interference
caused by the D2D links to the cellular links, and reciprocally
[3]. The paper [4] presented achievable data rate utilities of
UEs to make decision on receiving content via relay with or
without reward given by the BS.

One of the solutions to mitigate the interference in the
above model, is the power control, it is broadly used in cur-
rent wireless systems [5]. For instance, researchers in [6] has
elaborated a Green Hose-Rectangle Model to optimize power
efficiency in communications networks for green computing.
Authors in [7] has proposed an iterative distributed power
control algorithm with the objective to allocates transmit
powers which lead to minimized power consumption while
meeting a sum-rate constraint. In [8], To enhance the energy
efficiency (EE) of D2D communications, an effective iterative
resource allocation and power control strategy is suggested.
Also in [9], the authors of the paper use mathematical tool
of stochastic geometry and give a channel allocation (CA)
scheme jointly with a group of three power control (PC)
schemes to reduce interference in a D2D underlaid cellular
networks, in order to enhance D2D and cellular coverage
chances, and improve spectral and power capability. In [10]
considered the distribution of the D2D transmit power.

Another crucial factor to be considered is the battery
lifetime of the mobile users. This subject was insensitively
considered(reader can see for example references as
[11], [12], [13]). As known the battery lifetime is not
unlimited, as they experience degradation influenced by
multiple things, including both manufacturing aspects and
operating circumstances. For operating conditions, we
can cite High discharging currents, impulse discharging
currents, low or high operating temperature that short the
battery lifetime [14]. For example, To prolong the network
lifetime, authors in [15] proposed a scale-free topology
based on the Node Lifetime in a Wireless Sensor Networks
(WSN) environment. In our case, the decision of the power
allocation mechanism should be made based on the battery
residual energy information of each D2D device. For
example, a node with low residual battery energy shouldn’t
transmit with higher transmit power even this latter can
guarantee better performance in terms of throughput [16].

Improvements in artificial intelligence (AI) and machine
learning (ML) give endless potentials in various science
and engineering fields including computer communication
networks. It is defined as the system’s capability to acquire
and integrate knowledge based on exhaustive observations,
and to ameliorate itself by learning new knowledge instead
of being programmed with that knowledge [17]. We have
four main categories of machine learning methods: Super-
vised technique, Unsupervised technique, Semi-supervised
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and Reinforcement learning ones [18].
• Supervised learning uses tagged training data and a set

of training cases to conclude a pattern that maps an input
data to an output. Classification that separates the data,
and regression that permits to fit the data are the most
common supervised tasks.

• Unsupervised learning explores unlabeled data sets.
Clustering, association rules, density estimation, dimen-
sionality reduction, anomaly detection are some appli-
cations of unsupervised learning tasks.

• Semi-supervised learning mixes supervised and unsu-
pervised methods. It operates on labeled as well as
unlabeled data.

• Reinforcement learning enables agents to automatically
learn and evaluate the optimal behavior in a specific
environment to enhance its efficiency, it is considered
as an environment-driven approach.

Reinforcement Learning (RL), has been considered as
a powerful tool in solving resource allocation problems in
5G. Reader can refer to recent works as [19] and [20] to
explore some utilization of RL in optimisation problems. It
is also used as a power allocation technique to minimize
the overall network interference [21]. Q-learning is a basic
RL algorithm, and it has many variants which they are
used as an effective way for D2D power control. In [22],
authors propose two RL algorithms, team-Q learning and
distributed-Q learning, as a power control techniques,
in order to maximize the overall system capacity while
guaranteeing the requirement of quality of service(QoS)
from CUs. Xu, in [23], has proposed a Hierarchical Extreme
Learning Machine (H-ELM) algorithm for the D2D power
allocation, and he has proved with simulation, and in
comparison with other RL algorithms, i.e. distributed
Q-learning and CART Decision Tree, that the proposed
algorithm provides better performance in communication
throughput as well as in energy efficiency with limited
time consumption. In [24], researchers has combined neural
networks with Q-learning, and proposed a new algorithm,
Multi-Agent Deep Q algorithm, which showed higher
performance in comparison with other traditional power
control algorithms. In [25], a battery lifetime aware resource
allocation framework in cellular-based M2M networks was
proposed. This framework provides substantial network
lifetime enhancement and network maintenance cost
reduction in comparison with literature solutions.

In this paper, a D2D power control algorithm based on
Safe Q-learning is proposed to achieve better performance
in term of both throughput and device life-time, while
maintaining lower interference applied to CUs. The rest of
this paper is organized as follows. Section II describes the
system model and the formulation of the problem. Section
III introduces the Safe Q-learning algorithm. Section IV
describes Safe Q-learning algorithm for D2D power control.
Section V presents numerical and simulation results. Section
VI concludes this paper.

II. SystemModel and Problem formulation

We consider M cellular users and N D2D pairs distributed
uniformly at random within the coverage area of BS in a

single cell. Cellular and D2D users share the same number
of available resource blocks (RBs) for their uplink (UL)
transmission, which is denoted by K. We assume that each
RB is taken by one cellular user and can be shared with
Nk D2D pairs, where Nk ≤ N. In this scenario, we have
two kinds of interference, the first one is applied to the BS
from the D2D transmitters, the second is applied to the D2D
receiver from the cellular user and other D2D transmitters
who share the same RB. So the signal to interference plus
noise ratio (SINR) of the ith D2D user on the kth RB is
expressed as follows:

γd
i,k =

pd
i,k.G

d
i,k

σ2 + pc
k.G

c
i,k +

Nk∑
j=1 j,i

pd
j,k.G

d
j,k

(1)

Where pd
i,k, pc

k and pd
j,k denote the transmit power of the

ith D2D transmitter, the cellular user and the other D2D
transmitters sharing the same kth RB, respectively. Gd

i,k, Gc
i,k

and Gd
j,k represent, respectively, the channel gain in the ith

D2D link, the channel gain between cellular transmitter and
the ith D2D receiver and the channel gain between one of
the other D2D transmitters (the jth one), sharing the same
kth RB, and the ith D2D receiver. σ2 is the noise power. For
G, it can generally expressed as follows [24]:

G = 10(−PathLoss−S hadowing)/10

Likewise, the SINR of the cellular user in the kth RB, is
given by:

γc
k =

pc
k.G

c
0,k

σ2 +
Nk∑
j=1

pd
j,k.G

d
j,k

(2)

With Gc
0,k is the channel gain between the BS and the

cellular user.
We define the network lifetime, or its service duration,
as the time duration from the starting reference time till
the moment when the network is considered to be non-
functional. However, the network is considered to be non-
operational is application dependent. In safety-critical appli-
cations, for example, where the death even one node worsens
the performance or coverage. Also, in sensor deployments
with low densities, where correlation between the reading of
different nodes is weak, the shortest individual lifetime (SIL)
may designate the network lifetime. However in situations,
e.g. where high correlation exists between data collected by
different nodes, the largest individual lifetime (LIL) or the
average of individual nodes lifetime (AIL) may be used as the
network lifetime. In this work, we consider the first context,
i.e., the smallest individual lifetime is used as the network
lifetime [25], that is: DLnet = miniDLi

DLi =
Ei0

E[pd
i ]

(3)

Where Ei0 is the initial energy of ith D2D transmitter,
and E[pd

i ] is its transmit power expectation. Assuming that,
for simplicity, each message transmission occurs in unity of
time.

In this study, we assume that the objective of our D2D
power control algorithm is to maximize, in the same time: (i)

IAENG International Journal of Applied Mathematics, 53:2, IJAM_53_2_08

Volume 53, Issue 2: June 2023

 
______________________________________________________________________________________ 



the overall throughput of the D2D communications and (ii)
the device lifetime metrics, while guaranteeing the minimum
SINR for the cellular network. To achieve this objective, we
have to solve the following optimization problem:

max
pK

K∑
k=1

(
Nk∑
i=1

log2(1 + γd
i,k) + C.DLnet)

s.t. γc
k ≥ τ

0 ≤ pd
i,k ≤ pmax,∀i, k (4)

Where pK = (pd
1,k, ..., pd

i,k, ..., pd
N,k) is the vector of D2D

transmit powers. C is an arbitrary positive constant which
maximize our multi-objective optimization problem. The
value of C is determined based on a specific choice of the
relative weight of the objectives, i.e., in our model, is it more
important for the throughput to be close to the maximal value
than for network life time, or the inverse?

We can see obviously that when the transmit power of
the D2D users increases, the D2D throughout will increase
automatically, while the D2D lifetime will decrease and the
cellular communications will experience more interference.
On the other hand, to ensure a minimum QoS of cellular
users, D2D transmit powers should be limited. To find the
optimal D2D transmit power, a Safe Q-learning based power
control algorithm will be introduced.

III. Safe Q-Learning

The idea of reinforcement learning is simply an agent in
an environment, performing actions based on its observations
of this environment. Generally, the agent chooses actions
depending on a policy. The agent receives immediate
rewards from the environment, which signalizes how well
the agent behave. The goal of the agent is to maximize its
cumulative reward by observing its environment and the
reward information received, and then executing the optimal
actions. The Q-Learning algorithm is an off-policy control
algorithm, meaning that it does not depend on the policy
the agent uses to explore the environment. It is defined by
the following update equation:

Qt+1(S i, a j)← Qt(S i, a j)+α[Rt+γmax
a′j

Qt(S ′, a′j)−Qt(S i, a j)]

(5)
Where α is the learning rate and γ is the discount factor of
the Q-Learning algorithm.

Without the need of any policy being followed and using
such update scheme for action-value pairs, Q-learning can
reach the best approximation of the optimal action-value
function[26]. However, as stated in [22], the distributed Q-
learning gives benefits than classic one. It enables agents to
learn independently and then reduces the complexity of Q-
value table. Its principle is to split the large Q-value table
to multiple small ones. Thus, multiple Q-value tables are
maintained. The Q-values in each Q-table will be updated
only when the next Q-value is greater than current Q-
value. In distributed Q-learning, the missions of learning
optimal action policy are decentralized to each agent in
team, that is, there is no central control mechanism. So,
the state-action space becomes smaller even the number of
agents increases. Consequently, the convergence time of the
algorithm becomes more speed [31].

The Q-values are updated as follows (6):
One of the major drawbacks of Q-learning (either in the

classic or in its deep version) is regarding to the method of
selecting actions from quite uncertain parts of state space,
which happens often after occurrence of an severe event.
Let consider, For example, a system that has been in a
stable state for a large time, that part of the Q-table is well-
known, however, the other parts can be highly uncertain.
If an extraordinary event occurs, it forces the system to
those areas, so in this case, how can transform the random
exploration of the learning into a safe one [27].

In order to solve this problematic, Safe Q-learning is
driven from the constrained Markov decision processes
(CMDP). This variant of Q-Learning algorithms adds a
restriction function to the classic objective function so that it
splits the action space into feasible action space that fulfills
the constraint condition and infeasible action space that does
not fit the constraint term. Under these conditions, the agent
only executes feasible actions and goes into safe states so as
to abstain from unnecessary damage caused by incorrectly
executing the infeasible action [28]. The Fig.1 gives a simple
illustration of Safe Q-learning model.

As a result, Safe-RL can maximize the expectation value
of reward as well as guaranteeing sufficient performance and
dealing with safe constraints. we can distinguish two kins
of Safe-RL, the first one is based on the amendment of
the optimality criterion, the standard discounted finite/infinite
horizon, with a safety aspect. The principle of the second
one is the modification of the exploration process via the
integration of external knowledge or the guidance of a risk
metric [29].

We can describe the algorithm as a 5-tuple <
S , A,T,R,C > where S represents the set of states, A
represents the set of actions, T (s, a, s′) = Pr(s′|s, a) is a
transition model that captures the probability of passing to
state s′ by executing action a at state s, R(s, a, s′) is an
immediate reward got when executing action a at state s.
C is the set of constraint functions which represents that
the action space is constrained. A policy π : S → A is the
mapping function from states to actions [30].

IV. Safe Q-learning Power control algorithm

Consider learning on the kth RB, we focus on Nk D2D
transmitters who share this RB as the Agents. Our objective
is that the agent learn its transmit power from the feasible
actions taking into account the predefined constraint. In the
above scenario, states, actions, reward, constraint functions
are defined as follows:

State: We specify the state as:

S i,k
t = Ik

t

Where i indicates the D2D user, k is the considered RB, at
time t, and Ik

t represents whether the level of interference
applied the cellular communications is acceptable or not, i.e.
The cellular SINR is above the minimum threshold τ:

Ik
t =

{
1 i f γc

k ≥ τ
0 otherwise

We suppose that the D2D user gets the actual value of
SINR from the BS.
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Qt+1(S t, at) =

max{Qt(S t, at); Rt+1 + γmax
a′

Qt(S t+1, a′t+1)} if S = S t and a = at

Qt(S t, at) otherwise,
(6)

Fig. 1. The illustration of Safe Q-learning

Action: The action of each agent is composed of a set of
transmitting power levels. We denote actions by the set:

A = (ak
1, a

k
2, ..., a

k
l )

where l means that every agent has l power levels.
In this article we utilize the ε − greedy strategy to select

actions based on the actual Q−value estimation, which is
described as the following:
• choose action randomly with probability ε from the feasible
action space,
• choose action according to a = arg maxa∈AQ(s, a) with
probability 1 − ε

Reward: The reward function reflects the learning objec-
tives of RL.so we define the reward as

R =

{
log2(1 + γd

i,k) i f γc
k ≥ τ

−1 otherwise

Constraint: The constraint function represents that the
action space (power levels) is constrained to a reduced set
of actions considering the device battery level. i.e Ac =

(ak
1, ..., a

k
m) where m ≤ l

The power control strategy is illustrated in the following
algorithm.1. in the beginning, we associate for each D2D
transmitter a set of feasible transmit power levels based on
its initial energy reserve. Then, in the learning process, we
use ε−greedy algorithm to select the next action to perform.
This selection is done in the set of feasible actions related
the considered D2D transmitter. The selected action is then
executed, and the related reward is earned. Thus, the Q-table
is updated. This process is iterated till the maximal number
of iteration is achieved.

V. Numerical and Simulation Results

A. Simulation Parameters

In the simulation, we compare our proposed algorithm
with the distributed Q-learning algorithm for a multi-agent
scenario. We consider a single macrocell with a covering
radius of 500m. The spectrum is shared to 20 RBs, where
multiple cellular and D2D users coexist. Cellular and D2D
users are uniformly distributed on the cell that a Base
station is located in the center. The distance between a D2D
pair (Transmitter and receiver) have a random value in the

Algorithm 1 Q learning algorithm
1. Initialization:
for each D2D transmitter i do

Define the feasible action set Ai
c based on the constraint

end for
for each state S i ∈ S and each action a j ∈ A

i
c do

Initialize Q(S i, a j) arbitrarily
end for
evaluate the starting state S i ∈ S
2. Learning:
while MaxIteration not reached do

choose a j ∈ Ac using the ε-greedy policy based on Q
Take action a j and observe the immediate reward Rt and next
state S ′
Qt+1(S i, a j)← max{Qt(S i, a j); Rt+1 + γmax

a′j
Qt(S ′, a′j)}

S i ← S ′

end while

TABLE I
Simulation parameters

Parameter Value

pmax, maximal transmis-
sion power

23dBm

Noise Power per RB −116dBm

D2D pair distance 50m

Pathloss model between
BS and users

15.3 + 37.6log10(d(km))(dB)

Pathloss model between
users

28 + 40log10(d(km))(dB)

Macro BS antenna gain 17dBi

User antenna gain 4dBi

resource block bandwidth 180kHz

range [5, 50]m. Data packets are assumed to have 180000
bits length. The Q-learning parameters are as follows: the
learning rate is α = 0.5, the discount factor is γ = 0.7, the ε
greedy parameter ε = 0.2. The rest of simulation parameters
used in this work are summarized in Table I. We define the
action space as a vector of discrete values of transmit power
levels, i.e. A = 2 : 25 with step of 1dBm. We distinguish six
battery level ranges. Thus, when the battery level is under
17% the action space is minimized to A1 = 2 : 5, and when
the battery level is between 17% and 33% the action space
becomes A2 = 2 : 9, and so on. The D2D battery level is
uniformly distributed. Thus, the i− th D2D transmitter initial
energy is: Ei ∈ {5, 9, 13, 17, 21, 25} × 100 j.

B. Results and Discussion

In Fig.2, we plot the D2D transmitter lifetime as a function
of D2D pairs number. The minimum lifetime is defined as
the number of transmissions before the first D2D transmitter
runs out its total energy. As we depicted in this Fig. we can
observe that the proposed algorithm shows an enhancement
of the performance compared to the distributed Q-learning in
terms of minimum lifetime when the number of D2D pairs
is in {5, 10, 15}.
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Fig. 2. Devices Lifetime vs D2D pairs, with τ = 6dB
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Fig. 3. Device Lifetime vs SNR threshold for 5 D2D pairs number

In Fig.3, the D2D transmitter lifetime is given with re-
gards to the minimum cellular S INR threshold. It is shown
that average minimum device lifetime presents remarkable
amelioration in our algorithm in comparison with distributed
Q-learning where the S INR is less than 8dB.

We plot, in Fig. 4, the network average throughput for the
D2D transmitters. As we can see, Our algorithm gives better
D2D transmitters throughput than distributed Q-learning one
for D2D pairs numbers between 5 and 20. These perfor-
mances are important when the number of D2D transmitters-
receivers is relatively low.
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Fig. 4. Network average throughput for τ = 6dB
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Fig. 5. Network average throughput for 5 D2D pairs number

TABLE II
Simulation Results for ε = 0.1 for multiple values of D2D pairs number

D2D
pairs
number

Safe
Average
Mini-
mum
lifetime

Distributed
Average
Mini-
mum
lifetime

Safe
Through-
put
(packets)

Distributed
Through-
put
(packets)

5 105 36 63 63

10 100 90 97 90

15 100 55 115 113

20 100 91 120 117
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Fig. 6. Devices Lifetime vs D2D pairs

Fig. 5 gives the network throughput for 5 D2D pairs when
the SNR threshold varies from 4dB to 8dB. As depicted, we
can observe that the proposed algorithm out performs the
distributed q-learning for different S INR values. As depicted
in this figure, we can remark that our proposition gives an
extension of the throughput by up to 14% as compared to
the distributed Q-learning.

Table II gives the obtained results for learning with ε-
greedy parameter equals to 0.1. Our algorithm always gives
best performance in terms of lifetime and Throughput with
regards to Distributed Q-learning.
In the last assessment, we consider a sever path loss channel
model. In this situation, the channel path loss used is as
follows: 28 + 50log10(d(km))(dB). The parameter ε is kept
as 0.1. The obtained results are given in Fig. 6 and Fig. 7.
As we can observe, the network lifetime is well performed
in the Safe q-learning than Distributed q-learning. We recall
that with sever path loss channel, more energy is required to
achieve transmission between device pairs.

VI. Conclusion

In this work, we presented a Q-learning algorithm with
safety constraint to control the transmit power of D2D
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Fig. 7. Network average throughput vs D2D pairs number ×180000 bits
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transmitters in order to maximize the overall throughput
of D2D communications and extend the device lifetime,
while ensuring the minimum SINR for the cellular com-
munications. In our case, we defined the constraint as the
battery energy level of D2D transmitter. So, devices with
reduced battery energy are constrained to use limited transmit
powers. Based on numerical assessment, we proved that our
proposition permits a lifetime extension of D2D transmitters
as compared to the distributed Q-learning algorithm. Hence,
simulation shows an important improvement of the minimum
device lifetime, which corresponds to the depletion of the
battery of the first device.
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