Eigenvectors of Discrete Second-order Coupled Boundary Value Problems with Sign-changing Weight

Yalin Zhang

Abstract—This paper is concerned with discrete second-order coupled boundary value problems with sign-changing weight. We find that these problems have T real eigenvalues (including the multiplicity). Specifically, the numbers of positive eigenvalues are equal to the number of positive elements in the weight function, and the numbers of negative eigenvalues are equal to the number of negative elements in the weight function. Furthermore, the relationships between the eigenvalues under three different coupled boundary conditions are established. These results extend the relevant existing results of periodic and anti-periodic boundary value problems with sign-changing weight and the coupled boundary value problems with definite weight.

Index Terms—eigenvalues, second-order difference equations, coupled boundary condition, sign-changing weight.

1. INTRODUCTION

Let $T > 2$ be an integer, $T = \{1, 2, \ldots, T\}$. In this paper, we consider the second-order difference equation

$$Lu := \Delta[p(t-1)\Delta u(t-1)] - q(t)u(t) + \lambda a(t)u(t) = 0, \quad t \in T$$

with the coupled boundary conditions

$$\left(\begin{array}{c}
u(T) \\ \Delta u(T) \end{array}\right) = e^{\text{i}\alpha K} \left(\begin{array}{c}
u(0) \\ \Delta u(0) \end{array}\right),$$

where $\Delta u(t) = u(t + 1) - u(t)$, α is a constant parameter, $-\pi < \alpha \leq \pi$.

Theorem 1 (Theorem A). Assume $k_3 > 0$. Then, for every $\alpha \in (-\pi, 0) \cup (0, \pi)$, the eigenvalues $\eta_i (1 \leq i \leq T)$ of (1)-(2) satisfy the following inequalities:

$$\eta_1(K) < \eta_1(e^{\text{i}\alpha}K) < \eta_1(-K) \leq \eta_2(-K) < \eta_2(e^{\text{i}\alpha}K) < \eta_2(K) \leq \eta_3(e^{\text{i}\alpha}K) < \eta_3(-K) \leq \eta_4(-K) < \eta_4(e^{\text{i}\alpha}K) < \eta_4(K) \leq \cdots \leq \eta_{T-1}(-K) < \eta_{T-1}(e^{\text{i}\alpha}K) < \eta_{T-1}(K) \leq \eta_T(e^{\text{i}\alpha}K) < \eta_T(-K)$$

if T is odd, and

$$\eta_1(K) < \eta_1(e^{\text{i}\alpha}K) < \eta_1(-K) \leq \eta_2(-K) < \eta_2(e^{\text{i}\alpha}K) < \eta_2(K) \leq \eta_3(e^{\text{i}\alpha}K) < \eta_3(-K) \leq \eta_4(-K) < \eta_4(e^{\text{i}\alpha}K) < \eta_4(K) \leq \cdots \leq \eta_{T-1}(-K) < \eta_{T-1}(e^{\text{i}\alpha}K) < \eta_{T-1}(K) \leq \eta_T(e^{\text{i}\alpha}K) < \eta_T(K)$$

if T is even.

For the case when $a(t)$ is not sign-changing, further important results in linear Hamiltonian difference systems, including the oscillation properties of solutions, can be seen in Shi and Chen [5], Bohner [6], Agarwal et al. [7] and the references therein.

However, there are few results on the spectra the weight function $a(t)$ in the equation (1) changes its sign on T. In 2007, Ji and Yang [8], [9] studied the structure of the eigenvalues of (1) and (3), and they obtained that the numbers of positive eigenvalues are equal to the number of positive elements in the weight function, and the numbers of negative eigenvalues are equal to the number of negative elements in the weight function. In 2018, Ma et al. [10] considered the general separate boundary condition

$$\alpha u(0) - \beta \Delta u(0) = 0, \quad \gamma u(T + 1) + \delta \Delta u(T) = 0,$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ satisfy $\alpha \beta \geq 0, \gamma \delta \geq 0$ with $\alpha^2 + \beta^2 \neq 0, \gamma^2 + \beta^2 \neq 0, p(t) > 0, t \in \{0, 1, \ldots, T\}, q : T \to [0, \infty)$, and $a(t)$ satisfies (H0). They obtained that if $q(t) \neq 0, t \in T$ or $\alpha^2 + \gamma^2 \neq 0$, the problem (1) and (4) has T real eigenvalues, which can be ordered as $\lambda_{T-n,} < \cdots < \lambda_T$.
\(\lambda_{1,-} < 0 < \lambda_{1,+} < \cdots < \lambda_{n,+} \). In 2015, Gao and Ma [12] discussed the periodic boundary condition
\[
u(0) = u(T), \quad u(1) = u(T + 1)
\]
and the antiperiodic boundary condition
\[
u(0) = -u(T), \quad u(1) = -u(T + 1),
\]
where \(p(t) > 0 \) for \(t \in \{0, 1, \ldots, T\} \), \(p(0) = p(T) \), \(q(t) \geq 0 \) and \(a(t) \) satisfies (H0). They found out the following very beautiful results (see [12, Theorem 2.3, Theorem 2.4, Theorem 2.5 and Theorem 2.6]): the periodic and antiperiodic boundary value problems with sign-changing weight respectively have exactly \(T \) real eigenvalues, \(\{\lambda_{j,\nu}\} \) and \(\{\bar{\lambda}_{j,\nu}\}, \nu \in \{+, -, \} \), which satisfy
\[
\lambda_{T-n,-} < \bar{\lambda}_{T-n,-} \leq \lambda_{T-n-1,-} < \lambda_{T-n-2,-} < \cdots < \lambda_{3,-} < \lambda_{2,-} < \lambda_{1,-} \leq 0
\]
\[
\lambda_{1,+} < \bar{\lambda}_{1,+} \leq \lambda_{2,+} < \lambda_{3,+} < \cdots < \lambda_{n-1,+} < \bar{\lambda}_{n-1,+} \leq \lambda_{n,+} < \bar{\lambda}_{n,+} \text{ if } T \text{ is even and } n \text{ is even;}
\]
\[
\bar{\lambda}_{T-n,-} < \lambda_{T-n,-} \leq \lambda_{T-n-1,-} < \lambda_{T-n-2,-} < \cdots < \lambda_{3,-} < \lambda_{2,-} < \lambda_{1,-} \leq 0
\]
\[
\lambda_{1,+} < \bar{\lambda}_{1,+} \leq \lambda_{2,+} < \lambda_{3,+} < \cdots < \lambda_{n-1,+} < \bar{\lambda}_{n-1,+} \leq \lambda_{n,+} < \bar{\lambda}_{n,+} \text{ if } T \text{ is even and } n \text{ is odd;}
\]
\[
\lambda_{T-n,-} < \lambda_{T-n,-} \leq \lambda_{T-n-1,-} < \lambda_{T-n-2,-} < \cdots < \lambda_{3,-} < \lambda_{2,-} < \lambda_{1,-} \leq 0
\]
\[
\lambda_{1,+} < \bar{\lambda}_{1,+} \leq \lambda_{2,+} < \lambda_{3,+} < \cdots < \lambda_{n-1,+} < \bar{\lambda}_{n-1,+} \leq \lambda_{n,+} < \bar{\lambda}_{n,+} \text{ if } T \text{ is odd and } n \text{ is even;}
\]
\[
\lambda_{T-n,-} < \lambda_{T-n,-} \leq \lambda_{T-n-1,-} < \lambda_{T-n-2,-} < \cdots < \lambda_{3,-} < \lambda_{2,-} < \lambda_{1,-} \leq 0
\]
\[
\lambda_{1,+} < \bar{\lambda}_{1,+} \leq \lambda_{2,+} < \lambda_{3,+} < \cdots < \lambda_{n-1,+} < \bar{\lambda}_{n-1,+} \leq \lambda_{n,+} < \bar{\lambda}_{n,+} \text{ if } T \text{ is odd and } n \text{ is odd.}
\]
Motivated by [4] and [12], we apply some oscillation results obtained by [13] to prove the existence, the number of eigenvalues of (1)-(2) with sign-changing weight and to compare these eigenvalues as \(\alpha \) varies. These results extend above results obtained in [12].

This paper is organized as follows. Section 2 gives some properties of eigenvalues of Neumann boundary value problem with sign-changing weight, which will be used in Section 3. Section 3 pays attention to comparison between the eigenvalues of problem (1) and (2) as \(\alpha \) varies.

II. PRELIMINARIES

Equation (1) can be rewritten as the recurrence formula
\[
p(t)u(t+1) = [p(t)+p(-t-1)+q(t)-\lambda a(t)]u(t)-p(-t-1)u(t-1)
\]
for \(t \in \mathbb{T} \). Clearly, \(u(t) \) is a polynomial in \(\lambda \) with real coefficients since \(p(t), q(t) \) and \(a(t) \) are all real. Especially, for \(t \leq T + 1 \), the degree of \(u(t) \) is \(t \) if \(u(1) \neq 0 \), and \(t-1 \) if \(u(0) \neq 0 \) and \(u(1) = 0 \).

Let \(x(t, \lambda) \) be a solution of \(Lx = 0 \) with the initial condition
\[
x(0, \lambda) = 1, \quad \Delta x(0, \lambda) = 0
\]
and \(y(t, \lambda) \) be a solution of \(Ly = 0 \) under the initial condition
\[
y(0, \lambda) = 0, \quad \Delta y(0, \lambda) = 1.
\]

Then \(x(t, \lambda) \) and \(y(t, \lambda) \) are two independent solutions of (1), and they are all polynomials of degree \(t \) of \(\lambda \).

Now, multiplying both sides of \(Lx = 0 \) and \(Ly = 0 \) by \(y(t, \lambda) \) and \(x(t, \lambda) \) separately, summing from \(t = 1 \) to \(t = T \), then subtracting these two equations, we get
\[
x(T, \lambda)y(T+1, \lambda) - x(T+1, \lambda)y(T, \lambda) = 1.
\]

Ma et al. [13] discussed the spectra of the problem (1) with the Neumann boundary condition
\[
\Delta u(0) = \Delta u(T) = 0.
\]

They obtained the following result.

Lemma 1. Suppose \(p : \{0, 1, \ldots, T\} \to (0, +\infty) \), \(q(t) \equiv 0 \) on \(\mathbb{T} \) and (H0) hold. Then the problem (1) and (11) has \(T \) real eigenvalues \(\eta_{j,\nu}, j \in \{+, -, \} \), which satisfy
\[
\eta_{T,n,-} - \cdots < \eta_{1,-} \leq 0 \leq \eta_{1,+} < \cdots < \eta_{n,+}.
\]
The eigenfunction \(\psi_{j,\nu} \), which corresponds to \(\eta_{j,\nu}, \) exhibits \(j-1 \) changes of sign on the interval \([0, T] \).

Furthermore, Ma et al. [10], [12] indicated that \(\eta_{1,-} \) and \(\eta_{1,+} \) are not zero when \(q(t) \neq 0 \), \(t \in \mathbb{T} \), that is,
\[
\eta_{T,n,-} - \cdots < \eta_{1,-} < 0 < \eta_{1,+} < \cdots < \eta_{n,+}.
\]

Lemma 2. Let \(\eta_{j,\nu}, j \in \mathbb{T}, \nu \in \{+, -, \} \), be the eigenvalues of (1) and (11). Then \(x(t, \eta_{j,\nu}) \) is the eigenfunction with respect to \(\eta_{j,\nu}, \) that is, \(x(t, \eta_{j,\nu}) \) is a nontrivial solution of (1) satisfying
\[
\Delta x(0, \eta_{j,\nu}) = \Delta x(T, \eta_{j,\nu}) = 0.
\]

Lemma 3. If \(j \) is odd, \(x(T, \eta_{j,\nu}) > 0 \) and if \(j \) is even, \(x(T, \eta_{j,\nu}) < 0 \).

Proof: Since \(x(0, \eta_{j,\nu}) = 1, \Delta x(T, \eta_{j,\nu}) = \Delta x(0, \eta_{j,\nu}) = 0 \), then \(x(T, \eta_{j,\nu}) > 0 \) if \(x(0, \eta_{j,\nu}) \) has an even number of sign changes in the interval \([0, T] \), and \(x(T, \eta_{j,\nu}) < 0 \) if \(x(T, \eta_{j,\nu}) \) has an odd number of sign changes in \([0, T] \). This can be obtained directly from Lemma 1.

III. MAIN RESULTS

Let \(x(t, \lambda) \) and \(y(t, \lambda) \) be defined as in Section 2, and let \(\lambda_{j,\nu}(e^{\alpha K}) \), \(j \in \mathbb{T}, \nu \in \{+, -, \} \), be the eigenvalues of the coupled boundary value problem (1)-(2). We now present the main results of this paper.

Theorem 2. Assume that \(k_{3} > 0, k_{1} \geq k_{2} \) and (H0) holds. Then (1)-(2) has \(T \) real eigenvalues \(\lambda_{j,\nu}(e^{\alpha K}) \), among which \(n \) non-negative eigenvalues and \(T-n \) non-positive eigenvalues.
(i) If T is an even number and n is an even number, then
\[
\lambda_{T-n,-}(<K) < \lambda_{T-n,-}(e^{i\alpha}K) < \lambda_{T-n,-}(<K)
\]
\[
\leq \eta_{T-n,-}
\]
\[
\leq \lambda_{T-n-1,-}(<K) < \lambda_{T-n-1,-}(e^{i\alpha}K) < \lambda_{T-n-1,-}(<K)
\]
\[
\leq \cdots \leq \lambda_{2,-}(<K) < \lambda_{2,-}(e^{i\alpha}K) < \lambda_{2,-}(<K)
\]
\[
\eta_{n,-} \leq \lambda_{1,-}(<K) < \lambda_{1,-}(e^{i\alpha}K) < \lambda_{1,-}(<K)
\]
\[
\eta_{n,-} \leq 0 \leq \eta_{n+1}
\]
\[
\lambda_{1,+}(K) < \lambda_{1,+}(e^{i\alpha}K) < \lambda_{1,+}(<K) \leq \eta_{2,+}
\]
\[
\lambda_{2,-}(<K) < \lambda_{2,-}(e^{i\alpha}K) < \lambda_{2,-}(<K)
\]
\[
\cdots \leq \eta_{0,-} + 1
\]
\[
\lambda_{n-1,+}(K) < \lambda_{n-1,+}(e^{i\alpha}K) < \lambda_{n-1,+}(<K)
\]
\[
\eta_{n,+} \leq \lambda_{n,+}(<K) < \lambda_{n,+}(e^{i\alpha}K) < \lambda_{n,+}(K).
\]

(ii) If T is an odd number and n is an even number, then
\[
\lambda_{T-n,-}(<K) < \lambda_{T-n,-}(e^{i\alpha}K) < \lambda_{T-n,-}(<K)
\]
\[
\leq \eta_{T-n,-}
\]
\[
\leq \lambda_{T-n-1,-}(<K) < \lambda_{T-n-1,-}(e^{i\alpha}K) < \lambda_{T-n-1,-}(<K)
\]
\[
\leq \cdots \leq \lambda_{2,-}(<K) < \lambda_{2,-}(e^{i\alpha}K) < \lambda_{2,-}(<K)
\]
\[
\eta_{n,-} \leq \lambda_{1,-}(<K) < \lambda_{1,-}(e^{i\alpha}K) < \lambda_{1,-}(<K)
\]
\[
\eta_{n,-} \leq 0 \leq \eta_{n+1}
\]
\[
\lambda_{1,+}(K) < \lambda_{1,+}(e^{i\alpha}K) < \lambda_{1,+}(<K) \leq \eta_{2,+}
\]
\[
\lambda_{2,+}(<K) < \lambda_{2,+}(e^{i\alpha}K) < \lambda_{2,+}(<K)
\]
\[
\cdots \leq \eta_{0,-} + 1
\]
\[
\lambda_{n-1,+}(K) < \lambda_{n-1,+}(e^{i\alpha}K) < \lambda_{n-1,+}(<K)
\]
\[
\eta_{n,+} \leq \lambda_{n,+}(<K) < \lambda_{n,+}(e^{i\alpha}K) < \lambda_{n,+}(K).
\]

(iii) If T is an even number and n is an odd number, then
\[
\lambda_{T-n,-}(<K) < \lambda_{T-n,-}(e^{i\alpha}K) < \lambda_{T-n,-}(<K)
\]
\[
\leq \eta_{T-n,-}
\]
\[
\leq \lambda_{T-n-1,-}(<K) < \lambda_{T-n-1,-}(e^{i\alpha}K) < \lambda_{T-n-1,-}(<K)
\]
\[
\leq \cdots \leq \lambda_{2,-}(<K) < \lambda_{2,-}(e^{i\alpha}K) < \lambda_{2,-}(<K)
\]
\[
\eta_{n,-} \leq \lambda_{1,-}(<K) < \lambda_{1,-}(e^{i\alpha}K) < \lambda_{1,-}(<K)
\]
\[
\eta_{n,-} \leq 0 \leq \eta_{n+1}
\]
\[
\lambda_{1,+}(K) < \lambda_{1,+}(e^{i\alpha}K) < \lambda_{1,+}(<K) \leq \eta_{2,+}
\]
\[
\lambda_{2,+}(<K) < \lambda_{2,+}(e^{i\alpha}K) < \lambda_{2,+}(<K)
\]
\[
\cdots \leq \eta_{0,-} + 1
\]
\[
\lambda_{n-1,+}(K) < \lambda_{n-1,+}(e^{i\alpha}K) < \lambda_{n-1,+}(<K)
\]
\[
\eta_{n,+} \leq \lambda_{n,+}(<K) < \lambda_{n,+}(e^{i\alpha}K) < \lambda_{n,+}(K).
\]

(iv) If T is an odd number and n is an odd number, then
\[
\lambda_{T-n,-}(<K) < \lambda_{T-n,-}(e^{i\alpha}K) < \lambda_{T-n,-}(<K)
\]
\[
\leq \eta_{T-n,-}
\]
\[
\leq \lambda_{T-n-1,-}(<K) < \lambda_{T-n-1,-}(e^{i\alpha}K) < \lambda_{T-n-1,-}(<K)
\]
\[
\leq \cdots \leq \lambda_{2,-}(<K) < \lambda_{2,-}(e^{i\alpha}K) < \lambda_{2,-}(<K)
\]
\[
\eta_{n,-} \leq \lambda_{1,-}(<K) < \lambda_{1,-}(e^{i\alpha}K) < \lambda_{1,-}(<K)
\]
\[
\eta_{n,-} \leq 0 \leq \eta_{n+1}
\]
\[
\lambda_{1,+}(K) < \lambda_{1,+}(e^{i\alpha}K) < \lambda_{1,+}(<K) \leq \eta_{2,+}
\]
\[
\lambda_{2,+}(<K) < \lambda_{2,+}(e^{i\alpha}K) < \lambda_{2,+}(<K)
\]
\[
\cdots \leq \eta_{0,-} + 1
\]
\[
\lambda_{n-1,+}(K) < \lambda_{n-1,+}(e^{i\alpha}K) < \lambda_{n-1,+}(<K)
\]
\[
\eta_{n,+} \leq \lambda_{n,+}(<K) < \lambda_{n,+}(e^{i\alpha}K) < \lambda_{n,+}(K).
\]
fixed $\alpha \in (-\pi, \pi]$, there exist two roots, $\lambda_{T-n,-}(e^{i\alpha}K)$, $\lambda_{n,+}(e^{i\alpha}K)$, of $f(\lambda) = 2 \cos \alpha$ such that

$$\lambda_{T-n,-}(e^{i\alpha}K) \leq \eta_{T-n,-}$$

and

$$\lambda_{n,+}(e^{i\alpha}K) \geq \eta_{n,+}.$$

Proof: By the discussion in the first paragraph in Section 2, $x(t, \lambda)$ and $y(t, \lambda)$ are both polynomials of degree t of λ for $t \leq T + 1$. By (7)-(9), it is not difficult to see that

$$f(\lambda) = (-1)^T(k_1 - k_2) a(1)a(2) \cdots a(T) + Q_{T-1}(\lambda)$$

$$= (-1)^n(k_1 - k_2) \frac{a(1)a(2) \cdots a(T)}{p(1)p(2) \cdots p(T)} \lambda^T + Q_{T-1}(\lambda),$$

where $Q_{T-1}(\lambda)$ is a $T - 1$ degree polynomial of λ.

If T and n are both even number, it is easy to see that, for $k_1 > k_2$,

$$f(\lambda) \rightarrow +\infty \text{ if } \lambda \rightarrow \pm \infty.$$

On the other hand, from Lemma 5, we know that $f(\eta_{T-n,-}) \leq -2$ and $f(\eta_{n,+}) \leq -2$. So, there exist two numbers $\lambda_{T-n,-}(e^{i\alpha}K)$, $\lambda_{n,+}(e^{i\alpha}K)$, such that

$$-\infty < \lambda_{T-n,-}(e^{i\alpha}K) \leq \eta_{T-n,-},$$

$$f(\lambda_{T-n,-}(e^{i\alpha}K)) = 2 \cos \alpha$$

and

$$\eta_{n,+} \leq \lambda_{n,+}(e^{i\alpha}K) < +\infty, \text{ } f(\lambda_{n,+}(e^{i\alpha}K)) = 2 \cos \alpha.$$

Similarly, for the cases of T and n are both odd number, (ii) T is an even number and n is an odd number, (iii) T is an odd number and n is an even number, we have the same conclusion. This completes the proof.

Lemma 7. Assume that $k_3 > 0$, $k_1 > k_2$ and (H0) holds. Let $\eta_{j,\nu}$, $\nu \in \{+, -\}$, be the eigenvalues of (1) and (11) and be arranged as (12). Then there exists unique root, $\lambda_{j,\nu}(e^{i\alpha}K)$, of $f(\lambda) = 2 \cos \alpha$ such that

(i) for $\alpha \in (-\pi, \pi]$ and $\alpha \neq 0$,

$$|\eta_{j,\nu}| < |\lambda_{j,\nu}(e^{i\alpha}K)| < |\eta_{j+1,\nu}|;$$

(ii) for $\alpha = 0$,

$$|\eta_{2j-1,\nu}| \leq |\lambda_{2j-1,\nu}(K)| < |\eta_{2j,\nu}| < |\lambda_{2j,\nu}(K)| \leq |\eta_{2j+1,\nu}|;$$

(iii) for $\alpha = \pi$,

$$|\eta_{2j-1,\nu}| < |\lambda_{2j-1,\nu}(-K)| \leq |\eta_{2j,\nu}| \leq |\lambda_{2j,\nu}(-K)| < |\eta_{2j+1,\nu}|.$$

Proof: From the proof of Lemma 6, we get that $f(\lambda)$ is a polynomial of degree T of λ with real coefficients. By Lemma 5, $f(\eta_{2j-1,\nu}) \geq 2$ and $f(\eta_{2j+1,\nu}) \leq -2$. The existence of the eigenvalues of (1) and (2) which satisfy the inequalities (21)-(23) can be obtained from the intermediate value theorem of continuous functions and the fact that $f(\lambda_{j,\nu}(K)) = 2$, $f(\lambda_{j,\nu}(-K)) = -2$, $f(\lambda_{j,\nu}(e^{i\alpha}K)) \in (-2, 2)$ for $\alpha \in (-\pi, \pi], \alpha \neq 0$. The uniqueness of such eigenvalues can be obtained by the fact that the equation $f(\lambda) = 2 \cos \alpha$ has and only has T zeros.

Lemma 8. Let $\lambda_{j,\nu}(e^{i\alpha}K)$, $\nu \in \{+, -\}$, be the eigenvalues of (1) and (2). Then for $\alpha \in (-\pi, \pi]$ and $\alpha \neq 0$,

$$|\lambda_{2j-1,\nu}(K)| < |\lambda_{2j-1,\nu}(e^{i\alpha}K)| < |\lambda_{2j-1,\nu}(-K)|$$

$$|\lambda_{2j,\nu}(K)| < |\lambda_{2j,\nu}(e^{i\alpha}K)| < |\lambda_{2j,\nu}(-K)|.$$

Proof: We only prove (24) for the case $\nu = +$. The inequality relations (24) for the case $\nu = -$ and the inequality relations (25) can be obtained similarly. Firstly, let us prove that for $j = 1, 2, \cdots, \left\lceil \frac{n}{2} \right\rceil$,

$$\lambda_{2j-1,\nu}(K) < \lambda_{2j-1,\nu}(e^{i\alpha}K),$$

where $\left\lceil \frac{n}{2} \right\rceil$ is the largest integer less than or equal to $\frac{n}{2}$.

On the contrary, suppose that

$$\lambda_{2j-1,\nu}(K) \geq \lambda_{2j-1,\nu}(e^{i\alpha}K).$$

If $\lambda_{2j-1,\nu}(K) = \lambda_{2j-1,\nu}(e^{i\alpha}K)$, then

$$f(\lambda_{2j-1,\nu}(e^{i\alpha}K)) = f(\lambda_{2j-1,\nu}(K)) = 2,$$

which contradicts $f(\lambda_{2j-1,\nu}(e^{i\alpha}K)) = \cos \alpha < 2$ for $\alpha \neq 0$. Therefore, $\lambda_{2j-1,\nu}(K) > \lambda_{2j-1,\nu}(e^{i\alpha}K)$. This combines (21), we have

$$\eta_{2j-1,\nu} < \lambda_{2j-1,\nu}(e^{i\alpha}K) < \lambda_{2j-1,\nu}(K).$$

By Lemma 5 and Lemma 7, $f(\eta_{2j-1,\nu}) \geq 2$, $\lambda_{2j-1,\nu}(K)$ is the unique root of $f(\lambda) = \cos \pi = -2$ in the interval $[\eta_{2j-1,\nu}, \eta_{2j,\nu}]$. Then we get that $f(\eta_{2j-1,\nu}) > 2$ and then $f(\lambda_{2j-1,\nu}(e^{i\alpha}K)) > 2$, which is a contradiction. Thus

$$\lambda_{2j-1,\nu}(K) < \lambda_{2j-1,\nu}(e^{i\alpha}K).$$

Similarly, we claim that for $j = 1, 2, \cdots, \left\lceil \frac{n}{2} \right\rceil$,

$$\lambda_{2j-1,\nu}(e^{i\alpha}K) < \lambda_{2j-1,\nu}(-K).$$

Similarly, from (21)-(23), we know $\lambda_{2j-1,\nu}(e^{i\alpha}K) \in (\eta_{2j-1,\nu}, \eta_{2j,\nu})$, and $\lambda_{2j-1,\nu}(-K)$ is the unique root of $f(\lambda) = \cos \pi = -2$ in the interval $(\eta_{2j-1,\nu}, \eta_{2j+1,\nu}]$. On the contrary, suppose $\lambda_{2j-1,\nu}(e^{i\alpha}K) \geq \lambda_{2j-1,\nu}(-K)$. If $\lambda_{2j-1,\nu}(e^{i\alpha}K) = \lambda_{2j-1,\nu}(-K)$, then

$$f(\lambda_{2j-1,\nu}(e^{i\alpha}K)) = f(\lambda_{2j-1,\nu}(-K)) = -2,$$

which contradicts $f(\lambda_{2j-1,\nu}(e^{i\alpha}K)) = \cos \alpha > -2$ for $\alpha \in (-\pi, \pi)$ and $\alpha \neq 0$. Therefore,

$$\lambda_{2j-1,\nu}(e^{i\alpha}K) > \lambda_{2j-1,\nu}(-K).$$

By Lemma 5, $f(\eta_{2j,\nu}) \leq -2$, this combines with that fact that $\lambda_{2j-1,\nu}(-K) < \lambda_{2j-1,\nu}(e^{i\alpha}K) < \eta_{2j,\nu}$ and $\lambda_{2j-1,\nu}(-K)$ is the unique root of $f(\lambda) = -2$ in the interval $(\eta_{2j-1,\nu}, \eta_{2j+1,\nu}]$, we get that $f(\eta_{2j,\nu}) \leq -2$ and then $f(\lambda_{2j-1,\nu}(e^{i\alpha}K)) < -2$, which is a contradiction. Thus

$$\lambda_{2j-1,\nu}(K) < \lambda_{2j-1,\nu}(e^{i\alpha}K).$$

Thirdly, if n is an odd number, the inequality relations

$$\lambda_{n,+}(K) < \lambda_{n,+}(e^{i\alpha}K) < \lambda_{n,\nu}(-K)$$

can be proved in a similar way as we used in the two cases above. But we use the conditions $f(\eta_{n,+}) \geq 2$ and $f(\lambda) \rightarrow -\infty$ as $\lambda \rightarrow +\infty$ instead of the conditions $f(\eta_{n,+}) \geq 2$ and $f(\eta_{2j,\nu}) \leq -2$.

Proof of Theorem 2: From Lemma 5, Lemma 6, Lemma 7 and Lemma 8, we can get the comparison theorem.
From (13) and the proof of Theorem 2, we immediately come to the following conclusion.

Theorem 3. Assume that $k_3 > 0$, $k_1 > k_2$ and (H0) holds. If $q(t) \not\equiv 0$ for $t \in \{1, 2, \ldots, T\}$, then

$$\lambda_{1,-}(K) < 0 < \lambda_{1,+}(K),$$

i.e., $\lambda_{1,-}(K)$ and $\lambda_{1,+}(K)$ are simple eigenvalues of (1)-(2) with $\alpha = 0$.

References

