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Abstract—Particle swarm optimization (PSO) has attracted
the attention of many scholars due to its outstanding perfor-
mance. However, PSO has the defects of easily falling into local
optimum and low precision. To alleviate these defects, this paper
presents a hierarchical particle swarm optimization based on
mean value (mHPSO). Firstly, based on the mean value of the
population, the whole population is divided automatically into
low or high level. Secondly, according to the characteristics
of particles at different levels, different speed and position
updating strategies are designed, respectively, which are used to
balance the global and local search capabilities and improve the
accuracy of the solution. Thirdly, a random neighbor selection
mechanism is embedded into the update process of the high-
level particle to keep the population diversity. Finally, compared
with other PSO variants, mHPSO has better performance
and faster convergence speed in solving some benchmark test
functions with different types. Moreover, by combining mHPSO
with Otsu, mPSO also shows good performance in image
segmentation.

Index Terms—Particle swarm optimization; Population
mean; Random neighbor selection mechanism, Image segmen-
tation.

I. INTRODUCTION

IN recent years, many complex and high-dimensional
optimization problems have appeared in many fields.

How to solve these problems efficiently has become a hot
research topic. Since the deterministic methods have some
limitations in solving complex practical problems, the swarm
intelligence optimization algorithms have been highly praised
by many scholars. In recent decades, many excellent swarm
intelligence algorithms have been proposed, such as artificial
bee colony algorithm (ABC) [1-3], firefly algorithm (FA) [4],
particle swarm algorithm (PSO) [5], ant colony algorithm
(ACO) [6], bat algorithm [7], and so on.

As a member of the swarm intelligence algorithms, P-
SO comes from the coordinated and cooperative foraging
behaviors of birds in nature. It was proposed by Kennedy
and Eberhart in 1995 [8]. Since it was proposed, it has been
studied and applied by many scholars. Furthermore, PSO has
been successfully applied to sole different problems, such
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as multi-objective optimization [9], image processing [10],
artificial neural network [11] and other fields [12-14].

However, PSO has the disadvantages of premature con-
vergence, low accuracy and slow convergence speed. To
overcome these shortcomings, many PSO variants have been
proposed. For example, Liang et al. presented a compre-
hensive learning PSO [15]. In their method, the previous
optimal information of other particles were used to update the
velocity of each particle. In [16], Zhang et al. proposed a PSO
variant with an adaptive learning strategy, which designed
different learning strategies for different subgroups. By using
adaptive strategy, a modified PSO was described in [17].
In this algorithm,to improve its comprehensive performance,
chaos map, stochastic and mainstream learning strategies,
adaptive position updating strategy and terminal replacement
mechanism were combined. Inspired by natural phenomena,
Xia et al. constructed an expanded PSO based on multi-
exemplar and forgetting ability [18]. Aiming to choose the
proper exemplars and design an efficient learning model for
each particle, a triple archives PSO variant was proposed by
Xia et al. [19]. By selecting more meaningful individuals
as learning samples of particles, Song and Hua presented
a multi-exemplar PSO to maintain the population diversity
[20]. To well balance the exploration and exploitation, Bo
et al. suggested a PSO variant based on multiple adaptive
strategies [21]. A heterogeneous comprehensive learning
PSO variant was proposed by Nandar et al., in which the
population was divided into two groups: one to explore and
the other to focus on exploitation [22]. There are also many
excellent PSO variants that mix other swarm intelligence
algorithms [23-25].

Although PSO has been deeply studied, the defects of
premature convergence and low solution accuracy still exist.
Aiming to solve these deficiencies, a hierarchical particle
swarm optimization based on mean value (mHPSO) is pro-
posed. First, the whole population is stratified by means of
their fitness. Each particle belongs to either a high level
or a low level. Second, the velocity and position updating
strategies are designed respectively for the particles accord-
ing to the different levels. these two strategies are used to
balance the global and local search capabilities and accelerate
the convergence. Third, to maintain the diversity of the
population, a random neighbor selection mechanism is added
into the high-level individuals. On the whole, the proposed
algorithm can dynamically adjust the speed and position step
size with iterations, which are also more conducive to its
convergence.

The structure of the article are arranged as follows: the
research status of PSO are presented in Section I. The process
of the basic PSO is explained in Section II. Section III
introduces the details of mHPSO. The results of numerical
experiments and three image segmentation problems are

IAENG International Journal of Applied Mathematics, 53:2, IJAM_53_2_30

Volume 53, Issue 2: June 2023

 
______________________________________________________________________________________ 



shown in Section IV, And the conclusion and the next work
are given in Section V.

II. BASIC PSO ALGORITHM

PSO algorithm is a process in which individuals cooper-
ate and compete with each other. Each particle learns the
successful experience from itself and the entire population,
and finally searches the global optimum. In PSO, each
particle represents to a solution in the Euclidean space, and
the fitness value is the objective function value. Like most
swarm intelligence algorithms, the initial population (SN)
in PSO is generated randomly in the feasible search space.
At tth iteration, let xt

i = {xi1, xi2, · · · , xiD} and vti =
{vi1, vi2, · · · , xiD} be the position vector and velocity vector
of ith particle, respectively. D represents the dimension of
the search space. Then, its position and velocity are updated
according to the following formulas:

vt+1
i = wt∗vti+c1∗r1∗(pbestti−xt

i)+c2∗r2∗(gbestti−xt
i),
(1)

xt+1
i = xt

i + vti , (2)

where i ∈ {1, 2, · · · , SN}; c1 and c2 are two learning
factors, which are usually two fixed values; r1 and r2
are two random numbers in [0,1]; pbesti is the historical
optimal individual of the ith particle; gbesti represents the
best individual of the current population. w, called inertia
weight factor, controls how much the particles inherit from
the current speed and has the ability to balance global and
local search of the algorithm. In this paper, to dynamically
adjust the velocity, the inertia weight factor that decreases
linearly with the number of iterations is used [26]:

wt = wmax − wmax − wmin

MaxDt
∗ t, (3)

where wmax and wmin represent the preset maximum and
minimum inertia weight values, respectively; MaxDt is
maximum number of the iterations.

III. HIERARCHICAL PARTICLE SWARM OPTIMIZATION
BASED ON MEAN VALUE (MHPSO)

Although the basic PSO can obtain the optimal solution
in theory, it often performs poorly when dealing with some
practical problems with limitations [27]. To improve the
performance of PSO, this paper proposes a method mPSO.
In mPSO, the population is stratified according to the mean
value of the population firstly. And then, a new velocity and a
position update formulas for individuals at different levels are
designed. Finally, a random neighbor selection mechanism is
embedded into the high level particle velocity update formula
to maintain population diversity.

A. Hierarchical population based on mean value

Each particle in the population has its own characteristics.
To highlight the advantage of the high-quality individuals and
accelerate the convergence of the ordinary individuals, this
paper divides the individuals according to the mean value of

the whole population. At tth iteration, the mean value of the
population is defined as follows:

Mean(t) =

∑N
i=1 F (xi)

SN
, (4)

where F (xi) is the fitness value of the ith particle. For
minimization problems, the high-level particles are those
whose fitness values are less than Mean(t), and the low-
level particles are those whose fitness values are greater than
Mean(t). The opposite is true for maximization problems.

Generally, the high-level particles have a greater chance to
search for the global optimum during the evolution process,
and the successful experience of the population is mostly
derived from them. However, when dealing with the complex
high-dimensional multimodal optimization problems, overly
aggressive particles tend to sacrifice population diversity and
increase the risk of falling into local optimum. Therefore,
strengthening the information exchange with other individu-
als may increase the opportunity to get rid of oscillation. To
achieve this goal, the good neighbors can be selected as the
individuals of information exchange. By this way, particles
can not only learn good information from them, but also
maintain the diversity of the population to a certain extent.
For the low-level particles, although the population diversity
has been maintained, they greatly slow down the convergence
speed of the algorithm. In addition, as pointed out in [28], the
dynamic step size may be more suitable for the movement
and update of the particles.

Based on the above analysis, we design different update
strategies for particles at different levels. At tth iteration, the
details of particles movement are given as follows:

Case 1: F (xi) ≤ Mean(t). Under this condition, the
individual i is a high-level particle, which is updated and
moved by Eq. (5) and Eq. (6) below:

vt+1
i = wt ∗ vti + c1 ∗ r1 ∗ (pbestti − xt

i)
+c2 ∗ r2 ∗ (gbestt − xt

i) + ϕ ∗ r3 ∗ (xt
n − xt

i),
(5)

xt+1
i = xt

i + vt+1
i , (6)

where xn is a randomly neighbor selected from {F (xj) <
F (xi)|j ∈ {1, 2, · · · , SN}}; ϕ is a preset acceleration factor
to control the exchange of information with neighbors; r3 is a
random number in [0,1]. The addition of excellent neighbor
not only ensures that particle i learn from other excellent
individuals, but also increase the possibility of jumping out
of local optimum and maintain population diversity.

Case 2: F (xi) > Mean(t). In this case, it means that
particle i is a low-level individual. According to its charac-
teristic, the following update rules is presented:

vt+1
i = wt ∗ vti + c1 ∗ r1 ∗ (pbestti − xt

i)
+c2 ∗ r2 ∗ (gbestt − xt

i),
(7)

xt+1
i = (1− wt) ∗ xt

i + wt ∗ vt+1
i , (8)

where wt is consistent with the above. The original velocity
update ensures that the low-level particles can fly globally
as much as possible to explore the entire feasible space.
However, it cannot reasonably allocate computing resources
in PSO, so it will slow down the convergence speed. By
referring to [14], we propose a position movement equation
as shown in Eq. (8). From the definition of wt, we can see
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that it has a greater value at earlier stage, which means
the velocity vt+1

i is valued by the low-level individuals to
achieve the purpose of expanding the flight range. As the
iteration progresses, wt gradually decreases, which means
that particles pay more attention to position xt

i. Thus, it will
enhance the local search ability and solution accuracy.

From the above analysis, we can learn that using different
strategies for individuals with different characteristics may
help the algorithm achieve better results.The pseudo-code of
the proposed algorithm mHPSO is given as follows:

Algorithom 1. mHPSO
01. Initialize population SN and set the maximum number

of iterations MaxDt.
02. Compute the fitness of {F (xi)|i = 1, · · · , SN}

and determine pbestti and gbestt.
03. While t ≤ MaxDt do
04. For i = 1 to SN do
05. Compute the population mean Mean(t).
06. If F (xi) ≤ Mean(t)
07. Randomly find a high quality neighbor

xn and update xi by (5) and (6).
08. Else F (xi) > Mean(t)
09. update xi by (7) and (8).
10. End if
11. Update pbestti and gbestt.
12. End for
13. t=t+1.
14. End While

IV. EXPERIMENTS ANALYSIS

To comprehensively verify the performance of mPSO,
16 different types of benchmark functions are selected for
comparative experiments [29-30]. In these benchmark func-
tions, f1-f6 are unimodal functions; f7-f12 are complex
multimodal functions; f13-f16 are rotation and translation
functions. And the details of these functions are shown in
Table I. All the experiments are coded on Matlab R2017a
and executed on a computer with an Intel (R) Core (TM)
i5-3250M CPU @ 2.60 GHz, 4 GB memory, Windows 7
system.

Several PSO variants are used to compare with mPSO on
these benchmark functions, which include PSO [8], CLPSO
[15] and MPSO [16]. For the sake of fairness, SN = 50,
D = 30, MaxDt = 2000 are used on all these com-
parison algorithms. In this paper, the acceleration factors
c1 = c2 = 1.49618 and flight speed v ∈ 0.2 ∗ [xmin, xmax].
The other parameters of PSO, CLPSO and MPSO are con-
sistent with the original literatures. All these algorithms are
independently run 30 times on each test function, and the
minimum (Min), mean (Mean) and standard deviation (Std)
of the 30 experimental results are counted as the comparison
indicators. The experiments are divided into three parts: A
is the sensitivity test of ϕ; B is the contrast experiment of
PSO variants; C is the experiment on multithreshold image
segmentation.

A. Sensitivity test: ϕ

In mPSO, ϕ indicates that how much knowledge is learned
from the high-quality neighborhood, which directly affects
the convergence speed and solution stability of the algorithm.

So, it is critical to determine a reasonable ϕ. To this end,
the values of ϕ ∈ {0.5, 0.75, 1.0, 1.25, 1.5} run on all the
benchmark functions, respectively. The Min and Mean results
obtained by mPSO with different ϕ are given in Table II.

From Table II, we can see that ϕ has little influence on f7,
f8, f9, f10 and f14, because their optimal values are obtained.
In addition, it is obvious that the solution accuracy of the
objective function decreases with the increase of ϕ except for
f15 and f16. Although mPSO has the best performance with
ϕ = 0.5, it is inferior to on Mean when ϕ = 0.75. ϕ = 1.5
perform well on most functions in terms of Mean, especially
on f5 and f6, but its solution accuracy is not satisfactory.
Consequently, after comprehensive consideration, ϕ = 0.75
is adopted in this paper.

B. Comparative experiment of PSO variants

In this subsection, different PSO variants are tested on
all benchmark functions. The obtained Min, Mean and Std
of each algorithm by running 30 times on each function,
which are displayed in Table III and the optimums are
shown in bold. Meanwhile, to illustrate the convergence of
these algorithms more intuitively, Figures 1 and 2 depict the
convergence curves of each algorithm.

From Table III, in terms of Min, mHPSO outperforms
far better than its competitors in most functions, but it is
inferior to CLPSO on f5, f12 and f15. Both MPSO and
mHPSO can obtain the optimum values on f7, f8, f9 and
f14. The statistical results of the Min and Mean winning
rates of mHPSO are 75% and 56.25%, respectively, which
are the highest among all these algorithms. From Figures 1
and 2, on f1, f4, f6, f13 and f16, mHPSO shows good ability
to jump out of the local optimum while PSO, CLPSO and
MPSO are all trapped in the local optimum. All the above
indicates that mPSO is more effective.

C. Experiment on image segmentation

In digital image processing, image segmentation is a key
step, which is to segment the image into several non overlap-
ping regions with the same features in the region but different
features between regions according to certain segmentation
rules [31]. Threshold segmentation is a very popular method
in image segmentation, which has been widely studied and
applied by many researchers due to its simple calculation
and high efficiency [32]. The selection of threshold is very
important in the threshold segmentation method, which de-
termines the quality of the final segmentation results. Otsu
method is a typical threshold selection method [33]. How-
ever, the operation time and calculation complexity of Otsu
will increase exponentially with the increase of thresholds.
Therefore, it is very meaningful to apply swarm intelligence
optimization algorithm to threshold screening and select the
thresholds that can optimally segment the image [34-35]. In
this paper, to improve the effect of image segmentation, the
proposed algorithm mHPSO is combined with Otsu.

In order to test the effective of our method, several classic
images from standard image library are used, which include
Cameraman, Plane and Lena. The other image details, the
results of one-threshold and multi-threshold image segmen-
tation obtained by Otsu-mHPSO are shown in Figures 3, 4
and 5. Meanwhile, to verify performance of Otsu-mHPSO,

IAENG International Journal of Applied Mathematics, 53:2, IJAM_53_2_30

Volume 53, Issue 2: June 2023

 
______________________________________________________________________________________ 



TABLE I: Benchmark test functions

Test functions Range Optimal

f1 =
D∑

i=1
x2
i [-100,100] 0

f2 =
D∑

i=1

|xi| +
D∏

i=1

|xi| [-10,10] 0

f3 =
D∑

i=1

|xi|i+1 [-1,1] 0

f4 =
D∑

i=1
10

6 i−1
D−1 xi [-100,100] 0

f5 = − exp(−0.5 ∗
D∑

i=1
x2
i ) [-1,1] -1

f6 =
D∑

i=1

(
i∑

j=1

xj)
2 [-100,100] 0

f7 =
D∑

i=1
(x2

i − 10cos(2πxi) + 10) [-5.12,5.12] 0

f8 = 20 + e − 20 exp(−0.2 ∗
√∑D

i=1 x2
i /D) − exp(

D∑
i=1

cos(
2πxi
D )) [-32,32] 0

f9 = 1
4000

D∑
i=1

xi −
D∏

i=1

cos
xi√
i
+ 1 [-600,600] 0

f10 =
D∑

i=1
(y2

i − 10cos(2πyi) + 10),


yi = xi, |xi| <

1

2

yi =
⌊2xi⌋

2
, |xi| ≥

1

2

[-50,50] 0

f11 = 0.5 +
sin(

√∑D
i=1

x2
i
)2−0.5

(1+0.01
∑D

i=1
x2
i
)2

[-100,100] 0

f12 = 1
D [10 sin2(πy1) +

D−1∑
i=1

(yi − 1)2(1 + 10 sin2(πyi + 1) + (yD − 1)2)]

+
D∑

i=1
u(xi, 10, 100, 4), where yi = 1 + 1

4 (xi + 1)

u(xi, a, k,m) =


k(xi − a)m, xi > a

0, − a ≤ xi ≤ a

k(−xi − a)m, xi < −a

[-50,50] 0

f13 =
D∑

i=1
z2
i , z = x ∗ M [-500,500] 0

f14 = 1
4000

D∑
i=1

zi −
D∏

i=1

cos
zi√
i
+ 1, z = x ∗ M [-600,600] 0

f15 =
D∑

i=1

(z2
i − 10cos(2πzi) + 10) − 330, z = x − o [-5.12,5.12] -330

f16 =
D∑

i=1
(

i∑
j=1

zj)
2 − 450, z = x − o [-100,100] -450

the image results of segmentation obtained by the original
Ostu method and the Otsu method combined with the basic
PSO (Otsu-PSO) are compared with that of mPSO. The
comparison results are given in Table IV. The maximum inter
class variance is used as the function value to evaluate the
effect of optimal threshold. The higher the value, the better
the segmentation effect. Running time represents the time
consumed by each algorithm during image segmentation. The
longer the time, the higher the computational complexity of
the algorithm. In this paper, SN = 100, MaxDt = 100,
v ∈ [−2.5, 2.5] and c1 = c2 = 1.49618 are used in Otsu-
mHPSO and Otsu-PSO, and the operating environment is the
same as numerical experiments.

In Table IV, we can see that the function value of Otsu-
mHPSO is equal to Otsu but better than Otsu-PSO in these
three segmentation situations, which means that our proposed
algorithm can obtain appropriate thresholds and perform
better than basic PSO. In terms of Running time, as the
number of thresholds increases, the running time of all
the algorithms increase. It is obvious that Otsu spends far
more time than Otsu combined with intelligent algorithms.
However, Otsu-mHPSO takes slightly more time than Otsu-
PSO, which may be caused by the different particle update
strategies. Meanwhile, from Figures 3, 4 and 5, we can
see that with the increase of the number of thresholds, the
segmented images using our approach are significantly better.

All the above results show that mHPSO is better than the
comparison algorithms in image segmentation.

V. CONCLUSION

A hierarchical particle swarm optimization algorithm
based on mean (mHPSO) is presented in this paper. After
the population is stratified according to the mean value, we
designed two types of adaptive strategies for the particles
with different characteristics to improve the performance
of PSO. To maintain population diversity, the high qual-
ity neighbor selection mechanism was integrated into the
high-level particles. Furthermore, the numerical experiments
proved that mHPSO is superior to its comparison algorithms.
By comparing Otsu and Otsu-PSO, our method can obtain
effective thresholds in image segmentation, which verified its
potential application in image processing. In future work, we
will further study and apply it to more practical problems.
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TABLE III: The results obtained by PSO variants

Test function Indicator PSO CLPSO MPSO mHPSO
Min 6.4522 7.70E-04 1.01E+03 3.27E-203
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Std 17.9568 8.12E-04 786.7879 0
Min 0.7226 0.0045 1.79E-76 2.59E-120

f2 Mean 3.9578 0.0092 4.63E-72 1.49E-34
Std 2.952 0.0022 1.48E-71 8.15E-34
Min 2.95E-11 5.17E-24 0 2.49E-257

f3 Mean 1.95E-08 3.27E-22 0 6.57E-23
Std 2.59E-08 7.96E-22 0 3.60E-22
Min 1.28E+05 1.9975 4.64E+06 7.92E-186

f4 Mean 3.66E+06 6.8485 1.46E+07 3.97E+03
Std 9.95E+06 2.3654 1.18E+07 1.43E+04
Min -0.9998 -1 -1 -0.9998

f5 Mean -0.9986 -1 -0.9002 -0.9995
Std 9.35E-04 5.23E-08 0.1885 4.24E-04
Min 237.2076 3.45E+03 1.00E+03 2.25E-199

f6 Mean 810.5094 4.75E+03 3.08E+03 46.9321
Std 517.2023 766.1018 1.47E+03 137.7649
Min 30.7979 4.6738 0 0

f7 Mean 52.4272 8.7061 0.9992 36.8705
Std 13.0013 1.566 3.7275 27.6008
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f8 Mean 5.6495 0.0462 2.31E-15 7.70E-16
Std 1.2155 0.0101 1.23E-15 1.80E-15
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f9 Mean 1.2232 0.0151 0 0
Std 0.1474 0.006 0 0
Min 201.0938 14.0237 0 0
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Std 115.8384 2.7146 374.8992 16.4979
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Std 0.0438 0.0245 0.0893 0.1686
Min 0.908 1.35E-05 0.0067 0.0064

f12 Mean 2.5016 3.14E-05 86.2644 0.0779
Std 1.3098 1.08E-05 472.389 0.0628
Min 149.523 0.0316 9.74E+03 7.65E-203

f13 Mean 545.5113 0.0597 4.00E+04 6.14E-194
Std 244.1802 0.0175 1.74E+04 0
Min 1.0739 0.0235 0 0

f14 Mean 1.2435 0.0498 0 0
Std 0.184 0.0147 0 0
Min -246.1994 -327.1845 -259.3573 -261.7201

f15 Mean -185.6635 -323.0636 -176.6674 -203.3313
Std 28.5113 2.2891 34.6393 27.7229
Min 316.5411 5.68E+03 3.39E+04 -82.6397

f16 Mean 7.20E+03 1.00E+04 8.28E+04 4.98E+03
Std 7.01E+03 6.71E+03 3.50E+04 6.13E+03

Winning Rate Min Winning 0% 18.75% 50% 75%
Meang Winning 0% 25 % 31.25 % 56.25 %
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Figure 1: Convergence curves of f1-f8
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Figure 2: Convergence curves of f9-f16
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TABLE IV: Segmentation thresholds and optimal functions value from three Otsu methods

Figures Thresholds
number

Segmentation thresholds Function values Running time (s)

Otsu Otsu-PSO Otsu-mHPSO Otsu Otsu-PSO Otsu-mHPSO Otsu Otsu-PSO Otsu-mHPSO

Cameraman

1 87 85 85 3272.6 3272.6 3272.6 0.2316 0.0765 0.0925

2 70,144 67,144 68,141 3653.2 3653.1 3653.2 33.3242 0.0872 0.1043

3 45,101,149 45,104,147 65,133,168 3730.4 3726.4 3730.4 3433.7523 0.0947 0.1137

37073

1 72 70 70 650.2291 650.2291 650.2291 0.4103 0.1084 0.1191

2 71,141 73,140 70,139 721.1367 721.0163 721.1367 59.7271 0.1182 0.1372

3 53,88,143 53,90,143 51,87,141 771.9984 771.9662 771.9984 5758.2963 0.1268 0.1479

Lena

1 117 115 115 1521.0 1521.0 1521.0 0.0821 0.0542 0.0581

2 93,150 92,151 95,151 1861.1 1861.1 1861.1 9.4025 0.0651 0.0749

3 81,125,169 81,126,171 83,123,169 2019.2 2019.0 2019.2 771.2325 0.0734 0.0884
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Figure 3: Cmeraman
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Figure 4: Plane
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Figure 5: Lena
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