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ABSTRACT—The unknown boundary condition 

identification problems of the 2-D Laplace equation are 
considered in this paper. Based on the good characteristics of the 
B-spline wavelet and Tikhonov regularization method (TRM), a 
new regularization B-spline wavelet method (RBPWM) is 
proposed. The novel algorithm could be regarded as one kind of 
wavelet mesh-free, non-iterative numerical scheme that converts 
the boundary condition identification problem into a large-scale 
algebraic equation system that can be solved in a single step. 
However, the coefficient matrix of the algebraic equation system 
is ill-conditioned, which will lead to an unstable solution for the 
case of higher-level noise. The Tikhonov regularization method 
(TRM) is used to achieve a steady numerical solution to this 
problem. The current work of this paper has studied four 
examples with different simulated noise levels for different 
boundary conditions. The efficiency and accuracy of the 
presented algorithm are verified with the numerical simulation. 
 

Index Terms—unknown boundary condition identification; 
Tikhonov regularization method; regularization B-spline 
wavelet method; noise levels 
 

I. INTRODUCTION 
s well as known,  the unknown boundary condition 

identification problems of the 2-D Laplace equation 
can be described as follows: 

Governing equation (GE)： 
2 2
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Partial boundary conditions (PBC)： 
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where  is the whole boundary, n is the unit normal vector, 

1g and 2g represent the relevant Dirichlet boundary 

conditions (DBC) and Neumann boundary conditions(NBC), 

respectively. Generally speaking, i  is a segment of the entire 
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boundary . Finding the relevant details on the rest boundary 
or regaining the boundary’s shape is our goal. 

The 2-D Laplace equation unknown boundary condition 
identification problems (LEUBCIP) have important 
applications in scientific research and engineering. The 
solution to boundary condition identification problems is, 
however, a very ill-posed problem, meaning that even a slight 
change in the given data could cause a significant inaccuracy 
in the solution. Meanwhile, due to the technical and physical 
limits, some noise is inevitable in the known data. Therefore, 
how to solve the above problem with noise data efficiently has 
attracted more and more attention. This problem can be 
solved numerically using a variety of methods, including 
QRM [1,2], BGM[3,4], CGM[5], HFM [6-8] , MCTM[9], BKM[10] , 
PFM[11], BEM[12,13], MFS[14-16], and RBCM [17-19]. Although 
all these methods can obtain better numerical results, how to 
improve the computation accuracy and anti-noise property is 
still a challenging problem.   

Due to its exceptional properties, such as local support 
and vanishing moment features, wavelet methods [20] have 
recently been employed to solve the numerical solution of all 
types of differential equations [21–24].  Solving the boundary 
condition identification problems of the Laplace equation 
with wavelet method, the coefficient matrix of the linear 
algebraic equation systems will be relatively tiny compared to 
the other approaches, so it can be deleted without significantly 
influencing the solution if we discretize the differential 
equation based on the wavelet base functions. Additionally, 
the mother wavelet functions and scaling functions can be 
utilized to obtain the basis of wavelets, making it simple to 
apply computationally on a computer. Furthermore, the 
B-spline wavelets method among the wavelet families may 
result in greater accuracy for approximating smooth functions 

[25]. Because of its explicit formulations and finite support 
property, it is also simple to implement on a computer. Based 
on the beneficial characteristics of the B-spline wavelet, a 
regularization B-spline wavelet method (RBSWM) for 
resolving LEUBCIP with noisy data is proposed in this study. 
Tikhonov regularization method is used to solve the 
ill-conditioned coefficient matrix. The regularization 
technique's efficiency in resolving ill-posed problems has 
been proved in a number of publications in the literature [26–29].  

The remainder of the study is organized as follows: 
RBSWM is detailly explained in Section 2 along with an 
introduction of several B-spline wavelet definitions. A few 
numerical examples are given in Section 3 to show how 
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accurate the suggested method is. In Section 4, a succinct 
conclusion is provided. 

 
II.  REGULARIZATION B-SPLINE WAVELET 

METHOD (RBSWM) 

A. B-Spline Wavelet Method (BSWM)   

Definition 1.  For j   , let     2 1
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The p order B-spline functions on  ,  are 
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By confirming that, on ,  , at least one wavelet function 

is complete, the lowest level 
0j j is established 

by 02 2 1j p  .  

In the event where   , 0,1   , we obtain 
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Definition 2.  The p order B-spline wavelet scaling 

functions (BSWSF) can be defined as follows for 0j j  
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From multi-resolution analysis [30], restricted to a bounded 
interval, say ,  , one can get by [31] 

   , ,
0 1V V     

with      2 ,

[ , ] 2close ,jL j
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

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Thus, the orthogonal projection of  g x into [ , ]
jV   [32] 

could be utilized to define an approximation of a function 

   2 ,g x L   at a resolution of 2 j , that is 

        [ , ]
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where      2
, 2 2 ,

j
j

j l x x l j l     ,   is referred to as 

scaling function of the MRA. The inner product of f  and 

,j l is denoted as ,, j lf  . 

The BSWSF in [ , ]
jV   can define a function  g x  in 

accordance with Equation (3), namely  
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where ( )
, ( )j

p l x  are the BSWSF, kc  are the undetermined 

coefficients in matrix form. We can rewrite Equation (4) as 
follows: 
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with C  and   are  2 1 1j p    matrices, respectively 
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The following Equation (8) can be used to solve the 

undetermined coefficients lc  
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Let 
~

( )x be the dual function of ( )x , we have 
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From Equation (7) and Equation(9), we obtain 

 1

0
( ) ( )x x dx  E    (10) 

where E is the    2 1 2 1j jp p     identity matrix. 

Considering Equation (7) and the internal and boundary 
scaling functions, one obtains: 
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where M  is a matrix of order 2 1j p   

From Equations (10) and(11), we obtain: 

 1( ) ( )x xM   (12) 

Consider ( , )u x y  to be a function of x and y , two 

independent variables, satisfying 0 1x  and 0 1y  , 

respectively. In both dimensions, one-dimensional BSWSF 
are utilized. Thus, we could approximate ( , )u x y  by 

( , )u x y  as follows:  
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where U is a matrix of order 2 1j p  , which elements 

iju can be obtained by 
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Suppose '( )x  is the derivative of ( )x , in that case 
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Also, '( )x  can be rewritten as follows: 

 '( ) ( )x xG    (16) 

where G is a    2 1 2 1j jp p     matrix  
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Then, using the Equations (12) and(17), we can have                  
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where Q  is a matrix of order 2 1j p  , which can be 

obtained by Equations (7) and (15). 
Using Equations(13) and(16), and the well-known chain 

rule, we have  

 ( ) ( ) ( ) ( )
u u

y x y x
x y

   
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Therefore, we can have a linear equations system in the 
form of matrix by substituting Equations (13), (19), and (20) 
into Equations (1) and (2) 

 BU c  (21) 
where the coefficient matrix B is composed with the B-spline 
scaling functions on the interior collocation points and 
specified boundary , and the vector c can be created based on 
either  internal collocation points or boundary conditions..  

Therefore, as a result of solving Equation(21), we can 

have the coefficients iju in Equation(13), indicating 

that ( , )u x y  for all distributed points have been achieved in 

domain and along the boundary. Thus, the solutions of 2-D 
Laplace equation unknown boundary condition identification 
problems can be obtained. 

 
B. Regularization solution 

 
Because of measurement error, the provided data, f and 

g, typically contain noise. Instead of, we consider the 
following equation  

 BU c  (22) 

where c  denotes the noisy data. 
 (1 )e rand  c c  (23) 

where rand  is a number produced at random from the range 
[-1, 1] and e  stands for noise level 

In order to solve Equation (22) stably, the TRM has been 
introduced to find the minimum of the following quadratic 
functional  

 
2 2
2 2( ) || || || ||J   U BU c U  (24) 

where 0   is the regularization parameter(RP). A proper 
RP must be chosen for the Tikhonov regularization process. 
In this study, we opt to determine the RP using the L-curve 
method [33].  

 
 
 

III. NUMERICAL SIMULATION 
 

We consider four examples of LEUBCIP, in this section, 
on a rectangular region[0,1] [0,1] . The first three problems 

are defined in a domain 
2{( , ) : 0 1,0 1}x y x y      with different 

boundary conditions. The governing equation (GE) is as 
follows: 

 2 ( , ) 0u x y   in 2   (25) 

with the boundary  

 
0

2{( , ) : =0, 0 1}x y y x      (26) 

 1

2{( , ) : =0, 0 1}x y x y      (27)                       

 2

2{( , ) : =1, 0 1}x y y x     (28) 

       
3

2{( , ) : =1, 0 1}x y x y     (29) 

For convenience, we utilize several symbols to represent 
the collocation points satisfying various conditions (see Table 
I for details).  

 
TABLE I  

TYPES OF MATCHING POINTS 

Symbol Matching condition 

 Controlling equation 

 Controlling equation, Dirichlet BC 

 Controlling equation, Newman BC 

 Controlling equation, Dirichlet BC, Newman BC 

 
The cubic B-spline wavelet scaling functions (i.e. 4p  ) 

have been used and the level 
0,j j are chosen as 

0 3j j   . 

Thus, 11 scaling functions exist in 3V . 

 
A. Problem with over-determined boundary conditions 

 
A 2-D Laplace equation with over-determined boundary 

conditions is considered firstly. The analytical solution is:  
 ( , )=cos coshu x y x y   (30) 

Based on the analytical solution, two kinds of boundary 
conditions, Dirichlet boundary condition (DBC) and Newman 
boundary condition (NBC), are prescribed on the 
boundary

4 1 2 3
      , respectively. 

 
4 0|u u  , 

4
|

u
g

n 





   (31) 

We calculate Equation (31) to obtain the following 
specific boundary conditions (BC) ： 

1

(0, )
(0, ) cosh , 0

u y
u y y

x


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
：  

2

( ,1)
( ,1) cos cosh1, cos sinh1

u x
u x x x

y


 


：  

 
3

(1, )
(1, ) cos1cosh , sin1cosh

u y
u y y y

x


  


：  

We need to use RBSWM to find the unknown boundary 

conditions on the boundary
0

2{( , ) : =0, 0 1}x y y x    , 

which exact values can be obtained with ( ,0)=cosu x x . 

To obtain the linear equations system 
 B U c  (32) 
1n points are chosen to satisfy Equation (25), 2n points 

satisfy Equations (27)- (29), and 1 2 121n n  .  
By solving the Equation(32), we can obtain the unknown 

boundary conditions based on the Equation(13). However, 
the coefficient matrix B in Equation (32) is usually an 
ill-conditioned matrix, and here its condition number 
is 4.0189e+03 , which will lead to an unstable solution 
especially for stronger noise. The double boundary 
collocation method (DBCM) [34] has been devised to generate 
an over-determined system in order to solve Equation(32). In 
order to use DBCM, the collocation points on the boundary 
must fulfill both GE and BC. The new coefficients matrix is 
thus well-conditioned. The solution of the linear equations 
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system is further stabilized by using TRM. Table II and Fig.1 
show the RP for various noise levels.  

The collocation points in this study are distributed on an 
11 11 grid, and the distribution is depicted in Fig.2. The 
DBC of 4 is subjected to the imposed simulated noise, 

which level range from 0 to 0.5. Fig.3 demonstrates the 
inversion results by using BSWM and RBSWM for various 
noise levels. BSWM works well for the situation of 0.01e , 
notably for 0e , as illustrated in Fig.3 (a). However, in the 
case of 0.1e  , we can conclude that from Fig.3 (b), RBSWM 
has more advantages than the method without regularization.   

 

TABLE II   
 RP SETTING FOR VARIOUS NOISE  

Noise 0 0.001 0.01 0.1 0.5 

α 0.007081 0.007081 0.007081 0.007082 0.007145 

 

0 0.1 0.2 0.3 0.4 0.5

Noise level
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10-3

 
Fig. 1. RP Vs various noise  
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Fig. 2. Distribution map 
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 “zoom in” figure of Fig.3(b)  for the interval [0.9, 1] 

 

Fig. 3. The inverted ( ,0)u x for various noise for two methods 

 

The relative root means square error (RRMSE) of both 
methods with various noise levels is displayed in Fig.4 to 
further investigate the impact of noise on the inversion results. 
According to Fig. 4, BSWM performs better for the case 
of 0.001e , whereas RBSWM provides significantly superior 
solutions for the case of 0.001e . It demonstrates that in 
comparison to BSWM, RBSWM can increase the stability of 
the solution and strengthen the capacity to resist the higher 
noise levels.  
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Fig. 4. The RRMSE Vs various noise for two methods  

 

B.  Problem with unknown Dirichlet boundary 
conditions 

 
Consider a 2-D ill-posed boundary condition 

identification problem on [0,1] [0,1] , which analytical 

solution is: 
 2 2( , )u x y x y   (33) 

The known BCs:         
  2

1 (0, )u y y  ：  (34) 

     2
2 ( ,1) 1u x x  ：  (35) 

      2
3 (1, ) 1u y y  ：  (36) 

The unknown BCs: 

 2
0 ( ,0)u x x：   (37) 

 
Next, we will use BSWM and RBSWM to obtain the 

unknown BCs on 0 . Based on the analytical solution,   the 

potential values on four internal points are given as follows to 
increase precision of the numerical solution: 

 
(0.2,0.2) 0, (0.2,0.6) 0.32,

(0.6,0.2) 0.32, (0.6,0.6) 0

u u

u u

  

 
  (38) 

The collocation points are still scattered on a grid 
of11 11 , as in the previous instance, and the distribution is 
illustrated in Fig. 5. The internal potential values in Equation 
(38) and the DBC are subjected to the simulated noise, which 
level range from 0 to 0.3. In Table III and Fig. 6, the RP for 
various noise levels are presented.  

Figure 7 displays the inversion results ( , 0)u x for various 

noise levels using BSWM and RBSWM. From Fig. 7, we can 
observe how, for various noise levels, the recovered boundary 
condition ( , 0)u x  fluctuates with x in comparison to the exact 

solution. Meanwhile, both the outcomes of the two methods 
for the instance of 0.001e  are shown to be in excellent 
agreement with the exact solution. 

However, RBSWM produces significantly better 
inversion results than BSWM when the noise level reaches 
0.1 and 0.3. The solution of BSWM cannot produce a stable 
effect, but RBSWM does. It is clear that there exists a bigger 
solution distorted in Fig 7(a). 

The RRMSE for four distinct methods, including BSWM, 
RBSWM, radial basis collocation method, and least squares 
based radial basis collocation method, is shown in Fig. 8 for 
various noise levels. In comparison to other methods, it has 
been found that RBSWM has the best good qualities 
regarding accuracy and anti-noise. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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3

0  
Fig.5. Distribution map for Example 2 

 
TABLE III 

 RP SETTING FOR VARIOUS NOISE 

Noise 0 0.001 0.01 0.1 0.3 

α 0.006801 0.006801 0.006801 0.006826 0.006826 

 
 

 

Fig. 6. RP Vs various noise 
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(a) 

            
   (b) 

Fig 7. The inverted ( ,0)u x for various noise 

 

 

Fig 8. The RRMSE Vs various noise  

 

C. Problem with the unknown DBC and NBC 

An ill-posed inverse Cauchy problem of heat conduction 
on[0,1] [0,1] , which has been studied in [6] ，is considered 

in this part. The exact solution of this problem is as follows: 
 
 ( , ) sin( )sinh( ) cos( )cosh( )u x y x y x y     (39) 

 
The known BCs:                     

1 ( , 0) cos( )u x x ：  (40) 

   
2

( ,1)
sin( ) cosh(1) cos( )sinh(1)

u x
x x

y


 


：  (41) 

3
(1, ) sin(1) sinh( ) cos(1) cosh( )u y y y ：   (42) 

       3

(1, )
cos(1)sinh( ) sin(1)cosh( )

u y
y y

x


 


：   (43) 

The undetermined BC is on the left-side 

boundary 2
0 {( , ) : =0, 0 1}x y x y    . We need to 

find the following two conditions  
 (0, ) cosh( )u y y   (44) 

 
(0, )

sinh( )
u y

y
x





 (45) 

As in the previous examples, similar treatments have 
been taken. The collocation points are still scattered on a 
grid of11 11 , and the distribution is illustrated in Fig. 9. 
Based on the exact solution, the internal potential values 
on four internal points are shown as follows: 

(0.2,0.2) sin(0.2)sinh(0.2) cos(0.2)cosh(0.2)

(0.2,0.6) sin(0.2)sinh(0.6) cos(0.2)cosh(0.6)

(0.6,0.2) sin(0.6)sinh(0.2) cos(0.6)cosh(0.2)

(0.6,0.6) sin(0.6)sinh(0.6) cos(0.6)cosh(0.6)

u

u

u

u

 
 
 
 

           

In this example, boundary conditions of 3  are subjected 

to the simulated noise, which level range from 0 to 0.2. Table 
IV and Fig.10 give the RP setting with various noise for 
inverted (0, )u y  and / (0, )u x y  . 

1

0 3

2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4
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0.8
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Fig 9. Distribution map for Example 3 

 
TABLE IV 

RP SETTING FOR VARIOUS NOISE  

Noise 0 0.0001 0.001 0.01 0.1 0.2 

α 0.006814 0.006814 0.006814 0.006814 0.006826 0.006826 
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      Fig. 10. RP Vs various noise for Example 3 
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Fig 11. The inverted (0, )u y for various noise  
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Fig 12. The RRMSE Vs various noise  

 

 
(a) 

∂
u

/∂
x

(0
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)

 
(b) 

Fig 13. The inverted / (0, )u x y  Vs different noise  

 

Fig.11 and Fig.13 show the inversion results of 
(0, )xu y and (0, )u y  on 0   for various noise levels. For 

0.001e , the inversion results agree well with the analytical 
solution. However, when the noise level reaches 10% or 20%, 
there are obvious solutions distorted in Fig.11 (a) and Fig.13 
(a); whereas the recovered results of the RBSWM are much 
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better. Fig. 12 and Fig.14 show the comparison of the relative 
root means square error (RRMSE) of four different methods 
at different noise levels. It is seen that, from Fig.12, the 
RRMSE of the regularization B-spline wavelet method is 
much smaller than the other three methods for all noise levels; 
whereas the B-spline wavelet method performs well only for 
the smaller noise level. For the inverted (0, )xu y in Fig.14, 

when the noise level hits 10%, the precision of the suggested 
algorithm is not as excellent. However, our method’s RRMSE 
is still higher than those of the other methods in the literature. 
Moreover, the recovered data are compared with the results 
obtained in literature [32], shown in Fig.15. The results show 
that we recover the unknown boundary conditions very well 
for =0.01e , and the regularization B-spline wavelet method 
has favorable anti-noise property. 

 

 
Fig 14. The RRMSE Vs various error   
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(b) 

Fig 15. The comparison of recovered data for =0.01e  

 

D. Problem with the unknown convex boundary 

In this subsection, our objective is to recover the shape of 
part of the boundary. We take 

  2{ , | 0 1,0 ( )}x y R x p x       as a solution domain, see 

Fig.16 for an illustration, where ( )p x  is an unknown part of 
boundary to be determined.  

 

 
Fig. 16 Solution domain 

 

Assume that this problem have an analytical solution as 
follows: 

2 2

4
( , ) (

1 3
)

2
u x y y x     

and the boundary 21 3
( )

2 4
( ) xp x   . The known BCs are:  

  21, 1u y y                        1, 1xu y     

  20, 1u y y 
                    0, 1xu y   

 
2

1 3
,0

2 4
u x x     

 
      ,0 0yu x   

Fig.17 gives the arrangement of effective collocation points in 
the numerical simulation for this problem. 
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Fig 17. Distribution map for Example 4 

 
Figure 18 illustrates the numerical results of the BSWM 

and RBSWM for a range of relative noise levels. As 
demonstrated, even with a moderately higher noise level, the 
estimated boundaries with the two methods closely match the 
precise one. However, the RBSWM greatly outperforms 
BSWM as the noise level increases. 

 

B-Spline wavelete method
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(a) 

 
“zoom in” figure of Fig.18 (a) for interval [0.4, 0.6] 

 

 
(b) 

 
“zoom in” figure of Fig.18 (b) for interval [0.4, 0.6] 

 
 Fig 18. The recovered boundary for different noise 

        

In Table V and Fig. 19, the RRMSE obtained by using two 
approaches for various noise levels is displayed. In Fig. 20, 
the RP for various noise are listed. It is observed that the 
RRMSE for two methods are close to each other for 0.05  . 
However, for the bigger noise level, the advantages of the 
regularization are obvious. As a result, for this example, our 
method is feasible and works well. 

 
TABLE V  

THE RP AND RRMSE 

Noise  RBSWM BSWM 

0 0.023081575 0.005542427 7.63513E-09 

0.01 0.02312256 0.005271201 0.001459207 

0.1 0.02312256 0.006458295 0.015779775 

0.3 0.047051798 0.008958761 0.055294667 
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Fig.19 RRMSE for two methods 

 

 
Fig. 20. RP Vs various noise for Example 4  

 

IV. CONCLUSION 

In this study, for the ill-posed boundary value 
identification problems of the 2-D Laplace equation, we 
propose an effective regularization B-spline wavelet method. 
Based on the B-spline wavelet scaling functions, the boundary 
value identification problems has been transformed into a 
linear algebraic equations system, which contains an 
ill-conditioned coefficient matrix. To overcome the difficulty, 
the Tikhonov regularization technology is introduced to make 
the solution procedure stable. Four numerical examples with 
different boundary conditions demonstrate that the 
regularization B-spline wavelet method can solve the 
ill-posed boundary value identification problems stably in the 
case with larger noise levels. This paper also show that the 
regularization B-spline wavelet method performs better for 
the ill-posed problems with larger noise than the B-spline 
wavelet method and the other methods.   
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