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Abstract—Diabetes related complications such as Diabetic
Foot Ulcers (DFU) may necessitate recurrent hospitalisations
and expensive treatments. Uncontrolled diabetes can result in
severe DFUs, resulting in amputation of lower limbs or feet,
prolonged debilitation and diminished quality of life. Early
diagnosis and proactive management are reported to signifi-
cantly enhance the prognosis and reduce the onset of further
complications. In this study, research works on developing
clinical decision support systems (CDSS) for the identification
and segmentation of DFU are systematically reviewed. The
techniques employed range from traditional image processing
techniques to approaches based on deep learning (DL). A
taxonomy of DFU CDSSs is presented, categorised into two
groups: RGB-based techniques and thermal imaging-based
approaches. To the best of our knowledge, this is the first
attempt at a comprehensive study of CDSSs for DFU related
investigative tasks, based on different imaging modalities. We
also delve into the difficulties experienced in the process of
creating efficient, reliable, and accurate models for the early
detection of DFU, and highlight the vast potential for further
research in this emerging domain.

Index Terms—Diabetes related complications, Thermogra-
phy, Image processing, Clinical Decision Support Systems,
Artificial intelligence

I. INTRODUCTION

AS per recent International Diabetes Federation reports
[1], over 463 million people globally have been affected

by diabetes, which is predicted to reach 700 million, by 2045
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[1]. One in three diabetic patients experiences diabetic foot
ulcers (DFU), which are 34% more likely to occur in people
with diabetes over their lifetime [2]. The massive increase in
DFU prevalence over the past few decades has posed a crit-
ical challenge to global healthcare systems. In more serious
cases, DFU can result in frequent hospitalization, reduced
quality of life, expensive rehabilitation therapy, disfigurement
of the feet or lower limbs, or, in more extreme cases, even
death. Thus, to enable effective and timely treatment and
prevent foot or lower limb amputation, it is essential to
recognise these complications as early as possible.

The condition of a patient suffering from DFU is ex-
acerbated by certain associated clinical symptoms caused
by an inadequate oxygen-rich blood supply due to a con-
dition called ischaemia. The prevalent approaches adopted
by medical practitioners in contemporary clinical practise
for detecting ischaemia and infection are physical examina-
tion, blood testing, and Doppler examinations of leg blood
arteries. Traditional DFU assessment techniques are there-
fore cost-prohibitive, expert-dependent, and time-consuming.
Typically, DFUs are characterised by erratic structures and
irregularly shaped exterior limits. Blisters, redness, callus
formation, and substantial tissue types like bleeding, scaly
skin, granulation, and slough are some of the visible charac-
teristics of DFU and the skin around it that vary depending
on the stage. Therefore, correct evaluation of these visual
indicators like colour descriptors, temperature features, and
texture features would form the basis of ulcer evaluation
using computer vision algorithms [3, 4]. The emergence
of artificial intelligence in medicine with technologies like
machine learning, deep learning, and computer vision has
helped make tremendous strides in the field of medical
imaging in recent years. There is thus a significant potential
for adopting such learning based approaches for automatic
disease diagnosis [5–7].

Recently, automated diagnosis of diseases for improving
care delivery has received significant research attention [8–
20]. The evaluation of DFU has primarily employed different
types of image datasets, namely, RGB and thermal image
datasets. Some sample RGB and thermal images are shown
in Fig. 1. For RGB image datasets, there are two versions:
one is the wound DFU dataset, which contains normal and
abnormal DFU wound images; the other is the infection
and ischaemia dataset, which contains infection and non-
infection images as well as ischaemia and non-ischaemia
images. The thermal images provide foot thermograms that
allow visualisation of the temperature variations of the foot.
Complex algorithms analyse these changes and allow for
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further research. Researchers have adopted a wide variety
of techniques and models for the task of DFU diagnosis and
management of associated conditions.

In this review, relevant research publications were selected
based on two major criteria. Firstly, each of the selected
articles incorporated a combination of advanced machine
learning and deep learning approaches. Additionally, the
research work chosen has been published within the last
five to six years. This ensures that our review is up-to-
date with the latest breakthroughs in DFU machine learning
applications. A formal methodology was defined for the
selection of research work for our comprehensive review as
per the PRISMA guidelines [23], and is illustrated in Fig. 4.
The inclusion criteria are determined by the PICO principle
(population, intervention, comparison, and outcomes). The
study population considered for the evaluation of DFU is
characterised using RGB and thermal image datasets. The
interventions considered for the study encompass the types
of evaluations used, i.e., segmentation, detection, and clas-
sification. The comparison is performed as a measure of
differentiation between the efficacy of thermal and RGB
imaging modalities. Finally, the outcomes are measured by
considering standard datasets and evaluation metrics. The
exclusion criteria considered allowed for the pruning of
articles with incomplete data on the main indicators and those
without full-text access.

II. REVIEW OF CDSS FOR DFU DIAGNOSIS

Typically, identifying anomalies in DFU images can be
categorised into three major tasks – (1) Segmentation (2) De-
tection and (3) Classification. Medical image segmentation
has made extensive use of deep learning, and several articles
describing its application in this field have been published.
Deep learning models have been adapted to differentiate the
region of interest (ROI) in images for further processing for
diabetic wound segmentation [24].

Detection is a process that focuses on recognising and
locating disease/lesions in images, utilising infrared thermog-
raphy for ulcer detection and prevention in high-risk diabetic
feet. The effectiveness of both deep learning and classic
machine learning techniques is leveraged for classification
and grading [25]. Although traditional machine learning
techniques perform well, such approaches are particularly
slow due to the many intermediate steps. Deep learning
approaches have demonstrated their superiority through the
use of object localization meta-architectures, which were
used to train end-to-end models on DFU datasets to classify
and localise ulcers on full foot images.

Image classification is a significant task in the disease
diagnosis process and has been extensively explored in liter-
ature. In recent studies, techniques like Support Vector Ma-
chine (SVM), convolutional neural networks (CNNs), and K-
nearest neighbours have been used, in addition to pretrained
models like Alexnet, Resnet, and VGG16. Ensemble deep
learning models have been adapted for binary classification
of DFU images for tasks like infection vs. non-infection
and ischaemia vs. non-ischaemia [3]. Custom-designed deep
neural models have also been leverages for specialized tasks
[26]. Based on the data modalities, these works can be
broadly categorized into two groups - thermal imaging based
CDSS and RGB imaging based CDSS. A detailed discussion

on the various approaches in these two groups are discussed
in this section. The graph shown in Fig. 2 details about the
number of thermal and RGB-based publications for the past
three years.

A. Thermal imaging based CDSS

Diagnostic thermal images are captured using infrared
thermography (IRT), a quick, non-invasive, and non-contact
approach for examining the temperature distribution of the
foot and assessing any thermal changes [27]. Unlike other
medical imaging techniques, IRT does not use harmful radi-
ation because it only detects the thermal signatures emitted
by the object under examination. Research studies in this
domain aim to perform classification (binary and multi-
class) and segmentation of diabetic foot ulcers. A range of
machine learning models like Multilayer Perceptron (MLP),
Support Vector Machine (SVM), logistic regression, etc, and
deep learning algorithms like AlexNet, GoogleNet, ResNet,
and MobileNet have been utilised for classification and
segmentation. Figure 3 summarises the procedure utilised
by the majority of the existing works. Commonly used
preprocessing techniques are summarised in Figure 5.

One of the major challenges in designing a CDSS based
on thermal imaging is the limited availability of publicly
accessible thermal datasets. Data augmentation is employed
to increase the size of the dataset in order to combat
this [28]. Techniques like dataset augmentation with 5 fold
cross-validation, oversampling, and various preprocessing
approaches such as data annotation, alignment, and fea-
ture extraction have been used to prepare the dataset. The
most extensively utilised thermal DFU dataset is the Plantar
Thermogram Database [22], which contains thermograms of
122 diabetic and 45 non-diabetic subjects. The distribution
of temperature in the plantar region can be studied using
this dataset. Many research projects rely on proprietary
databases, making it impossible to replicate their findings.
Table I presents a summary of existing research works that
utilized thermal images datasets for DFU diagnosis. Fig. 2
depicts the year-wise distributions of publications.

Muralidhara et al. [29] initially formulated a balanced
dataset using the plantar thermogram database [22], then
performed multi-class classification using the CNN network.
Alshayeji et al. [30] extracted the features using Scale
Invariant Feature Transform (SIFT) and Speeded Up Robust
Features (SURF) from the plantar thermogram database
[22]. These features are then trained using various machine
learning models such as SVM, Random Forest, K-Nearest
Neighbor (KNN), etc. The authors reported the best results
with a combination of SURF features and a SVM classifier.

Filipe et al. [31] divided the foot into five different
clusters using the K-means algorithm with different values
of temperature and extracted the features from plantar
thermogram images [22]. The authors then performed a
binary classification and, only for diabetic cases, performed
multi-class classification using SVM, weighted k-NN, logis-
tic regression, etc. The authors achieved the best accuracy
of 0.980 for binary classification and 0.966 for multi-class
classification using the SVM quadratic model. Isaza et al.
[32] proposed data augmentation through the change of
the amplitude in the Fourier Transform and achieved 100%
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Fig. 1: Sample DFU images A)RGB (Normal)[21], B)RGB (Abnormal)[21], C)Thermal (Normal)[22], D)Thermal
(Abnormal)[22].
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Fig. 2: Year-wise publications.

Fig. 3: ML based DFU detection systems.

Fig. 4: Formal selection criteria (as per PRISMA Guidelines).

accuracy using ResNet50v2 for the thermogram dataset [22].
Munadi et al. [33] segmented the foot region and fused the
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Fig. 5: Pre-processed images A)Original, B)Histogram equalization, C)Contrast limited adaptive histogram equalization.

predictions of MobileNetV2 and ShuffleNet to achieve 100%
accuracy using the plantar thermogram database [22].

Hernandez-Guedes et al. [34] utilised pretrained convo-
lutional AutoEncoder (AE) [35] without skip-connections
and achieved an accuracy of 0.937 for classifying
thermograms[22]. Khandakar et al. [36] explored different
machine-learning (ML) approaches for classifying thermo-
grams [22] with feature engineering and found that the
classical ML classifier’s exceptionally good compared to the
performance of the 2D CNN models. Bouallal et al. [37]
segmented the foot sole from the plantar foot images using
a double encoder-ResUnet. The authors achieved an average
intersection over union (IoU) of 97% due to the fusion of
thermal and RGB colour information.

B. RGB imaging based CDSS

RGB images from existing DFU datasets are obtained in
a variety of ways, including by direct capture using Android
devices or Apple tablets at varying brightness levels and
angles, while a few datasets provide images captured using
professional cameras [3]. All such images are typically cap-
tured with the appropriate permission and ethical clearance
from the patients.

Existing work mostly makes use of four publicly available
datasets. The Diabetic Foot Ulcers Grand Challenge 2020
challenge (DFUC 2020) dataset [56] consists of a total of
4,000 images (with a 50% split for training and testing) along
with extra 200 images for normality checks. The DFUC2021
dataset [53] provides pathology labels for 152 ulcers with
ischaemia, 1703 ulcers with infection, and 372 ulcers with
both conditions. With the usage of natural augmentation,
15,683 DFU patches were generated, with 5,955 training
and 5,734 testing patches. The DFUC2022 dataset [60] is
the largest image segmentation dataset in which, clinicians
manually delineated ulcer areas. The FUSC (Foot ulcer

segmentation challenge) dataset [61] consists of 1,010 wound
images, which are augmented to obtain 3,645 training images
and 405 images.

Table II presents a summary of existing research works
that utilized RGB images datasets for DFU diagnosis. These
studies used a variety of preprocessing techniques, including
the zero-centre procedure for producing patches followed
by pixel normalisation of the datasets. Additionally, data
augmentation techniques such as horizontal and vertical flips,
as well as picture scaling, were used to enhance photos.
Shades of Gray [62], a technique based on colour constancy,
is used to compensate for noise and illumination issues
caused by varied capturing equipment. All researchers pre-
processed these datasets to make the images uniform in size.
Several experiments, such as segmentation, classification,
and detecting DFU, used these datasets. Figure 6 summarises
the procedure utilised by the majority of the existing works.
For DL based CDSS, the feature extraction and selection
phase is unnecessary because these models can learn the
features from the training data provided during the training
phase.

Goyal et al. [5] proposed DFUNet for classifying the
RGB foot image patches into normal and abnormal cases,
and achieved an F-measure of 0.939 for 172 test patches.
Venkatesan et al. [46] initially augmented the images using
the Synthetic Minority Oversampling Technique (SMOTE)
and classified them into normal and abnormal classes using
NFU-Net. They achieved 100% accuracy for the binary
classification of 150 test images. Das et al. [45] fused the ML
based low level handcrafted features and CNN based high
level features for DFU identification and achieved 0.9537
F1-score for 336 test images [5].

Goyal et al. [3] incorporated an ensemble CNN model
for more effective recognition of ischaemia and infection in
RGB DFU images. Das et al. [49] experimented with seven
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TABLE I: Summary of thermal image based DFU CDSSs.

Work Dataset/Sample size Methodology/Remarks

Filipe et al. [38]
(Binary classification with
foot segmentation).

Public thermograms dataset [22] containing 122 di-
abetic and 45 non-diabetic patients.

K-means clustering implemented to divide the foot images
into clusters and temperature is calculated for each cluster.
The AUC achieved is 0.84 along with sensitivity of 0.73 and
F-score of 0.81.

Saminathan et al. [39]
(Binary classification).

Private dataset with 36 Diabetic and 24 Control
patients.

Classification was done by implementing the SVM. Accuracy
of 0.908 was obtained.

Khandakar et al. [28]
(Binary classification)

Public thermograms dataset [22]. ResNet18, ResNet50, DenseNet201, InceptionV3, VGG19,
and MobileNetV2 were employed as pre-trained CNNs.
DenseNet201 and MobileNetV2 performed the best with 0.94
accuracy.

Munadi et al. [33]
(Binary classification).

Public thermograms dataset [22]. Segmented the foot region and fused the predictions of
MobileNetV2 and ShuffleNet to achieve accuracy of 1.

Isaza et al. [32]
(Binary classification)

Public thermograms dataset [22]. Proposed data augmentation through the change of the ampli-
tude in the Fourier Transform and achieved 100% accuracy
using ResNet50v2.

Alshayeji et al. [30]
(Binary classification)

Public thermograms dataset [22]. Features extracted using SIFT and SURF. Classified using
traditional ML algorithms like SVM, RF, KNN, etc. and
achieved accuracy of 0.978, precision of 0.979, sensitivity
of o.978, specificity of 0.978.

Abian Hernandez-Guedes
et al. [34]
(Binary classification)

Public thermograms dataset [22]. Utilised pretrained convolutional AutoEncoder (AE) [35]
without skip-connections and achieved an accuracy of 0.937.

Hernandez et al. [40]
(Binary classification).

Publicly available INAOE dataset. The Database was
extended using SMOTE.

Features were extracted using LASSO and random forest ap-
proaches, Subsequently, the extracted features were employed
to classify subjects using a support vector machine (SVM)
model with an accuracy of 91%.

Puneeth et al. [41]
(Binary classification).

Private dataset with 488 image patches. Augmenta-
tion is used to increase the number of images to 1688
patches.

Early detection and prognosis of diabetic foot ulcers using
the EfficientNet with 98.97% accuracy is implemented.

Lan et al. [42]
(Binary classification).

The dataset was gathered by Shanghai Municipal
Eighth People’s Hospital. Apart from DFU, all of
the non-DF images had chronic wounds.

To distinguish between DF images and non-DF images with
an accuracy of 95.78%, the FusionSegNet extracts global foot
features and local wound features in the second stage.

Cruz-Vega et al. [26]
(Multi-class classification)

Public thermograms dataset [22]. Data augmentation and models like MLP, SVM, AlexNet,
and GoogleNet were implemented. A custom DL structure
(DFTNet) was created, achieving a precision of 0.94 and
accuracy of 0.945.

Maldonado et al. [43]
(Classifier combined with
segmentation to obtain a
multi-class output)

Private database was built which comprised 249
images. Segmentation and annotation were done as
part of the preprocessing.

Transfer Learning was utilised on a pre-trained Masked R-
CNN model, with 95.61% accuracy, 96.5% sensitivity and
92.41% specificity.

Muralidhara et al. [29]
(Multi-class classification)

Public thermograms dataset [22]. Formulated a balanced dataset, then performed multi-class
classification using CNN network. Achieved a mean accuracy
of 0.9827, mean sensitivity of 0.9684 and mean specificity of
0.9892.

Filipe et al. [31]
(Multi-class classification)

Public thermograms dataset [22]. The authors performed a binary classification, and only for
diabetic cases performed multi-class classification using SVM
quadratic model, and achieved 0.966 for multi-class classifi-
cation.

Khandakar et al. [36]
(Multi-class classification)

Public thermograms dataset [22]. Explored different ML approaches with feature engineering,
multilayer perceptron (MLP) showed an accuracy of 90.1% .

Prabhu et al. [44]
(DFU segmentation).

Private dataset with 50 total plantar thermograms. 40
samples belong to the DM (Diabetes mellitus) group
and 10 belong to the control group

Adaptive C-means algorithm is implemented and it is evalu-
ated by using the Dice coefficient and the root mean square
deviation which are 0.941 and 5.986 respectively.

Bouallal et al. [37]
(DFU segmentation).

Private dataset with 54 healthy and 145 diabetic
patients from the National Hospital Dos de Mayo,
Peru.

Segmented the foot sole from the plantar foot images using
double encoder-ResUnet. They achieved an average intersec-
tion over union (IoU) of 97% due to the fusion of thermal
and RGB colour information.
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TABLE II: Summary of RGB image based DFU CDSSs.

Work Dataset/Sample size Methodology/Remarks

Goyal et al. [5]
(Binary classification of normal
and abnormal)

Public dataset with 1423 training patches,
84 validation patches, and 172 test patches
that were generated from th1e 397 original
foot images.

A
of important aspect of CNNs architecture - depth and parallel
convolution layered DFUNet model was proposed. Achieved
F-measure of 0.939 for binary classification.

Das et al. [45]
(Binary classification of normal
and abnormal)

Public dataset provided by Goyal et al. [5] Fused the ML based low level handcrafted features and CNN
based high level features for DFU identification and achieved
0.9537 F1-score for 336 test images.

Venkatesan et al. [46]
(Binary classification)

Public dataset provided by Goyal et al. [5] Initially augmented the images using Synthetic Minority
Oversampling Technique (SMOTE) and classified into normal
and abnormal classes using NFU-Net. The authors achieved
100% accuracy for the binary classification of 172 test im-
ages.

Das et al. [47]
(Binary classification of normal
and abnormal)

Public dataset provided by Goyal et al. [3] DFU SPNet, AlexNet, VGG16, DFUNet and DFU QUTNet
models were compared and DFU SPNet outperformed most
of the models with 0.954 F1 score for binary classification.

Alzubaidi et al. [48]
(Binary classification)

Private dataset with 1609 skin patches. 542
are normal and 1067 are abnormal

It is structured around the concept of Directed Acyclic Graph
(DAG). The proposed network exceeds several state-of-the-art
models in terms of performance.

Goyal et al. [3]
(Binary classification: ischaemia vs
non-ischaemia and infection vs
non-infection)

Public dataset of 1459 DFU images with
7136 patches for training, 1019 patches for
validation, and 2038 patches (testing) from
the 2611 original dataset

BayesNet (DL), Randomforest (DL), Multilayer perceptron
(DL), InceptionV3 (CNN), ResNet50(CNN), InceptionRes-
NetV2 (CNN). Ensemble (CNN) model performed the best
with 0.902 for ischaemia binary classification and 0.722 for
infection binary classification.

Das et al. [49]
(Binary classification of ischaemia
and infection in DFU)

Public dataset provided by Goyal et al. [3] Seven variants of the proposed architecture have been ex-
perimentally evaluated, Res4Net,Res5 ... till Res10Net and
Ensemble CNN. Res4Net performed the best in Ischaemia
detection with .978 F1 score and Res7Net in infection detec-
tion with 0.798 F1 score.

Liu et al. [50]
(Binary classification of ischaemia
and infection in DFU)

Public dataset provided by Goyal et al. [3] Experimented with EfficientNet. Achieved F1 score of 0.9939
in ischemia and 0.9792 in infection detection respectively, for
the augmented test images.

Garaawi et al. [51]
(Binary classification of ischaemia
and infection in DFU)

Public dataset provided by Goyal et al. [3] Fused RGB input images and Mapped LBP codes, the resul-
tant images were trained using custom CNN model. Achieved
0.975 F-Measure for ischaemia and 0.787 for infection detec-
tion.

Yap et al. [52]
(Multi-class classification)

Public DFUC2021 [53] Analysis of a various methods with and without pretrained
models like VGG16, ResNet101, InceptionV3, DenseNet121,
EfficientNetB0. The overall best performance is given by
EfficientNetB0 with F1 score of 0.55.

Lingmei et al. [54]
(Multi-class classification)

Public DFUC2021 [53] The authors validated the performance of the model on the
DFUC2021 test set and achieved 0.593 F1-score.

Goyal et al. [25]
(DFU localization)

Private dataset of 1775 images split into
training 1242 images, 178 validation and
355 in test images.

Utilized Faster R-CNN with InceptionV2 model to achieve a
mean average precision of 91.8% for DFU localization.

Oliveira et al. [55]
(DFU localization)

public DFUC2020 [56] dataset Different localization models such as Faster RCNN, Faster
RCNN FP and Faster RCNN DFU were compared, and the
overall best performed model was Faster RCNN DFU with
F1-score of 0.948.

Huang et al. [57]
(DFU segmentation)

Private dataset with 727 images Faster R-CNN was utilised for DFU segmentation and
achieved an accuracy of 90% for 200 test images from
augmented dataset.

Hüseyin et al. [58]
(Segmentation)

Medetec pressure wound image dataset They used the segmentation architectures FCN, PSP, UNet,
SegNet, and DeepLabV3 and used the backbone (base) mod-
els ResNet, VGG-16, MobileNet, EfficientNet, and Vanilla
CNN. The MobileNet-UNet showed an accuracy of 99.67%.

Cao et al. [59]
(DFU segmentation and multi-level
classification)

Private dataset with 1000 images along wtih
DFUC2020 [5] dataset

Built a semantic segmentation of DFU using Mask R-CNN
and performed multi-level classification. The authors achieved
an F1 score of 0.7696 for multi-level classification of DFU.
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Fig. 6: DL based DFU CDSS.

variants of the proposed architecture that were designed
based on Res4Net, Res5 and ensemble CNN. Res4Net per-
formed the best in ischaemia detection with a 0.978 F1 score
and Res7Net in infection detection with a 0.798 F1 score
for Goyal et al.’s dataset [3]. Liu et al. [50] experimented
with EfficientNets achieving an F1 score of 0.9939 in
ischemia and 0.9792 in infection detection, respectively, for
the augmented test images. Garaawi et al. [51] fused RGB
input images and Mapped LBP codes, the resultant images
were trained using a custom CNN model to perform binary
classification for the recognition of ischaemia and infection.
They reported a 0.975 F-Measure for ischaemia and a 0.787
for infection detection.

An asymmetric convolutional transformer network was
proposed by Lingmei et al. [54] for the multi-class (4-
class) classification task of DFU. The authors validated
the performance of the model on the DFUC2021 test set,
and were able to achieve 0.593 F1-score. Yap et al. [52]
analysed various pretrained models like VGG16, ResNet101,
InceptionV3, DenseNet121, EfficientNetB0. The overall best
performance is given by EfficientNetB0 with F1 score of
0.55, for the multi-class classification. Goyal et al. [25]
localized DFU region on full foot images using faster R-
CNN with InceptionV2 model and achieved a mean average
precision of 91.8% for 355 testing images. Huang et al.
[57] segmented the DFU using the private dataset with 727
images. They utilised faster R-CNN for DFU segmentation
and achieved an accuracy of 90% for 200 test images
from an augmented dataset. Cao et al. [59] built a semantic
segmentation of DFU using Mask R-CNN and performed
multi-level classification using a private dataset consisting
of 1000 images. The authors achieved an F1 score of 0.7696
for the multi-level classification of DFU. Cassidy et al. [63]
localised DFU region using the trained model and developed
a cloud-based framework for remote detection of DFU.

III. EVALUATION METRICS

To effectively evaluate and benchmark the performance of
CDS systems designed for DFU diagnosis, several standard
metrics can be utilized. Some such metrics are sensitivity
(true positive rate (TPR) or recall), specificity (false positive
rate (FPR)), F1-score, precision, the area under the receiver
operating characteristic curve (AUC), overlapping error, ac-
curacy, boundary-based evaluations, and the dice similarity
coefficient have been used to evaluate the performance. Each
of these metrics is primarily concerned with assessing the

performance of false positives (FP ), true positives (TP ),
false negatives (FN ), and true negatives (TN ) identified by
the CDSS. Here, TP are the number of DFU cases identified
correctly by the CDSS system to be positive, matching
expert opinion. TN represents the correctly detected non-
DFU cases, and FN represents the number of incorrectly
rejected DFU cases, matched with human expert opinion.
The number of cases that were wrongly classified by the
CDSS as DFU but not by human experts is known as FP .

The most popular metrics used for the DFU detec-
tion/classification/segmentation task are Sensitivity (also
called Recall or True Positive Rate (TPR)), Specificity (False
Positive Rate (FPR)), Precision (Positive Predictive Value),
F1-score (Dice similarity coefficient), Accuracy, Area under
Receiver Operative Characteristic Curve (AUC) and Inter-
section over Union (IOU, Jaccard similarity index). Sensitiv-
ity (Eq. 1) is the ratio of accurately identified findings, and
a higher value indicates a better system. Specificity (Eq. 2)
is the ratio of correctly identified non-DFU cases, and the
higher the value, the better is the system. Precision (Eq. 3)
illustrates how many of the DFU that were labeled positive,
were correctly identified. The system performs better with
higher value. F1-score (Eq. 4) is the harmonic mean of
precision and recall, and the higher the value, the better the
system. Accuracy (Eq. 5) is the ratio of correctly predicted
MA to the total MA observations. AUC is the area under
ROC curve is a probability curve (plotted as sensitivity versus
fall-out), and the area under the curve represents measure of
class separability. The greater the AUC value, the better the
system distinguishes between DFU and non-DFU. IOU (Eq.
6) evaluates how close the predicted finding is to the ground
truth finding. The intersection is 0 when there is no overlap
between the ground truth and prediction bounding boxes As
a result, IoU will be 0 as well.

TPR =
TP

(FN + TP )
(1)

FPR =
TN

(FP + TN)
(2)

Precision =
TP

(TP + FP )
(3)

F1 score =
2× (TP )

(2× TP + FP + FN)
(4)

Accuracy =
TP + TN

(TP + FP + FN + TN)
(5)

IOU =
TP

(TP + FN + FP )
(6)

Tables III summarize the performance of various existing
works using thermal DFU images for classification and
detection tasks. Tables IV, V, and VI summarize the per-
formance of various existing works using RGB DFU images
for classification, segmentation, and detection tasks.

IV. DISCUSSION AND OBSERVED GAPS

From the detailed review of existing works, we were
able to draw some significant conclusions, highlighting the
goodness of available models and gaps in research that
require further efforts from the research community. A CDSS
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TABLE III: Performance of state-of-the-art models built on thermal DFU images - summary.

Task Method Accuracy TPR FPR AUC F1-Score Precision

Binary classification

DFTNet [26] 0.9453 0.9534 0.9375 0.9455 0.9457 0.9401
DenseNet201 [28] 0.9401 0.9401 0.9078 0.9401 0.9401 0.9401
Custom CNN [29] 0.9827 - - - 0.9621 0.9626
SVM+SURF [30] 0.9781 - - - - -
SVM Quadratic[31] 0.912 - - - 0.825 0.826
CNN+ML [36] 0.91 - - - 0.91 0.91
K-means [38] 0.743 0.7300 0.778 0.840 0.805 0.899
SVM [39] 0.9561 0.9650 0.9241 - - -
ResNet50v2[32] 1 1 1 1 1 1
MobileNetv2 + ShuffleNet [33] 1 1 1 1 1 1
SVM[40] 0.91 - - - 0.90 0.98

Detection

Masked RCNN [43] 0.9028 0.9029 0.9028 - - -
Faster RCNN [57] 0.900 - - - - -
EfficientNet [41] 0.989 - - - 98 99
FusionSegNet [42] 0.957 - - 0.989 0.949 -

TABLE IV: Multi-class classification performance of state-of-the-art models built on RGB DFU images - summary.

Method Accuracy TPR FPR AUC F1-Score Precision
DFUSPnet [48] 0.964 0.984 0.951 0.974 0.954 0.926
DFUQUTnet [47] - - 0.936 - 0.845 0.954
DFUnet [5] 0.925 0.943 0.911 0.962 0.939 0.945
ACTNet [54] - - - 0.824 0.593 -
EfficientNetB0 [52] multi-class (4-class) classification 0.620 - - - 0. 570 0.550
DFUSC [59] multiclass classification - - - - 0.769 0.846

TABLE V: Segmentation performance of state-of-the-art models built on RGB DFU images - summary.

Method Accuracy TPR FPR AUC F1-Score Precision
ASURA [64] 0.84 - - 0.91 0.90 0.92
CONVNET [65] - - - 0.308 0.348 0.40
FCN-16s [66] - 0.9 0.988 - - -
Patch-based CNN [67] - 0.917 0.973 - - -
Object Detection Fast R-CNN method [57] 0.90 - - - - -
Faster R-CNN DFU [55] - - - - 0.948 0.914
Faster R-CNN FP [55] - - - - 0.919 0.865
MobileNet-UNet [58] 0.996 - - - 0.99 0.995

TABLE VI: Detection performance of state-of-the-art models built on RGB DFU images - summary.

Method Time (in sec) mAP FPR Parameters (in million) F1-Score Precision
SSD-MobileNet [68] 0.28 0.84 - 22.6 - -
SSD-InceptionV2 [68] 0.37 0.87 - 53.5 - -
Faster R-CNN with InceptionV2 [68] 0.48 0.91 - 52.2 - -
R-FCN with Resnet 101 [68] 0.90 0.90 - 199.1 - -
FRCNN R-FCN [69] - 0.65 0.75 - 0.67 0.61
FRCNN ResNet101 [69] - 0.65 0.73 - 0.66 0.59
FRCNN Inception-v2-ResNet101 [69] - 0.64 0.75 - 0.67 0.60
EffDet [69] - 0.62 0.69 - 0.69 0.69
EfficientDet-D5 [70] - 0.50 - - - -
EfficientDet-D6 [70] - 0.51 - - - -
NFU-Net (PReLU) (D2) [46] 1.00 - - - 1.00 1.00
Alex Net (D2) [46] 0.918 - - - 0.919 0.933
LeNet (D2) [46] 0.896 - - - 0.889 0.877
LRC [45] 0.937 - - 9.5 0.954 -
Ischaemia classification [49] 0.90 - - - - -
Infection classification [49] 0.73 - - - - -
EfficientNet- Infection classification [50] - 0.979 - - 0.979 0.979
EfficientNet- Ischaemia classification [50] - 0.993 - - 0.993 0.993
DFU-RGB-TEX-NET [51] - - - - 0.981 0.952
DFU SPNet [47] 0.974 - - - - -
DFU QUTNet [48] - - - - 0.945 0.954

designed for automated DFU diagnosis based tasks can
provide crucial alternatives for manual screening, especially
in rural areas where trained experts are scarce and in semi-
urban areas where skilled physicians are not always available.
However, numerous challenges must be overcome when
deploying a CDSS in a real-time clinical setting.

• Data quality: DFU images are often acquired from
several sources and annotated by physicians with varied

degrees of experience; the CDSS should be robust
enough to be able to accurately predict disease onset
and progression while being able to manage any dis-
crepancies or outliers caused by these differences in data
quality and expert opinion.

• Data imbalance: Currently, publicly available DFU
datasets are extremely skewed in terms of class distri-
bution, with many infection instances but just a few is-
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chaemia cases. Generative Adversarial Networks (GAN)
can be utilized to synthetically augment the dataset, to
offset the lack of bigger datasets.

• Data modality: Currently, publicly available DFU
datasets mostly include RGB images, while, thermo-
gram datasets are very scarce and less in number. This
could be due to the requirement of a sophisticated
setup and advanced infrared cameras for capturing
thermograms. The combination of diagnosis and image
features, such as, patient ethnicity, the presence of is-
chemia, the depth of DFU to the tendon, and neuropathy
would aid in the development of a more robust DFU
diagnosis system.

• Data loss: Many existing works focused on reducing
the image size to to 128x128. This may have resulted in
some information loss, which can be possibly prevented
via ensemble of results from image patches.

• Varied processing requirements: Multimodal DFU data
is often collected from a variety of sources (e.g., imag-
ing data from multiple devices). Each data modality
may need its own preprocessing and AI approaches.
An ensemble of results from different prepossessing
approaches could aid improve the robustness of the
CDSS.

• Overfitting issue: For good performance, CNNs require
a large volume of labelled training set. Since some of the
available DFU datasets are small, the CNN parameters
may be poorly tuned, resulting in overfitting. GANs
could be utilized to synthetically augment the dataset,
thus aid in development of a generalizable CDSS.

• Unsupervised learning issue: K-means clustering is typ-
ically employed before feature extraction. The quality of
the output in K-means clustering is determined by the
arbitrary selection of the initial centroid, allowing for
different results for each cluster within the same image.

• Dealing with multiple labels: Designing methods to
detect the co-occurrences of multiple conditions, such
as ischaemia and infection, pose many significant chal-
lenges.

• Interpretability: The inability to provide an explainable
interpretation for the projected outcomes may cause
scepticism among healthcare professionals. CDSSs
based on machine learning and deep learning are con-
sidered black boxes, and in domains such as healthcare,
it is frequently required to provide information on how
and why the system recommended a specific outcome.
Thus, interpretability is already a crucial aspect in
CDSS for early diagnosis of DFU. Recently introduced
Explainable AI (XAI) techniques [71] such as score
deviation maps and recursive division methods can be
investigated.

V. CONCLUDING REMARKS

Diabetes related complications like DFUs are a treatable
and preventable chronic condition that can result in repeated
hospitalisation, the amputation of lower limbs or toes, and in
more severe situations, even fatality. Its identification could

therefore prevent additional complications and enable better
prognosis. In this research work, a thorough assessment
of significant works on CDSS for DFU was undertaken,
encompassing the identification and segmentation of DFU
using both traditional image processing methods and DL-
based approaches. A taxonomy of DFU CDSS classified
into two groups, techniques based on thermal imaging and
approaches based on RGB, was presented and discussed.
Detailed discussions on widely used data augmentation, pre-
processing, and modelling methodologies, as well as publicly
accessible DFU databases, were also presented. Additionally,
the most common evaluation metrics used to assess CDSS
for DFU were also described. The benefits and drawbacks
of various existing approaches were discussed and illustrated
via a task-wise comparative evaluation of state-of-the-art ap-
proaches on standard datasets. The majority of performance
enhancements were observed in binary classification. There
is scope for improvement in multi-class classification, which
is more advantageous for distinguishing between infective vs
peripheral vascular DFU.

Additionally, the primary difficulties that must be over-
come in designing DFU CDSS were highlighted and studied
in detail, for throwing light on future directions for research
in the field. The need for scoring-based CDSSs that are
built on interactive interfaces similar to those provided by
inexpensive, widely available devices like smartphones is
emphasized, as they would help doctors make an early
diagnosis of DFU in a way that is both user-friendly and
economical.
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