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Eigemalue Problems for GeneralizedLaplacian
Fractional Equations

Yajing Diao

Abstract—This article mainly study under what conditions In [9], the authors investigated the solutions for the eigen-
dhoeS the _elgenyﬁlue prObll_emd hali/e IPOSItlve solutions, InI which value relationship, in which the equation involved general-
the equation with generalizedp-Laplacian operator involving . ;
both Caputo fractional derivatives and fractional derivatives of ized p-Laplacian operator

Riemann-Liouville. The novelty here consists of deriving some Db DY ~(8) = A ). te (0.1
different intervals, when the \ is within it, there is at least one o+ ($(D5:7(1)) = Af((#)), £ € (0, 1),
positive function satisfied the problem. 7(0) =~'(0) =~/(1) =0

Index Terms—Generalizedp-Laplacian; Eigenvalue; Frac- o o ,
tional differential equations; Fixed point theorem. o(Dg+v(0)) = (¢(D0+7(1))) = 0.
Therefore, in order to enrich the research findings of
I. INTRODUCTION fractional problems in which equations involved generalized
OR studying turbulence problems in porous media iprLaplacian operator, here, we deal with such problem

fundamental mechanics of engineering, Leibenson [1 ¢ o
ropoecd the faloning aacation oo U1 D2 (6 D3 y(1) + Mkt y(®) = 0, te (0,1), (@)

(2o (v (5))) = f(5,0(5),'(5)), y(0) +y'(0) = 0, y(1) +y'(1) = 0, “Dg.y(0) =0,
1 i _ —2 1 1 _ . ~ m—2
oty oo ot P> bty = LS calledy SeDg ) = 3 woC DLy, @)
=1

Since then, many scholars have been interested in the ) S N
p-Laplacian equation. Here we only briefly recall som@hereA is a constant which is pogE'YQ <a SﬁZ,_ 1<
remarkable results. D. Ji et al [2] discussed countably mady< 2, 0 < ai& <1, 35,2, ai§y < 1, Dy, is the
solutions which is positive for the following mumpoimfractlonal derivative which is given by Riemann-Liouville,

problem which is singular °Dg, is the Caputo fractional derivative. Furthermore, we
need to introduce the following condition:
(ep(p' (1) +a(t) f(p(t)) =0, t € (0,1), (H,) The odd strictly increasing function € C’(R, R) and
n—2 n—2 the following relationship holds true
P(0) =D aip&) =0, p'(1) + > acip(mi) =0.
2 2 w1 ()6 (v) < ¢(u,v) < wa(w)d(v),

Recently, because of the importance of fractional differefer two increasing homeomorphisms;, ws : (0,4+00) —
tial equation in the modelling of many phenomena containéd, +o0);
in engineering technology, many scholars began to stutlz) k& € C([0,1] x (0, +00), (0, 400)).
the differential equations which is fractional order wijth In this work, under some natural assumptions, we obtain
Laplacian operator [3-7,14,15]. the solvability of the problem (1),(2). By scaling the value
In [3], Zhi wei Lv gave the existence results for theof the Green’s function for (1),(2) and using some theorem,
following relationship with fractional derivative involvegt we obtain some different intervals, when thds within it,

Laplacian operator there is at least one positive function satisfied the relationship
o 1).2).
Dy (¢p(Dg:0(1) + p(A\) f(1,6(1) =0, t € (0,1),
0(0) — 0. D7 4(1 n-2 D D% 6(0) — 0 Il. THE PRELIMINARY LEMMAS
(0) =0, Ds.6(1) = Z;& o+ 0(m), D 6(0) = 0. This part gives some important definitions and useful
. T . Lemmas.
The relationship in which involved the generalized Definition 2.1 [10] Presume the functioh : (0, +o0) —

Laplacian has received special attention in the last few yea
H. Wang [8] discussed the equation with generalized
Laplacian operator

>0,

t
I"h(t) = Fi/ (t — 0)*~h(0)ds,
(")) + Aa(t)f(v) =0, 0<t<1, (1) Jo

the above relationship refers joorder fractional integration.

v(0) = (1) = 0. Definition 2.2 [10] Presume the functioh : (0, +00) —
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in this placen = [u] 4+ 1, the above equation refers o
order fractional derivative of Riemann-Liouville type.

Definition 2.3 [10] Let & : (0,+0c0) — R be a function,
p>0,

1 ! n—p—1lrn
mfo (t — 0)" 11" (0)db,

in this placen = [u] 4+ 1, the above equation refers {0
order fractional derivative of Caputo type.

DIR(t) =

Lemma 2.1 [10] Presumegd > 0, n = [3] + 1,
h,© Dy, h, Dy, h € L'(0,1), then there is
I8 ¢DPh(t) = h(t) — c1 — cot — -+ - — cut™ 1,
I°DPh(t) = h(t) — ditP ™ — dotP™2 — .. — d,tP ™,

in this placec;,d; i = 1,2,---,n are real numbers.
Lemma 2.2 [11] For continuous functiorh defined on
interval C[0, 1],

1
0= [ Gtoms)ds ®
0
in this place
(t=s)" "'+ (1=s)" " (1=t) 4 (1=t)(1=s)" "
0 L(p) N L(p-1)
<s<t<
Glt.s) = wwuﬂwl+xlwuaw2
T'(p) T(p—1)
0<t<s<1.
4
meet thefollowing equation
CDIOL-%—f(t) = h(t)v 0<t< 17 (5)
£(0)+£'(0)=0, £Q1)+&(1)= (6)

Lemma 2.3 [11] For continuous functiorh defined on
interval C[0, 1], expression (4) satisfies:
(7) The functionG(t, s) is positive and continuous abotts
for s, ¢ belongs to the interval0, 1);
(i) The following relationship holds true

<
[ax G(t,s) < N(s), s€(0,1),
min G(t,s) > §(s)N(s), s€(0,1),
1<e<d
where N (s) = 242 -4 a (j)ul) , s € (0,1). for some

positive continuous function.
Remark 2.1[11] The expression of(s) is

1 (a=1)(1-=s)*2+(1-s

i(s) =~

)(171
1la—DI-sZr2l-so 1"

€ (0,1),

we see thab(s) > .
Lemma 2.4[12] Let

pe)=1- Y aB 2y,

S
s<&;

()

thenp(s) is nondecreasingnd positive orf0, 1].
Lemma 2.5 Chooseh € C|0,1], then the following

relationshipu(t)
1
- / H(t, 5)h(s)ds
0

in this place
X p(s)[(L = )]~ — (t — 5)~1p(0),
B 0<s<t<l,
HS) =0T | w7,
0<t<s<l,
(8)
meet thefollowing equation
DI w(t)+h(t)=0, 0<t<l, 9)
m—2
v(1) = a;v(&), v(0) =0. (10)
=1

Proof: For the equation (9), in light of Lemma 2.1, one
has

1 t
0
v(0) = 0 meansc, = 0.
From
1
0=~y [ M= e
0
&
1= 5 [ e~
andu(1) = Y7 % a;0(&;), one get
“a = p(0>r(ﬂ) [y k(s )(1 —5)Pds
- Z:n 1 fo s)(& — )P 1ds]
= ;O Jo h(s)p(s)(1 — 5)P~1ds,
S0
v(t) ==z Jo M t—sﬁlw
p(tofir(ﬁ) fo )(1—s)P~1ds
- fo dS

Lemma 2.6[12] The expression (8) satisfies:

(1) H(t,s) is positive V t, s belong to(0, 1);

(i) H(t,s) > (1 —t)m(1 —s)3~ 1P~ 1s Vst €]0,1];

(iii) H(t,s) < (1 —s)P~IMs, V s,te]0,1],

where

= g PO PO () = p(0)
0<s<1 S ’ te 0<s<1 S ’
_mi4p(0) L Mi+p(0)(B—1)
p(O)T(B) ’ p(O)T(B)

Lemma 2.7 Let (H,), (H,) are true, the following func-
tion
1 1

G(t,s)o™(

0 0

AH (s, 7)k(r,y(r))dr)ds

makes equation (1) and condition (2) hold.
Proof. Choosev(t) = ¢(°Dg.y(t)), then the realtion-
ship (1),(2) can be reduced to

DE,o(t) + Mk(t,y(1)) = 0,

y(t) =
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From lemma2.5, we have We denote
1 k(t,y)
_ K° = lim sup ,
olt) = [ ks )N (e, 5)ds. Jim, sup Z20
thi
iS means ko = lim i k(t,y)7
y—0+t€0,1] P(y)
6D (1) / k(s, y())AH (1, 5)ds, o
£ = i 7
then y=too o] O(y)
1
CDg+y(t) = ¢_1(/ k(s,y(s)))\H(t,s)ds) koo = lim inf k(t7y)’
0 y—-+oote(0,1] (y)
and 1 1
y'(1) +y(1) =0, %'(0)+y(0)=0. By = / wfl(/ M(1—r)""trdr)N(s)ds,
0 0

Combining the above two formulas with Lemma 2.2, we can 3 L
see By s i N(s)wy (55 '(1-9))
4

=3
1 1 L — ) rmw, ()dr)ds,
t)=/0 G(t,s)¢—1(/0 k(r,y(r))XH (s, 7)dr)ds. 2 (fo L (L)dr)

By *éﬁN 2 (5771 - 9))
iti . (1 — )P~ tmrdr)d
Lemma 2.8[9] Assuming condition H;) are met, then > (- ) mrdr)ds.
W e > 6 (ud(v)) > wy (w)v, u,v € (0,400). Theorem 3.1Let (H,), (H-) are true andio,w; (B ') >

EOwy (B, 1), then for
Lemma 2.9[13] We denoteK is a cone of Banach space

— Sl —1y/7.0y—1
B. 91,0, with 0 € Q; € Q) C Q, are boundedpen set A€ (wa(By ko wr(By ) (E7) ), (13)
in B. SupposeS mapping K to K is continuous and it is there s at least one positive function satisfied problem (1),
compact. If one of the following holds true (2). In this place we writekZ} = 0 if ko = +oo and
(@) ISvlf < |loll, Voe Ko, |ISvl = [lvll, Yve (£0)-1 = yooif kKO = 0.
K N oQy; Proof: From (13), there exists > 0 satisfying
(@) [ISvl| = [lvll, Vve KNaQ, [Sv| <|jvfl, Vve o 1 . . .
K N8Qy. (K" +e)" wi(By ) 2 A 2 (koo —€) w2(By 7). (14)

Then there is at least one functiarit) € K N (22\Q1) gjrst by the notation of?
satisfiesSv(t) = v(t). ’
k(t,y) < oy)(k° +¢), 0<t<1, 0<y<ry, (15)

1. EXISTENCE for somer; > 0. SelectQ; as{y € B : |ly|| < r1}. Then
Under the standard normfjv|| = maxo<;<1[v(t)|, the for anyy belongs tok N a8, from (14), (15), one get
spaceC|0, 1] defined asB is a space which is completed.

1
We markK as ITy@I < 0 N(s)o )‘fo (L—r)t
1 r(k" +e)¢ (rl)dr)ds
K ={veB(t) = glll, tel0,1]}. (11) <wi ' (AK® +€))Biry < =lyll,
Define the following magl’ : K — K thus,
1 Ty|| < |ly|l, for y belongs toK N 9Q;. (16)
= / G(t,s) / k(r,y(r))\H(s,r)dr)ds. 17yl < Nl . !
0 (12) Second, by the notation df,.,
Moreover, ify satisfiesT'y = y, the y is solutions for (1), kE(t,y) > (ko —€)P(y), 0<t <1, y>rs, a7)

().
Lemma 3.1 Let (Hy), (Hsz) are true, therl defined by
(12) mappingK to K is compact, moreovef, is continuous.
Proof: In light of Lemma 2.3 and Remark 2.1, we have

for somers > 0. Let ro = max{2ry,r3}, selectQ, as
{ € B : |ly|]| < r2}. Then for anyy belongs toK N 99,
from (14), (17), one get

- ITy(®) = fy Gt )67 (A Jy k(r,y(r) H (s, r)dr)ds
< - - ylr » 3 _ 1
Iyl < [ o7 / K(r,y(r))AH (s, r)dr)N (s)ds, = 1§ 61,506 OV K ) Hs )i s
2 _ 1 _ _
Tyt) = §f Y[ k(r,y(r)AH (s,7)dr)N (s)ds > [N ()7 (A fy ms® (1= s)(1— )7
> 51Tyl (koo — )5 [lyl)dr)ds
2 - 1 - —
Thus, T(K) is included inK. The functionsG, H andk is > [ §N(s)wy H Sy ms® T (L= s) (1 —r)P
nonnegativeness and continuity, which give the result That (ko — €)% rgdr)ds
mapping K to K is continuous. According to the classical = wgl()\(/{ €))Bary > 19 = ||yl
proof method, we can prové mappingK to K is compact. thus
In a word, we havel’ mapping K to K is continuous and '
compact. [ ITyll > |lyll, fory belongs toK NoQ,.  (18)
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Therefore, inview of (16), (18) and Lemma 2.9, there existor some positive constan > max{2ry, R, }. Select(2, as
y belongs toK N (22\Q1) andTy = y with 1 < ||ly|| < r2.  {y € B : ||y|]| < r4}. Then for anyy belongs tdd N 08y,
Obviously,y is a positive function satisfied problem (1), (2)from (20), (23), we get

]
Theorem 3.2 Let (H,), (H,) are true andeow; (B; ') > ITy@I < fo (s)o7( )‘fo (1 -
k>ws(B5 1), then for T’f(r U( ))dr)ds
< fo (s)p~t(A fo (1—7)=1r
A€ (waBy kg Lwn(Br ()T, (19) (k= + €)g(ra)dr)ds

. . . - = 0 Biry <ry =
there is at least one positive function satisfied problem (1), wi AR +e)Birs <ra =yl

(2). In this place we writek;* = 0 if ky = +oco and thus,
(k)1 = 400 if k> =0.

Proof: From (19), there exists > 0 satisfying ITyll < flyll, fory belongs td< N €.
Considering the above two cases, sel@gstas {y € B :

(k:oo + E)ilwl(Bl_l) Z A Z (ko — 6)71WQ(B2_1), (20) Hy” <y = maX{T3,T4}}, we get

First, by the notation o, 1Tyl < llyll, for y belongs td N Q.

k(ty) = (ko —€)p(y), 0<t<1, 0<y<ri. (21) Therefore, Lemma 2.9 implies that there exigtselongs to

KN (Q2\Q) andTy = y with 71 < ||y|| < r2. Obviously,

y is a positive function satisfied problem (1), (2). [ ]
Theorem 3.3 The following inequality holds

for somer; > 0. SelectQ; as{y € B : |ly| < r1}. Then
for any y belongs toK N 9924, from (20), (21), one get

T > fy Gt (A ) i e zeh)

> f G(t,s)p~ Afol H(s,r)dr)ds 0<t<1, i <y<n
> [} (0 0 s 1“ H - X, max k() < 6(12),
(ko — <)o (§llyldr)ds By
> f %N S)p~ ()\f ms?~H(1 — s)(1 — r)f-1 for somery > r1 > 0, then there exists a positive function
(ki— )on (1)é(r1)dr)ds y satisfying problem (1), (2), moreover < ||y|| < ro.

0 . i - ) . Proof: First, letQ; as{y € B : ||y|| < r1}. Thus for
2 f4 §N(s)wy (87711 = s)wy H(mwi(3))  anyy e K N o0, we get

—

fo (1 — 7)) Yrdr)ds - wy * (M(ko — €))r1

T
= w3 (ko — £)) Byt = 71 = |l 1Tyl

o, G(t - )\fol (r))dr)ds
G /\f0 (r))dr)ds
N(s - )‘fo msﬁ 1( —5)(1 —7r)P~

r1<y<ry ]{7(7’7 y( ))d’f’)d

(AYARR \VA AV
. b.*mcﬁmw%
0ol

L SR

thus,

Tyl > |ly|l, fory belongs toK NoQy.  (22)

<

r<1,

IN

1
'8

*mp?

Second, we choose a positive const&twhich satisfy

IV IV

Hyll

Second, let, as{y € B : |ly|| < r2}. Then for anyy
In the following, we will prove it by dividing it intok is belongs toK N 9),, we get
bounded and: is unbounded.

k(t,y) < o(y) (k™ +¢), 0<t<1, y>Ry.  (23)

1
(i)  is bounded, 1Tyl < Jy N(s)o~ (A fy M(1—r)~
rk(r,y(r))dr)ds
k(t,y) <D, for0<t<1, 0<y< +oo, gfolN( )\fo M(1—r)B=1p
for some positive constant D. Let ry; = = maiogq osysra k(r, ( ))dr)ds
max{2ry, ¢~ (AD)B, }, selectQs as{y € B : ||y|| < rs}. 1” I
Then for anyy belongs toK N 093, from (20), (23), one o Tz y
get Therefore, inlight of Lemma 2.9, there exists a function
satisfyingTy = y, moreover,y € K N (Q\Q1) andr; <
Tyl < fo N(s)¢~ )‘fo (1=r)! lly|l < r2. Obviously, y is a solution which is positive for
rk(r,y(r)) r) the relationship (1), (2). ]
<f0 N(s)p~! )\f M 1—7")5 LrDdr)ds
< fo N(s)¢~(AD)wr ' (fy M(1 = )P~ 1rdr)ds REFERENCES
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