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The Eigenalue for a Class op-Laplacian
Equations with Integral Boundary Conditions

Yuejin Zhang

Abstract—We are interested in the eigenvalue for the differ- In [3], the authors considered the wave equation
ential equations with the conditions contain integrals 52 52 52
u u u

(6p(@ (©)) + N(D)g(t,0(0) =0, 0<t<1, 9z~ 9az T g T/ @y (@) €2t e (0.T];

with the following conditions

v(0) — av'(0) = / hi(s)v(s)ds,

1
1 U(O,yﬂf) = 7Al/ U(%yat)dx + gl(yat)7
v(1) 4 bv'(1) :/ ha(s)v(s)ds, 0

1
in which X is a positive constant,¢, is a classical p-Laplacian u(ly,t) = TQ/O u(@, y, t)dz + g2(y, 1),
operator. We prove the following results: whengy = g = 0,
there exists a positive number)\’, at least two solutions to the 1
problem are shown to exist for A within the interval (X, \°), at u(z,0,t) = 7"3/ u(z,y, t)dy + gs(z,t),
least one positive function satisfies the problem is shown to exist 0
if X equals to\°, we can also present nonexistence of positive 1
solution if X is greater than \°. We illustrate this fact by using u(z,1,t) = 7"4/ u(z,y,t)dy + ga(z,t).
the fixed point index theory. 0

Index Terms—p-Laplacian equations; Eigenvalue; Positive The authors in [4] developed the singularly perturbed

solutions; Fixed point index. differential equations derived from engineering and applied
sciences
I. INTRODUCTION —ea(z)y’ (x) = f(puy'(z),y(x),b(x)), = € (0,1),

HE key aim of studying this eigenvalue problem is tgnqg
understand the motion of equations with the boundary 1 1
conditions contain integrals. Many phenomena in physics y(0) +/ y(z)dr = Gy, 3/ (0) +/ y(z)dr = Gs.
were expressed into nonlocal mathematical equations with 0 0
the conditions contain integrals. The boundary conditions Due to the importance of the boundary conditions contain
contain integrals It often appears in many fields of appligdtegrals, there is a lot of literature devoted to the mathemat-
science and engineering, like underground water flow, thécal theory of it. Some representative literature includes: nu-
moelasticity, population dynamics and chemical engineeringgerical solution for parabolic equations with mixed boundary
the researchers showed interest in [1-6,18,19]. condition [7]; parabolic equation with three order involved
W. T. Ang et al. [1] discussed the heat equation as followsonditions contain integrals [8]; positive solutions for the
Pu Pu  Pu Ou differential equation involved conditions contain integrals

5 5 5 = 5 (1,9,2) € Vit >0, in Banach space [9]; approximate solution for the equation
N ot with forced terms involved the conditions contain integrals
with the boundary conditions contain integrals [10]; solutions to the classicap-Laplacian fourth order
multipoint problem [11], nonlinear perturbed hammerstein
///u(m,y,z,t)dxdydz =m(t), t>0 integral boundary value problems [12] and so on.
v In [13], You-Yan Yang and Qi-Ru Wang discussed the

Bashir Ahmad [2]studied the equation with forced termfsonowIng problem

involved the conditions contain integrals (pp (' (1)) + h(t) f(t,u(t),u' (t)) =0, 0<t<1,
u’(t) +ou'(t) + f(t,u) =0, 0 <t < 1,0 € R— {0}, w(0) — o (0) = /1 01 (8)u(s)ds
)~ ) = [ aru(s)as, -
0 u(l) + pu'(1) = /0 g2(s)u(s)ds,

1
/ .
u(1) 4+ pou'(1) = /o q2u(s)ds. by making use of Avery-Peterson’s theorem.
At the same time, there exist some good results about exis-
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into accounturrently. In the following, applying fixed point then thereexists a unique constand, € (0, fo

index to obtain conclusions for the solution pf_aplacian

equations which the boundary conditions contain integralsr, €

In this article, we present existence of the model

(dp(V' () + N()g(t,v(t)) =0, 0<t<l, (1)
v(0) — av’( / hi(s
<>+bv<>—/0h2<><)ds, )

here the parametek is positive, % + % = 1,¢p(w) =
lw[P~2w,p > 1,a,b > 0, (¢p) 1 (w) = dg(w) = |w|?T2w.

Throughout the article, the following assumptions are given.

(Hy1) g(s,v) > 0 Vs € [0,1],v € [0,400), g(s,v) > 0
for v > 0,s € [0,1] is nondecreasing about [ > 0 is
continuous for all0, 1];

(Hs) Fori=1,2,h; > 0, h; is integrable aano
[0,1).

s)ds €

[l. SOME LEMMAS
Under the standard norrw]|| : Jnax |v(t)], the space
B = C|0,1] is a Banach space. We mark

K = {v € BJ v(s) is nonnegative and concave
in the interval[0, 1]},
P.={veB: |v|<r},0P.={veB: |v|=r}

CT[0,1] = {v € C[0,1] :

Lemma 2.1[13] Assume the conditiofiH>) hold, letz €
C*[0,1], then the equation

v(s) >0, s€0,1]}.

o(t) = —boq(As— [ a(r)dr)
1— f ha(s)ds
7‘[ ha(s) f dq(A f (r)dr)drds (3)
1— f ha( s)ds
— [} 6a(Aw — [
or
abg(A)+ [ hi(s) [ 6a(Au— [T w(r)dr)drds
v(t) = v .
1— f hi(s)ds 4)
t
+ Jo ¢q(As fo r)dr)ds,
meet theproblem
(Pp(v'(1)) +a(t) =0, 0<t<1, (5)
1
v(0) — av’(0) = hl( Ju(s)ds,
1) + b'( / ha (s ©
where A, satisfies
agq(Ay) = [ hu(s f1¢q — [ x(r)dr)drds
fo ¢q fo r)dr)dr
S f hl(é)db][wqm f z(r)dr)
1— f ha(s)ds
fo ha( s)f ¢q(Ag f z(r)dr)drds]
+ ;
1— fo ha(s)ds
(7)

r)dr)

satisfying (7). It can be seen there exists a unigue constant

(0,1) satisfying A, = [;* x(r)dr.
Lemma 2.2 [13] Let (Hs) hoId Then for eachr €
C*[0,1], the unique functioni(¢) satisfied (5),(6) meet with
() the functionwv(t) is nonnegative;

(7i) the functionwv(t) is concave,t € (0,1);
(4i) there exists a unique, € (0,1), stv/(o
(

) Orgtazzlv(t) =v(oy), WweK.

Lemma 2.3[13] Define the following maps : K — B

ar)ZOQ

adq( f g(r,v(r))l(r)dr)
f hi(s)ds
+f h1 s)f bq f:v g(r,v(r))l(r)dr)drds
1— j hi(s)ds
+ Jo @al f g(r,v(r)i(r)dr)ds,0 < t < o,
b¢q(f (ryo(r)l(r)dr)
1— f ha(s)ds
fo ha( s)f bq( f: g(r,v(r))l(r)dr)drds
+ hz( s)ds
r)l(r)dr)ds,o, <t <1.
8
ThenS mappingK to K. Moreover, theS is continuous and
compact. Moreover, it satisfies\Sv = v, thev is solutions
for (2),(2).
Lemma 2.4[13] For 6 € (0,

(Sv)(?)

S ou( [, glro(r

1) andv € K, let

Ollvll < w(t), teld,1—4].

Lemma 2.5[17] We denotekK is a cone of Banach space
B. Q with 6 elements is a bounded open setBn Suppose
S mapping K N Q to K is continuous and it is compact.
Moreover, fory > 1 andz € K N0, there haveSx # ux,
then the fixed point index(S, K N Q, K) = 1.

Lemma 2.6[17]We denoteK is a cone of Banach space
B. Q with 0 elements is a bounded open setih If S
mapping K N Q to K is continuous and it is compact.
Moreover, fory > 0, z € K N 90 andz, € K\{0}, there
havex — Sx # pxg, theni(S, K NQ, K) = 0.

Lemma 2.7[17] We denoteK is a cone of Banach space
B. Q with 6 elements is a bounded open sefinS mapping
K NQto K is continuous and it is compact. Moreover, for

uw > 1,z € KNoQ, there have }?gm”SxH > 0 and
xTE
uSx # xz, theni(S, K NQ, K) =0.
We provide the following markings
go = lim min (S’U), Joo = lim min (s,v),

v—0+ s€[0,1] U

B= min{/j ¢q(/f l(r)dr)ds,/;_ecéq(/; 1(r)dr)ds},

\I}:

v—+00 5€(0,1] v

{(\,v) : A >0, v is a function satisfying
(1) and (2) iInK},
A ={X > 0,there haw € Ksatisfing(\,v) € ¥},

X0 = supA.
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Lemma 3.1Let (Hy), (H2) are true andy, = co, we can
conclude thatl # (.
Proof: Fix a positive number R, we can get
sup ||Sv|| < R, if we chooseX, > 0 small enough.

MAIN RESULT

As
Obl\)/%(umsﬁ the following relationship holds:
ASv # pv, Yo € KNOPg, p>1.

In the light of Lemma 2.5, one get
i(AS, KN PR, K)=1. 9)

From gy = oo, we can find that the existence of number
belongs to(0, R) satisfies

v, Vt € [0,1], v € [0,7]. (10)

1
X028
Then for K N 0F,, A\.S has no fixed point. Let(¢) is a
constant function identical td on [0,1], thuse € 0P,
therefore

g(t,v) >

v# ANSv+ pe, Yve KNOP., p>0. (11)

Otherwise, there exists, € K N oP,,
Ve = AuSUs + p1e, thenpg > 0.

Next, we can prove it in two different situations.
(i) If o, € [4,1). Fort € [6,1 — 6], in the light of Lemma
2.2, 2.3 and 2.4 and (10), one get

w1 > 0 satisfying

[v4]l 2 va(t) = AuSvs + pre(t)

> O ||Sve ()] + pae(t)

> O\, fa' f g(r, v (r)I(r)dr)ds + p1
> .0 [ 6 f g(r, 0. (r)U(r)dr)ds + p
= [Joall + 1 =7+ pa-

(ii) If o, €(0,3). Fort € [0,1 — 6], in the light of Lemma
2.2, 2.3 and 2.4, and (10), one get

loull > v () = XSt + pre(t)
2 OIS 01 e

> 0A f ¢q (f,, 9(rva(r)i(r)dr)ds +
> A 9] (bq f g(r,ve(r)l(r)dr)ds + 1
> floall + o = 7+ o

Thus, in all cases, a contradiction> r 4+ p; has arisen.
Lemma 2.6 implies that

iMNS, KNP, K)=0. (12)

Combining (9) and (12), one get

IS, K N (Pr\P,), K) = i(\S, K N P, K)
—i(A\S, KNP, K) =1,

therefore,v, € K N (Pg\P,) satisfies\.Sv, = v,, which
means(A,, v,) € 0. [ |

Lemma 3.2 Let (H;), (H2) are true andjg = goo = 00,
we can conclude that < \° < co.

Proof: From Lemma 3.1, we can see thét > 0. Since

g0 = goo = 00 and (Hy), for all ¢+ € [0,1] andv > 0,
we can choose numbé&r > 0 satisfyingg(t,v) > Cwv. Let
(A, v) € ¥, in view of the coneX and Lemma 2.1, We can
prove it in two different situations.

Volume 53, Issue 3:

(i) If o, € [5,1). Fort € [,1 — 6], in the light of Lemma
2.2, 2.3 and 2.4, one get
o(t) = gASv)( ) = OA[[Sv(@)]|
> 0M [y 6 g’<<»m r)ds
>)\t9f0 &q f grv r)i(r)dr)ds
> 0PAC|o]| [ ég([2 Ur)dr)ds > 62AC o] B.
(ii) If o, €(0,3). Fort € [§,1 — 6], in the light of Lemma

2.2, 2.3 and 2.4, one get

u(t) = (ASU)( ) = OA[[Su(t)]|

> 9)\f (;Sq f g(r,v(r ))l( )dr)ds

> /\Hf ¢q f g(r,v(r)(r)dr)ds

> 027C || J17° a3 1r)dryds > 2AC o] B.

Thus, in all cases this implies thgtv|| > 6?\C||v|| B, then
A< 92130 u

Lemma 3.3Let (H,), (H,) are true andjy = goo = 00,
then (0, \°) C A. Furthermore, for\ € (0, \°), there are at
least two solutions which is positive for problem (1), (2).
Proof: Given\ € (0, \%), we shall showA € A. In view

of the notation ofA?, we can obtain the existence & € A
which satisfied\ < Ay < A" and (X2, v2) € ¥. We choose

R< Hﬁ_%nu vo(t). From Lemma 3.1, there exists < A\, r <
tel0,

R andv(t) € K N (Pg\P,) that satisfied(\;,v;) € W.
Condition (H; ) implies that0 < v1(t) < va(t),t € [0,1]. In
addition

(¢p(vi (1)) + Ml()g(t,vi(t) =0, 0<t<1,
(Pp(va(1)) + Aal()g(t,v2(t)) =0, 0 <t <1
Let's discuss the modified problem:
(60" (1)) + N(t)gi(t,v(t)) =0, 0<t<1, (13)
’U —(l’U :/0
)+ bv'( /0 ha(s (14)
where
g(t, v2(t)), v(t) = va(t),
g1(t,o(t)) = 9 g(t,v(t)), vi(t) <v(t) <wva(t),
g(t,v1(t)),v(t) < vi(t).

Obviously, forv € K andt¢ € [0,1], Ag; is a bounded
function. Moreover\g; (¢, v) is continuous about. Let

adg ([ g1 (ro(r))i(r)dr)
1— f hi(s)ds
f hi(s) f d)q(f g1 (r,v(r))l(r)dr)drds
+
1— f hi(s)ds
+ Jo 6a(J" g1(ry0(r))I(r)dr)ds,

0<t<oy,

(S1v)(t) = b¢q(f1 g1 (ru(r))i(r)dr)

1— f ha(s)ds
+f ha(s) f bq f; g1 (ryo(r)l(r)dr)drds
1- f hQ( )ds

+ 1 @alf;, 1 (r0(r)U(r)dr)ds,
oy <t< 1,
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Clearly, Sy

Moreover, the solutior for the problem (13), (14) satisfies

the equatiom\S,v = v. Obviously, forvv € K, 3 ¢ > ||lvz]]
satisfied||\S1v|| < 7o, in the light of Lemma 2.5,
iAS1, KNP,,K)=1. (15)
Denote
W={veK:uv() <v(t) <wvs(t), ¥Vt €[0,1]}.

Now, we prove the fixed point € K of A\S;, must belong
to . Noting that if v = A\S;jv, then

o(t) = (AS1) (1)
Magy( [ g1 (ro(r))i(r)dr)
1— fl h1(s)ds
Af hi(s) [7oa([7" g1(ro(m)i(r)dr)drds
1— f hi(s)ds
A fy Sq(J77 g1(r,v(r)i(r)dr)ds,0 < t < o,
T M6 g (ru(r)i(r)dr)
1— f ha(s
Af ha( S)f ¢q(f g1 (rw(r)l(r)dr)drds
- f ha(s)ds
XS, @7, 1(r0(r)i(r)dr)ds, o0 <t < 1.
Am%(f 9(rs (r)1(r)dr)
1— fl hi(s)ds
f f ¢q(f g(rv2(r))l(r)dr)drds
- f hy(s)ds
A2 fy Ga(f" 9(r,v2(r)i(r)dr)ds, 0 < t < o,
S dabsa([ g(rua(r)i(r)dr)
1— f ha(s)ds
Ao [ ha(s) [T oa([7 a(ra(r)i(r)dr)drds
1— f ha(s)ds
—l—)\zj; ?q f g(r,va(r))l(r)dr)ds, o, <t < 1.

= (AoSua)(t) = va(t)

and
v(t) = (AS1v)(1)
Aady ([T g1(rw(r)i(r)dr)
1— f hi(s)ds
Af h](s)f %(f g1 (ro(r))(r)dr)drds
1— f hi(s)ds
—l—)\fo bq fU” g1(r,v(r)l(r)dr)ds,0 <t < oy,
T Mo g (ru(r)i(r)dr)
1— f ha(s)ds
)\f ha s)f ¢>q(f g1 (r,v(r))l(r)dr)drds
1— f ha(s)ds
X[ b (2 g1 (r v(r))(r)dr)ds, o < t < 1.
Magy ([ g(rvi(r)i(r)dr)
1— f hi(s)ds
+A1f hi(s) [T 6a([7" g(ror(r)i(r)dr)drds
1— f 1(s)ds
+A1 fo ¢q T g(r, vy (r)(r)dr)ds,0 < t < oy,
>\ bt glron (i)
1— f ha(s)ds
f ha(s )f ¢q(f g(r,v1(r))l(r)dr)drds
1— f ha(s)ds
—I-)\lft bq f g(r,vi(r)l(r)dr)ds,o, <t <1.

= (MSo)(t) = v (1)

: K — K is continuous and it is compact.Hence, from (15), we have(AS;, W, K) = i(AS;, K N

P.,,K) = 1, which impliesS; = S on W, and thus

IS, W, K) = 1. (16)

Now we havew; € W is a fixed point ofAS. Which means
w1 is a positive solution for (1), (2), hencee A, (A, w1) €
¥ and (0,A) C A. In the following, we shall provide the
second positive function satisfies the problem (1), §2).=
oo andg(t,v) is continuous about implies that

glt,0) > o
= )\2B 0B
for some positive constant. For constant functiore(t)
corresponding to 1, denote

 vte1,v>0.  (17)

Q= {v € K : for a nonnegative constapt
satisfyingv = ASv + pe}.

We can prove thaf) is a bounded subset aB. We will
divide into two cases to complete the proof.

(i) If o, € [5,1). Fort € [0,1 — 6], in the light of Lemma
2.2,2.3, 2.4 and (17), one get

o(t) = (AS0)(8) + pe(t) = (AS0)(t) +
2 IS0l

> 9)\f ff g(r,v(r)l(r)dr)ds
>Mb%f 1) (375 — 7] dr)ds
> N6 [} o[ 10r) (5 - ) dr)ds = 2] -
(ii) If o, €(0,3). Fort € [0,1 — 6], in the light of Lemma

2.2,2.3, 2.4 and (17), one get
v(t) = (ASV)(t) + pe(t) = (ASv)(t) + p
> OA|Su(D)] + 1
> 9)\f gi)q (f,. g(r,v(r)i(r)dr)ds

Z)\Qf QS(IIZ [Aezlg_*]dr)d
zwf ¢qfl )[2okl — & dr)ds = 2|jv]| —

In conclusion, we havglv|| < Ac. It shows that as a subset
of B, Q2 is bounded. Hence, there exisly > |lvz]| such
that

v # ASv + pue,

In the light of Lemma 2.6, we get
i(AS, K NOPg,,K)=0.

V>0, ve KNOPg,.

(18)

Using the same derivation method as equation (12), one get

i(AS, K NOP,,,K) =0, (29)
here0 < r; < H[lénl] v1(t). Hence, by (16), (18), (19), so
tel0,

. that

i\, K N (Pp, \(W UP,), K) = i(\S, K N Pg,, K)
—i(AS,W,K) —i(AS, KN P, K) = —

therefore, there existe, € K N (Pg,\(W U P,) satisfying
the equation\Swy = wy. Thus, we get another positive
function which satisfies the problem (1), (2). |

Lemma 3.41If (H,),(H3) are true andjg = goo = o0
then A = (0, \°).

Proof: From Lemma 3.3, we only need to proye € A.
From\° = sup A, there existg \,,} C A with \,, > %O(n =
1,2,- ) satisfying \,, — A\° asn — oco. Considering the
definition of A, there is a non-zero sequenge,} C K\{6}

)
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satisfying (\,,v,) € ¥. We now prove that the sequence REFERENCES
{U"} is bounded. In fact, if not, we can find a SUbsequen?ﬂ W.T. Ang , A.B. Gumel, “A boundary integral method for the three-

of {v,} that satisfied|v,| — co asn — co. Lemma 2.4
implies v,, > 0||v,||, {vn} C K\{#}. Choose sufficiently

large 1 such that
X02Bpu

> 1.
2

Joo = 00, iImplies g(t,v) > pv for v > 6R,t € [0, 1], where
R is a positive constant. Considerifig,, || — cc asn — oo.

We can find a sufficiently large, such that||v,,|| > R.

Let's prove in two situations below.

(i) If o, € [2,1). Fort € [0,1 — 6], in the light of Lemma
2.2, 2.3 and 2.4, one get

”Uno” > Uno( )= ()‘TlUSUno)( ) > 9/\%”5“% )|l

> 9An0f bq(JS" g(r, vn, (r))U(r)dr)ds
> X 7 6, (Ot

> 7[)#92 |v’ﬂ0” fg bq fs (T)dr)ds

> 21?0, || B-

(i) If o, € (0,3). Fort € [0,1
2.2, 2.3 and 2.4, one get

— 0], in the light of Lemma

n%m>%x><Mﬁwmﬂ>wmwwxm
2 0)‘"0 ff¢q fa’ g(r, Uno( NI(r)dr)ds

X1 [ dq( [ 1(r)vng (r)dr)ds

2102 [vng || 3 6q([3 Ur)dr)d

A 146 [0, || B

v I\/

Y

In conclusion, we have

0,02
)\,uGB<

— <1, (20)

this is a contradiction. Thus{v,} is bounded,{Sv,} is
equicontinuous imply that for each positivethere3 positive
0 that satisfied

[on (t1) =0 (t2)] = Al (Sva) (1) = (Svn ) (t2)] < Ane < A,
where t1,t, are any two numbers on an intervi, 1]
and |t; — t2] < 6, n = 1,2,- - -, which means{v,} is

equicontinuous. Hencejw,,} is relatively compact by use

of the Ascoli-Arzela theorem. Therefore, we can find
subsequence ofv,} andv* € K that satisfiedv,, — v*
asn — oo. Lettingn — oo in v, = A\, Sv,, we get

* =08y,
If v* = 6, turning to g9 = oo, we can also get the
contradictions. Thus* € K\{#} and so\" € A. [ ]
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goo = 00, then we can find a positive constant, if \ €

dimensional heat equation subject to specification of enedgutnal of

Computational and Applied Mathematjosl. 135, pp.303-311, 2001.

B. Ahmad, A. Alsaedi, B.S. Alghamdi, “Analytic approximation of

solutions of the forced Duffing equation with integral boundary con-

ditions,” Nonlinear Analysis:Real World Applications, vol. 9, pp.1727-

1740, 2008.

M. Sapagovas, J. Novickij, “Alternating direction method for the

wave equation with integral boundary conditiondfiplied Numerical

Mathematics, vol. 182, pp.1-13, 2022.

[4] M. Ahsan , M. Bohner , A. Ullah, A.A. Khan, S. Ahmad, “A Haar
wavelet multi-resolution collocation method for singularly perturbed
differential equations with integral boundary conditionslathematics
and Computers in Simulatiovol. 204, pp.166-180, 2023.

[5] X.M. Zhang, M.Q. Feng, W.G. Ge, “Existence result of second-order

differential equations with integral boundary conditions at resonance,”

J. Math. Anal. Appl.vol. 35, pp.311-319, 2009.

F. Nicoud, T. Schonfeld, “Integral boundary conditions for unsteady

biomedical CFD applications,int. J. Numer. Meth. Fluidsvol. 40,

pp.457-465, 2002.

G.W. Batten Jr., “Second-order correct boundary conditions for the

numerical solution of the mixed boundary problem for parabolic equa-

tions,” Math. Comp., vol. 17, pp.405-413, 1963.

[8] A. Bouziani, N.E. Benouar, “Mixed problem with integral conditions

for a third order parabolic equatiorKobe J. Math., vol. 15, pp.47-58,

1998.

M. Feng, D. Ji, W. Ge, “Positive solutions for a class of boundary

value problem with integral boundary conditions in Banach spades,”

Comput. Appl. Math.vol. 222, pp.351-363, 2008.

[10] J.M. Gallardo, “Second order differential operators with integral
boundary conditions and generation of semigroupgtky Mountain
J. Math, vol. 30, pp.1265-1292, 2000.

[11] X. Zhang, L. Liu, “A necessary and sufficient condition of positive
solutions for fourth order multi-point boundary value problem with p-
Laplacian,”Nonlinear Anal., vol. 68, pp. 3127-3137, 2008.

[12] G. Infante, J.R.L. Webb, “Nonlinear non-local boundary-value prob-
lems and perturbed hammerstein integral equatidsg. Edinb. Math.
Soc., vol. 49, pp.637-656, 2006.

[13] Y.Y. Yang, Q.R. Wang, “Multiple positive solutions for p-Laplacian
equations with integral boundary conditiond,”Math. Anal. Appl., vol.
453, pp.558-571, 2017.

[14] D.Y. Bai, Y.M. Chen, “Three positive solutions for a generalized Lapla-
cian boundary value problem with a parametéyplied Mathematics
and Computationvol. 219, pp.4782-4788, 2013.

[15] T.S. He, F.J. Yang, C.Y. Chen, S.G. Peng, “ Existence and multiplicity
of positive solutions for nonlinear boundary value problems with a
parameter,"Computers and Mathematics with Application®l. 61,
pp.3355-3363, 2011.

[16] Y. Yang, J. H. Zhang, “Existence of solutions for some discrete
boundary value problems with a parametéyplied Mathematics and
Computation, vol. 211, no.2, pp.293-302, 2009.

[17] D. J. Guo, V. Lakskmikantham, (1988), Nonlinear Problems in Ab-
stract Cones.

[18] Jinping Xu, Baiyan Xu, “lteration and Existence of Positive Solutions
for Fractional Integral Problems involved p(t)-Laplacian Operator,”
Engineering Letters, vol. 30, no.2, pp.782-787, 2022.

[19] Qinghua Feng, “A New Approach for Seeking Exact Solutions of
Fractional Partial Differential Equations in the Sense of Conformable

a Fractional Derivative,2JAENG International Journal of Computer Sci-
ence, vol. 49, no.4, pp.1242-1248, 2022.

(2]

(3]

(6]

(71

[9]

(0,\%), there are at least two positive functions which solve

the equation (1), (2); if =
function which solves the equation (1), (2);Xf> \°, there
is no positive function which solves the relation (1), (2).

X0, there is at least one positive

Proof: In the light of Lemma 3.1, 3.2, 3.3 and 3.4, we

can easily prove Theorem 3.1. [ ]

Volume 53, Issue 3: September 2023





