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Abstract-The precise recognition of the sources of voltage sag 

is the basis and key to formulating a voltage sag governance 
plan and clarifying responsibility for an accident. Due to the 
complexity of grid devices and the identification of the mode of 
power consumption, the conventional approach to identifying 
voltage sags faces a new challenge. Due to the dependence on 
accurate voltage sag models, the traditional methods are 
inadequate for complex problems with multiple uncertainty 
factors. The random matrix theory based on a data-driven 
method analyzes data correlation using single characteristic 
statistics, which is not suitable for the dimensional change of the 
matrix. It is obvious that this method is not applicable to the 
position of the source of the voltage sag due to random sags. 
Therefore, this paper proposes a voltage sag source recognition 
method based on the combination of random matrix theory 
(RMT) and a convolutional neural network (CNN). In this 
method, the CNN optimizes the characteristic statistics of RMT 
and constructs new characteristic statistics such as the 
correlation analysis index of the voltage sag source recognition 
model to avoid the error caused by a single characteristic 
statistic. First, random matrix theory is used to extract 
characteristics from historical data, and characteristic statistics 
under different faults and different data dimension matrices are 
obtained and then, are used as the input characteristic sets of 
the CNN. Then, through training extraction, the optimized 
characteristic statistics that can be applied to a variety of 
conditions are obtained. Furthermore, a voltage sag source 
recognition model based on random matrix theory is 
constructed by using optimized characteristic statistics. The 
correlation analysis index is obtained to recognize voltage sag 
sources under different data conditions. Finally, examples are 
given to verify the feasibility and effectiveness of the proposed 
method. 
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I. INTRODUCTION 
o reach the goal of carbon neutrality and peak carbon 
emissions, China will build a modern power system with 

modern energy as the main component based on a smart grid. 
The new power system will have many key characteristics, 
such as green and low carbon, flexibility and efficiency, 
diversified interaction, and high marketization, which are 
mainly promoted by informatization and digitalization [1], 
[2], [3]. To ensure the accuracy of information 
communication and control instructions, it is necessary to 
measure and test high sensitivity equipment to ensure the 
accuracy and reliability of all kinds of communication 
equipment, which has made it more demanding to ensure 
power quality. To guarantee the precision of message 
transmission and command, we need to use highly sensitive 
measurement devices to guarantee the precision and 
reliability of various telecommunication devices, so that we 
can improve the performance of the system. However, in 
power systems, approximately 70% of power quality 
problems are caused by voltage sags, which are unavoidable 
and harmful [4]. Voltage sag is a phenomenon of transient 
disturbance in which the mean root value of the square 
voltage drops to 90%~10% of the amplitude of the rated 
voltage instantaneously and recovers to normal after 0.5~30 
cycles [5]. Voltage sag has caused production interruptions in 
precision processing industries such as microelectronics and 
intelligent control, causing massive economic losses for users, 
and has become the most common power quality problem. 
Accurate identification of the type of voltage sag event and 
determination of the main cause of the sag event is the basis 
for solving the voltage sag problem. 

Voltage sags can be divided into two types: random 
voltage sags and planned voltage sags. Random voltage sags 
are sags caused by short-circuit faults. A short-circuit fault is 
the main cause of voltage sag in the power grid that can have 
a wide range of effects and can cause the most serious 
economic loss. Planned drop is caused by human operation, 
and includes the start of large induction motors and the 
switching on and off of transformers[6], [7]. 

Many studies on the recognition and location of voltage 
sags have been carried out. The traditional method for 
locating voltage sag sources is mainly based on analyzing the 
characteristics of the voltage sag data to determine the fault 
source, which is related to the location of the power quality 
monitoring device. Currently, research on voltage sag source 
recognition methods is mainly based on physical 
characteristics, including characteristic extraction and pattern 
recognition. Characteristics extraction transforms and 
reconstructs voltage sag signals through signal processing 
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and mathematical statistics, including recognition wavelet 
transform [8], [9] Fourier transform [10], Hilbert Huang 
transform [11], and S transform [12]. Pattern recognition is 
the use of a classifier to determine to which type of voltage 
sag source the interference signal belongs. The main methods 
commonly used are neural networks [13], support vector 
machines [14], etc. However, in a complex power grid, the 
timing of its operation process is very complex, and it is 
difficult to establish an accurate and universal model for it. In 
the process of characteristic extraction, the drawbacks of 
existing algorithms also become increasingly obvious due to 
the loss of information data and overly complex classification 
models. The position of the voltage sag source relative to the 
power quality monitoring device can be determined by using 
the characteristic information of the voltage sag, but the 
specific position cannot be determined. Traditional voltage 
sag source recognition is achieved mainly by detecting the 
change in voltage and current phase angles to accommodate 
the change in reactive power polarity for the sag source, such 
as the disturbed power method and the disturbed energy 
method. However, there are some problems, such as low 
reliability, complex models, and long analysis times [15-19]. 
Therefore, many scholars have proposed a feature 
extraction-based method for identifying voltage sag sources. 
It uses a wavelet transform and empirical mode 
decomposition to extract the characteristic signal and 
combines the extracted fault characteristic signal with a 
neural network to locate the voltage fault source [20-22]. 
Nevertheless, the above fault source location method is 
limited by the structure of the power grid and is difficult to 
apply to modern digital power systems.  

In recent years, the power system has contained a high 
proportion of intermittent renewable energy, the system 
operation has become more complex, and big data 
technology has also been widely used in system operation 
control and maintenance [23]. Electric power companies 
have built power quality monitoring platforms, that can 
monitor and record voltage sag data and characteristics, and 
massive monitoring records provide basic data for voltage 
sag prevention and management. As a big data technology, 
random matrix theory does not rely on the simplification and 
assumption of the system model, and can mine effective 
information from the data of complex systems. However, 
random matrix theory has made some achievements in power 
system fault location [24], [25] and power grid operation 
state evaluation [26]. However, different power grid 
structures have different data dimensions. According to the 
same linear characteristic statistic (mean spectral radius) of  
the RMT, the statistical information of all state data matrices 
cannot be accurately expressed; that is, the average spectral 
radius cannot be applied to matrices of all dimensional. It is 
often necessary to formulate the characteristic statistic 
according to the dimension of the matrix. The deep learning 
method is proposed for characteristic recognition and 
classification. The support vector machine (SVM) has been 
proposed to classify voltage sag sources [27]. D. Li et al. 
proposed a self-supervised voltage sag source identification 
method based on a convolutional neural network (CNN) [28]. 
However, as a nonparametric model, the convolutional neural 
network relies too much on training data and is prone to 
generalization problems. 

Therefore, to better recognize the voltage sag source caused 
by random sag in the grid, this paper proposes a voltage sag 
source identification method based on RMT and CNN 
integration. First, the system is identified by random matrix 
theory to determine whether a fault occurs, and the 
augmented matrix is established by considering the number 
of states and influence factors. To avoid the problem of the 
mean spectral radius not being suitable for multidimensional 
matrices, the characteristic statistics of RMT are optimized 
through the CNN to construct new characteristic statistics. 
Additionally, characteristic statistics are used to identify the 
source of voltage sags. This method can train and learn the 
different characteristic statistics of RMT through CNN, and 
obtain optimized characteristic statistics, instead of the 
original single linear characteristic statistics, so that the 
statistics have better applicability and effectiveness. 

The contributions of this paper can be summarized as 
follows: 

ⅰ. The state data matrix and influence factor matrix are 
used to establish the augmented matrix. 

ⅱ. A voltage sag source recognition model based on 
RMT-CNN is proposed. 

ⅲ. A new characteristic statistics index is constructed and 
used to identify voltage sag sources. 

The rest of this paper is organized as follows: Section II 
discusses random matrix theory and convolutional neural 
networks. The voltage sag source recognition method based 
on RMT-CNN, including CNN structure design and 
statistical indicators. is presented in Section III. Section IV 
includes simulation results, and Section V concludes the 
paper. 

II.  RANDOM MATRIX THEORY AND CONVOLUTIONAL 
NEURAL NETWORK 

A.  Random matrix theory 
1. Empirical spectral distribution function 

The empirical spectral distribution function is a relatively 
general concept in random matrix theory and is often used to 
describe the distribution of the eigenvalues of a random 
matrix. For p p  order matrix A, the ESD function can be 
expressed as (1) [29]: 

1

1( ) ( )
p

A
i

i
F x I x

p




   (1) 

where, ( )I     is the indicative function. In some special 
cases, the empirical spectral distribution function will follow 
some special laws.  

2. Single Ring Law 
Assume that ,{ }i jX x  is a random matrix of p n  order 

consisting of independent variables where ,( )=0i jE x , 
2

,( )=1i jx . The matrix ,{ }i jZ z  is obtained by quadrature 

of O the random matrix X , and then normalized to obtain. 
the matrix ,{ }i jZ z . Each element satisfies the 

mean ,( )=0i jE z  and the variance 2
,( )=1 /i jz N . As 

,p n    with ratio / (0,1]y p n  , the probability 

density function of Z  is defined as (2) [30]: 
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where, i  is the eigenvalue of the matrix Z . According to 
the characteristics of the single ring law, when the system is 
in a stable state, the eigenvalues of the matrix Z  are roughly 
distributed in the ring with an outer ring radius of 1 and inner 
ring radius of /2(1 )Ly , as shown in Fig. 1. 
 

  
 

Fig. 1. Single-ring law. 
 

3. Mean Spectral Radius 
The mean Spectral Radius (MSR) is a method of reflecting 

the eigenvalue distribution by the distance between the 
eigenvalue and the origin in the complex number plane. It is 
often used as a linear eigenvalue statistic in the single-ring 
law and defined as (3) [31]: 

1

1 p

MSR i
i

L
p




   (3) 

where, i  is the eigenvalue of the matrix. Comparing MSRL  
to its spectral radius limit under conventional conditions 
gives an indication of the operation of the system. MSR is 
obtained by solving the trace of the whole random matrix, so 
it can better reflect the characteristic statistics of the random 
matrix. 

B. Data Preprocessing 
Suppose that there are n buses in the power grid, all the 

buses are equipped with power quality monitoring devices, 
and each monitoring device measures m state variables. At 
the sampling time it , the measured data can form a column 
vector as shown in Equation (4). 

1, , ( ),( ) [ ,..., ,..., ]T
i i m i n m iX t x x x   (4) 

The measurement data at each sampling moment are 
arranged in a time series as a state data matrix which can be 
calculated as: 

1 2[ ( ), ( ),... ( ),...]iX x t x t x t  (5) 
The raw data matrix X is truncated from the data matrix X̂ . 

After each sampling, the separation window moves back one 
time point, thus carrying out the monitoring of the dynamic 
process of state variables. 

Since the monitored data do not meet the data 

requirements of the single ring law, it is necessary to perform 
data processing on the raw data matrix N T to obtain a 
non-Hermitian standard matrix X : 

, ,
( ) ˆ ˆ[ ( )] ( )

ˆ( )
i

i j i j i i
i

xx x E x E x
x




    (6) 

where, i=1,2,…,N, j=1,2,…T, and 

,1 ,2 ,ˆ ˆ ˆ ˆ( , ,... )i i i i tx x x x ; ( )=1ix , ( )=0iE x ;  

The matrix uX is introduced as the singular value 
equivalent of X  by: 

T
uX U XX  (7) 

where, U is a Haar unitary matrix, and =T T
u uX X XX . 

After the above processing of arbitrary X̂ , O-independent 
standard non-Hermitian matrices , ( 1, 2,... )u iX i O  can be 
obtained, and their matrix product is shown in Equation (8): 

,
1

L

u i
i

Z X


   (8) 

The Z matrix is standardized according to Equation (8) to 
obtain the matrix Z : 

 
i

i
i

zz
z N

  (9) 

where, ,1 ,2 ,( , ,..., )i i i i Nz z z z  and ,1 ,2 ,( , ,..., )i i i i Nz z z z . 

 iz  is the standard deviation of the matrix
iZ . 

 

C. Convolutional Neural Networks 
The convolutional neural network is a variant of a 

multilayer perceptron and a feedforward neural network. 
CNN was proposed by computer scientist Yann LeCun et al. 
in 1998 and quickly became one of the representative neural 
networks in the field of deep learning research. Due to its 
excellent extraction capability and analysis effect, the CNN 
has gradually attracted great attention in many research fields, 
such as face recognition, large image processing, target 
tracking and detection, and fault diagnosis. Fig. 2 shows the 
structure diagram of a convolutional neural network, 
including the convolutional layer, the pooling layer, and the 
connection layer.  

 

 
 

Fig. 2 Structure diagram of the convolutional neural network. 
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1. Convolution layer 
The convolutional layer is the essential component of 

CNN. The convolutional kernel is used to scan the input 
matrix and extract the corresponding characteristics. The 
structure diagram of the convolutional layer is shown in Fig. 
3.  

 

 
 
Fig. 3. Schematic diagram of the structure of the convolutional layer. 
 

Fig. 3 depicts that the convolutional layer takes each 
element of the input layer as a characteristic point, and uses 
the convolutional kernel to perform convolution operations to 
extract different characteristics of the input layer to form the 
output layer matrix. Convolution operations can enhance the 
characteristic attributes of the original input matrix and 
reduce noise. As the number of convolutional layers 
increases, the characteristics that can be extracted become 
more complex. 

The convolution operation is given by: 
( , ) ( , ) ( , )

v w
o p o v p w v w  C R K  (10) 

where, ( , )o pC  is the output matrix of order o p  obtained 
by the convolution operation in the input layer; 

( , )o v p w R  is the input matrix, the matrix size is 
( ) ( )o v p w    order; and ( , )v wK  is the v w  order 
convolution kernel matrix. A schematic diagram of the 
convolution operation, is depicted in Fig. 4. 
 

 
 

Fig. 4. Convolution operation diagram. 
 
As the convolution operation is performed, it is necessary 

to ensure that the input matrix and the output matrix are 
identical in depth. Therefore, this method uses the all-zero 
filling method to process the input matrix. The all-zero filling 
method adds false elements with a value of 0 to all edges of 

the original input matrix. By using the method of full 0 
fillings, the peripheral elements of the original input matrix 
can be placed in the center of the convolution kernel during 
the convolutional operation while extending to the false 
elements outside the edge to ensure unity of the depth of the 
input matrix and output matrix. 

In CNNs, as the depth of the matrices deepens, the number 
of features subsequently increases, and the feature space that 
the network can characterize becomes larger and the deeper 
the learning capacity becomes. However, it will also result in 
more complex neural network calculations and overfitting 
phenomena. In practical application, parameters such as the 
number of characteristics and the size of the convolutional 
kernel should be appropriately selected to obtain a better 
effect from the required model. 

2. Pooling layer 
The pooling layer is mainly performed by aggregating 

similar characteristics in a matrix and then merging them. 
Thus, reducing the number of characteristics and the size of 
input data can speed up the network calculation and prevent 
the interference of overfitting problems. The pooling process 
is similar to the convolution process in that a filter structure 
of appropriate step size is slid onto the input matrix, but the 
adopted method is different from that of convolution [32]. 
Since the characteristics obtained by the maximum pooling 
method are more sensitive to the characterization of the 
characteristic information of the original matrix texture, the 
method presented in this paper utilizes the maximum pooling 
method to process the output matrix of the convolutional 
layer. The calculation formula for the maximum pooling 
method is shown in Equation (11). 

 ( , ) ( , )v w Max a v wP  (11) 

where, ( , )v wP  is the output matrix after pooling and 
( , )a v w  is the region to be pooled for the output matrix of the 

convolution layer. The maximum pooling operation process 
is shown in Figure 5. 
 

 
 

Fig. 5. Maximum pooling operation. 
 

3. Fully connected layer 
After the initial input matrix is processed by the 

convolution pool several times, the final output matrix is 
connected to the fully connected layer which is considered a 
“classifier” for the entire CNN, synthesizing the previously 
extracted characteristics [33]. The fully connected layer is not 
essential in CNNs and can generally be realized through 
convolutional operation, that is, the convolution layer of the 
convolutional kernel with size 1*1 is used instead. 
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III. VOLTAGE SAG SOURCE RECOGNITION BASED ON THE 
RMT-CNN MODEL 

A. RMT-CNN model 
Under different matrix dimensions, RMT applied to the 

recognition of voltage sag sources still has excellent results. 
By constructing an augmented matrix, the high-order 
characteristic is extracted from the bottom measurement data 
of the power grid as input. With the characteristic extraction 
capability of the one-dimensional convolution and pooling 
operation, the nonlinear mapping relationship between the 
input characteristic and the results of the voltage stability 
evaluation is fully exploited. By optimizing the feature 
statistics of the RMT through CNN and constructing the 
correlation analysis index of the new voltage sag source 
recognition model, the mapping effect of the feature statistics 
can be effectively improved, and the error caused by a single 
statistic can be avoided. Fig. 6 shows the structure diagram of 
voltage sag source recognition based on RMT-CNN. 

 

 
 
Fig. 6. Voltage sag source recognition based on RMT-CNN. 
 

As can be seen from Fig. 6, when the simulation case data 
are used for preliminary calculation, various types of faults 
should be designed to simulate different voltage sag events, 
and different grid partitions should be simulated to obtain the 
state data matrix with different dimensions under various 
fault conditions. The grid partition method based on the 
community structure proposed in [34] is adopted to perform 
grid partitioning for a complex power grid. Based on the 
voltage data of all nodes in N partitions, a data matrix is 
established to analyze the correlation between the data in 
each partition. Through the RMT, N kinds of characteristic 
statistics are obtained from each state data matrix, and the 
input characteristic set is constructed. Then, it input into the 
two-layer CNN characteristic extraction model, and 
optimized characteristic statistics are obtained through a 
neural grid. 

1. Construction of augmented matrix 
The state matrix is built using the operation status data of 

the power grid, and the influence factor data of each bus are 
taken as the augmented part to construct the augmented state 
matrix. By analyzing the augmented matrix through RMT, 
the characteristics of the augmented matrix are used to 

explore the intrinsic connection between the influencing 
factors of each monitoring point and the grid operation 
status. The degree of influence of the voltage sag source on 
each monitoring point is judged by the correspondence 
between the influencing factor data and the operating state 
data. Based on this result, the position of the voltage sag 
source and the monitoring point is closer to be judged, to 
recognize the position of the voltage sag source. 

The operating status data of the power grid can be 
composed of various power grid status data, such as bus 
voltage; injected active, reactive power; and current of each 
line. Influencing factor data include distributed power output, 
bus load, etc. Since the location of the source of voltage sag 
must be recognized, the data selected for the influence factor 
matrix are the characteristic data related to voltage sag, such 
as voltage and current at each bus. 

It is assumed that m buses exist in the data detected by the 
power grid, mc state variables are selected for each bus, and  
mf influencing factors are selected. After collecting T times in 
the real-time sliding separation window, the state matrix 

(( ) )cm m T
cD C    and the factor matrix (( ) )fm m T

fD C    are 

obtained. 
To reduce the impact of repeated data on the factor matrix, 

random noise needs to be added to the factor matrix, 
formulated by 

f fM D m M    (12) 
where, m is the magnitude of the random noise. 

The augmented matrix is shown in Equation (13). 
1,1 1,2 1,

,1 ,2 ,

1,1 1,2 1,

c
,1 ,2 ,

f
f 1,1 f 1,2 f1,
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 
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

D
A

M  (13) 

In addition, to eliminate the correlation between the data, 
the reference augmentation matrix is constructed using the 
state matrix and the random noise matrix and is differenced, 
formulated by 

1,1 1,2 1,

,1 ,2 ,

1,1 1,2 1,

c
,1 ,2 ,

1,1 1,2 1,

,1 ,2 ,

,1 ,2 ,
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f f f

T

m m m T

m m m T

m m m m m m T

T

m m m T

m m m m m m T

D D D

D D D
D D D
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 
 
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 


  


  



D
A

M  (14) 

The integral over the real-time sliding window time scale 
is defined for the mean spectral radius difference as the 
correlation index, and its calculation formula is: 
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0
. .( ) ( ( ) ( ))

t

MSR MSR A MSR At
Q t L t L t dt    (15) 

where, 0t  and t  are the sampling start and end times of the 
real-time sliding window, respectively. . ( )MSR AL t  and 

. ( )MSR AL t  are the average spectral radius values of A  and A , 
respectively. 

( )MSRQ t  can be used to express the magnitude of the 
correlation between different influences and the state of the 
power grid during this sampling period. The higher the value 
of ( )MSRQ t  is, the greater the influence of the influencing 
factors of the bus on the system status in the sampling period. 
Moreover, the region where the bus is located is more likely 
to be the region where the fault disturbance source is located. 
The ( )MSRQ t  obtained in each sub grid is sorted, and then the 
specific recognition of the fault disturbance source is 
determined according to the recognition results of each sub 
grid. 

2. Construction of input characteristic sets 
The rationality of the construction of the input 

characteristic set will affect the accuracy of the RMT-CNN 
voltage sag source identification model. The extraction of 
characteristic information from the state matrix of the system 
using CNN directly comes with some problems, such as a 
large amount of data and lengthy computing time, and the 
characteristic effect of the state data matrix is not very 
obvious. In the method presented in this paper, the CNN 
optimizes the characteristic statistics of the RMT, new 
characteristic statistics are constructed, and optimized 
characteristic statistics are used to recognize the source of the 
voltage sag source. Therefore, in the case of different voltage 
sag events, the single-ring law and the M-P law of the RMT 
can be used to calculate the mean spectral radius, standard 
deviation of the eigenvalue, maximum eigenvalue and 
minimum eigenvalue of the system state data matrix as the 
input matrix of the CNN, which can effectively combine the 
RMT and CNN. In this way, RMT and CNN are combined to 
fully utilize the advantages of each to obtain more 
appropriate characteristic statistics. 

3. Design of the CNN Structure  
To extract characteristic statistics values from input 

characteristic sets more effectively, a two-layer CNN model 
is established, and its characteristic extraction model is 
shown in Fig. 7 [35]. 

 
Fig. 7. Two-layer CNN characteristic extraction model. 

As shown in Fig. 7, the CNN model includes two 
convolution layers, two maximum pooling layers, two full 
connection layers, and one output layer. ReLU activation 
functions are added to all the convolutional layers and full 
connected layers, and the Adam algorithm is used to optimize  
the parameters during training. 

4. Statistical indicators 
Most of the existing voltage sag source recognition 

models are mainly realized by analyzing the correlation of 
data among the system's augmented state matrix through the 
mean spectral radius of linear characteristic statistics. The 
main purpose of the RMT-CNN voltage sag source 
recognition method is to extract an optimized characteristic 
index to avoid the problem of the MSR being unable to be 
applied effectively in different data dimensions. Therefore, 
the integral value of the difference in the average spectral 
radius obtained from the full matrix analysis can be used as a 
standard to verify whether the optimized characteristic 
statistics are more effective. To measure the effect of 
different characteristic statistics on the recognition of voltage 
sag sources, the following indicators are defined for 
evaluation. 

The correlation proportion error (CPE) is defined as : 
3 3

MSR LSE
1 1

MSR LSE
1 1

max{ } max{ }
CPE 100%i i

n n

i i

Q Q

Q Q

 
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 
 
   
 
 
 

 

 
 (16) 

where, 
M SRQ  refers to the integral value of the difference 

between the mean spectral radius of A ; LS EQ refers to the 
integral value of the difference of the characteristic statistics 
obtained by using other characteristic statistics; and n is the 
number of monitoring locations. Note that the solution of 

MSRQ  is obtained after the analysis of the nonpartition 
situation of the power grid and the composition of different 
partitions according to the demand. In the research process, it 
is found that the buses represented by the three values with 
larger difference integral values of characteristic statistics are 
most likely to be close to the recognition of the voltage sag 
source, and a larger the value indicates a higher degree of 
influence and a higher percentage. 

Recognition accuracy C [36], recognition error rate W [37], 
and recognition missing rate L [38] are shown in Equation 
(17): 
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 (17) 

where, 00S , 01S  denotes the number of correctly and 
incorrectly identified samples without partitioning of the grid; 

10S , 11S  denotes the number of correctly and incorrectly 
identified samples with the partitioning of the grid; 

00A , 11A denotes the number of samples identifying missed 
judgments in the grid with and without partitioning. 
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IV. SIMULATION EXPERIMENT ANALYSIS 
On the PSCAD simulation platform, the corresponding 

short-circuit fault simulated voltage sags were set up based 
on the IEEE-39 bus system. The IEEE-39 bus system is 
divided into four zones using the community structure grid 
partition method, in which each zone corresponds to four 
characteristic statistics, and the CNN is used to train 
characteristic statistics. Its partitions are shown in Fig. 8, and 
the number of buses is presented in TABLE I. 

TABLE I 
THE NUMBER OF BUSES IN EACH PARTITION 

 

Subnet name Zone1 Zone2 Zone3 Zone4 

Bus number 8 11 7 13 

 

 
 

Fig. 8. IEEE-39 bus system with partition. 
 

A. Analysis of the effect of grid partitioning and different 
characteristic statistics on RMT 
In the IEEE-39 bus system between buses 26-27, a 

three-phase short-circuit fault is set, which is close to bus 26. 
When t = 5 s, a short-circuit fault occurs; when t = 5.5 s, the 
fault is eliminated. The mean spectral radius, the standard 
deviation of the eigenvalues, the maximum eigenvalue, and 
the minimum eigenvalue are obtained by using the single ring 
law and the M-P law of RMT to calculate and analyze the 
voltage sag data in the partitioned and unpartitioned cases. Its 
influence on the analytical effect of the RMT is shown in Figs. 
9 and 10. 

 
 

(a) Each characteristic statistic of Zone 1. 

 

 
 

(b) Each characteristic statistic of Zone 2. 
 

 
 

(c) Each characteristic statistic of Zone 3. 
 

 
 

(d)  Each characteristic statistic of Zone 4. 
 
Fig. 9.  Comparison of each characteristic statistic with partition 
 

Fig. 9 shows that the higher the dimension of the state data 
matrix is, the better the effect of the characteristic statistics, 
as shown in Fig. 9(d). As the dimension of the state data 
matrix declines, the effect of the characteristic statistics 
worsens, as depicted in Fig. 9(c). Fig. 9(c) indicates that the 
data dimension is too small, the characteristic statistics show 
a drastic waveform after 6 s, and the random change cannot 
be predicted. Therefore, the feature statistics used in the text 
will gradually lose their statistical effect as the data 
dimension becomes progressively smaller. From Fig. 10, it 
can be seen that the characteristic statistics can reflect the 
overall condition of the state matrix very well when the 
dimensionality of the state data matrix is sufficiently large, 
and the effect is better as the dimensionality increases. 
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Fig. 10. Comparison of each characteristic statistic without partitioning.  
 

According to Figs. 9 and 10, the state data matrix has 
different dimension sizes and presents different analyses with 
different characteristic statistics. Of the four characteristic 
statistics indices used in this study, the MSR and the standard 
deviation have a flatter effect and the best results. The change 
curve corresponding to the maximum eigenvalue jitters more 
dramatically, and its result is the second most effective. The 
minimum eigenvalue changes insignificantly, and its 
statistics are the worst. 

B. Verification of a voltage sag source recognition method 
based on RMT-CNN 
A total of 60 simulation cases are set up in the IEEE-39 bus 

system between Lines 1-2, 3-4, 4-5, 11-12, 17-18 and 26-27 
for a three-phase short circuit fault, two-phase short circuit 
fault, two-phase grounded short circuit fault and single-phase 
short circuit fault, respectively. All faults are set to a 
short-circuit fault at t = 5 s and eliminated at t = 5.5 s. The 
simulation of the three-phase short-circuit fault at Lines 
26-27 is taken as a validation example, and the other 
simulations are taken as historical cases of CNN training. 
According to the partitioning and nonpartitioning conditions, 
the single ring law and M-P law of the RMT were used to 
analyze historical cases of voltage sag data to obtain four 
characteristic variables, including the mean spectral radius, 
the standard deviation of the eigenvalue, maximum 
eigenvalue and minimum eigenvalue, which were used as the 
input characteristic set of the CNN. 

The optimization characteristic statistics obtained by the 
CNN training are substituted into the simulation analysis of 
the three-phase short-circuit fault at Lines 26-27. Figs.11 and 
12 show the comparison distribution of the integral of the 
difference between the optimized characteristic statistics and 
the difference between the mean spectral radius obtained by 
the voltage sag source identification model under the two 
conditions of partition and nonpartition.  

 

 
 
(a) Comparative distribution map of optimized LSEQ  and MSRQ . 

 

 
 

(b) Comparative distribution map of optimized LSEQ  and MSRQ . 
 

 
 

(c) Comparative distribution map of optimized LSEQ  and MSRQ . 

 
 

(d) Comparative distribution map of optimized LSEQ  and MSRQ . 
 
Fig. 11. Comparative distribution map of optimized LSEQ  and MSRQ  with 
partitioning. 
 

It can be seen from Fig. 11 that in the four zones, different 
integral values of characteristic statistics corresponding to 
buses 26, 27, and 28 are significantly larger than those of 
other buses. Thus, the voltage sag source should be 
recognized within the region of buses 26, 27 and 28. 
Moreover, buses 26 and 27 should be closer to the voltage sag 
source point. The results of the simulation are the same as 
those obtained by setting the fault. The results show that the 
optimized characteristic statistics extracted by using 
RMT-CNN can effectively recognize voltage sag sources 
even under conditions of few dimensions. In Figs. 11(a) 
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-11(d), the differences between the results of the full matrix 
analysis with MSR as an index and the results obtained by the 
RMT-CNN-based voltage sag source recognition method in 
the case of partitioning are small, indicating that the obtained 
optimized characteristic statistic can effectively analyze 
different-dimensional state data matrices in different 
partitions, and the obtained results do not differ much from 
the results of the full matrix analysis with MSR as an index. 
Therefore, the optimized characteristic statistics have good 
applicability and can overcome the problem of MSR is not 
being fully applicable in data matrices of 
different-dimension. 

 

 
 

Fig. 12. Comparative distribution map of optimized LSEQ  and 

MSRQ without partition. 
 

As can be seen in Fig. 12, the LSEQ  values of buses 26, 27, 
and 28 are much higher than the other nodes in the results of 
the RMT-CNN-based recognition method. However, in the 
RMT-based positioning method, in addition to the large 
values corresponding to buses 26, 27, and 28, there are also 
large values for buses 16 and 17, which have interference 
items. Thus, the RMT-CNN-based recognition method to 
recognize the source of voltage sag can effectively eliminate 
the interference of other nodes in the system and has better 
recognition results compared with the fault recognition 
results using RMT alone. The proportion error of the 
correlation between partitions and nonpartitions is given in 
TABLE II. 

TABLE II 
COMPARISON OF CORRELATION RATIO ERROR RESULTS 

CPE 

Grid Partition Nonpartitioned 
(Full bus) 

Zone1 Zone2 Zone3 Zone4 

7.006 2.081 1.123 5.022 1.664 

TABLE II reflects the outcome that full matrix analysis 
based on MSR can be achieved by using optimized 
characteristic quantity under different matrix dimensions 
regardless of there being a partition or no partition, and the 
gap of CPE is small and within the normal range. It shows 
that compared with MSR, the optimized characteristic 
quantity has a higher applicability and a better effect. 

In conclusion, the positioning effect obtained by using the 
optimized characteristic statistics extracted by RMT-CNN is 
not different from that obtained by using the full matrix 
analysis of the MSR index, and other interference items can 
be excluded, resulting in good positioning results. 

V. DISCUSSION 
To verify the positioning effect of the optimized 

characteristic statistics extracted by RMT-CNN under 
different faults and different partitions, the simulation data 
were combined with the IEEE-39 bus system structure to set 
partitions of different sizes to obtain state data matrices of 
different dimensions. Ten groups of partition forms were set 
to obtain a total of 600 groups of state data matrices. The 
optimized characteristic statistics obtained by the above 
methods were analyzed. The results of the method proposed 
in this paper are compared with the results of the recognition 
of voltage sag sources based on MSR, maximum eigenvalue, 
improved maximum eigenvalue, and RMT-PCA-based 
models and evaluated according to the recognition accuracy 
(C), recognition error rate (W) and recognition missing rate 
law (L). The evaluation results for each model are given in 
TABLE III. 

 
TABLE III 

EVALUATION RESULTS OF DIFFERENT MODELS 
 

Model C W L 

MSR 95.68 2.53 1.79 

Maximum eigenvalue 94.92 3.26 1.72 

Improved maximum eigenvalue 95.73 2.59 1.68 

RMT-PCA 96.27 2.48 1.25 

RMT-CNN 97.39 1.84 0.77 

 
As seen in Table 3, after extracting the system 

characteristics of the system with RMT, CNN, and 
RMT-PCA, the optimal characteristic statistics greatly 
improve the precision of the recognition of the voltage sag 
source. The W and L obtained by using single characteristic 
statistics are relatively high, such as the maximum eigenvalue. 
It shows that the recognition method that combines RMT and 
other deep learning algorithms has more accurate recognition 
results compared to the RMT method alone. The accuracy of 
RMT-PCA is higher than that of a single characteristic, but its 
misjudgment rate is still higher. Compared with the 
RMT-CNN method, the accuracy is 1.12% lower, the 
recognition error rate is 0.64% higher, and the recognition 
missing rate is 0.48% higher. The above analysis illustrates 
the greater advantage of using CNN in extracting data 
features and the ability to obtain optimized feature volumes 
with better perceptual effects. 

VI. CONCLUSIONS 
The modern power system is a complex system that 

integrates digitalization and information technology. The 
factors causing voltage sag are complicated and complex, 
which makes it difficult to recognize voltage sag sources. To 
solve the problem of the characteristic statistics of random 
matrix theory not being completely applicable to the 
correlation analysis of state data matrices of different 
dimensions, the CNN can train and learn different 
characteristic statistics of RMT to obtain optimized 
characteristic statistics, which can replace the original single 
linear characteristic statistics and cause the statistics to have 
better applicability and effectiveness. In this paper, a voltage 
sag source recognition method based on the RMT-CNN 
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model was proposed. First, RMT was used to analyze the 
training data, and four characteristic statistics, including the 
mean spectral radius, and the standard deviation of the 
characteristic eigenvalue, maximum eigenvalue, and 
minimum eigenvalue, were obtained. These characteristic 
quantities were then used to construct the CNN input 
characteristic set. The CNN was used to train and extract 
these characteristic statistics so that the optimized 
characteristic statistics could be well applied to data analysis 
and processing in different dimensions and under different 
fault conditions. Furthermore, the optimized characteristic 
values were used in the voltage sag source recognition model. 
Finally, examples were given to verify the applicability of the 
proposed method in voltage sag source recognition research, 
and compared with several current characteristic statistics 
extraction models, the RMT-CNN voltage sag source method 
is better. 

On the basis of the study presented in this article, we can 
conduct in-depth research on the following aspects in the 
future. For example, for the combination of random matrix 
theory and deep learning methods, deep neural networks can 
be used to optimize the coefficients of the test function to 
determine the coefficients of the test function and the 
mapping effect. Then, we can find the relationship between 
the coefficients of the test function and the mapping effect to 
obtain the optimal characteristic statistics under different 
dimension matrices. 
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