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Abstract—Relation classification is an important task in
information extraction that involves identifying potential
semantic connections between two entities in a sentence.
Most relation extraction models either use semantic or
structure information as the relation representation for
classification. Although some researchers have tried to fuse
both types of information, they simply combine different
information as relation representation, which ignores se-
mantic and structure information contribute unequally to
the relation representation at the instance level, leading to
degradation of performance and generalization capability.
To address this issue, we propose a fusing multi-information
model with a self-attentive strategy (Att-FMI) for relation
classification. Our approach utilizes the pre-trained BERT
model and dependency syntactic parser to obtain semantic
and structure representations from the sequence, respectively
and efficiently combines the two with support the self-
attention mechanism. Experimental results on four com-
monly used datasets, including TACRED, TACREV, KBP-
37 and SemEval-2010 Task8, demonstrate that our approach
yields significant improvements over baseline methods. Addi-
tionally, we observe that the Att-FMI model exhibits greater
robustness against information interference in the extraction
of entity relations from longer sentences than previous
methods.

Index Terms—relation classification; syntactic dependency
parsing; BERT; self-attentive mechanism.

I. INTRODUCTION

ENTITY relation classification is the recognition of
the semantic relation between pairs of entities in a

sentence, which is one of the most crucial tasks in the field
of information extraction [1]. For the following sentence:

“ Ten buckets of [water]e1 were poured into a

vacant [area]e2 outside the house. ”

where e1 = “water” and e2 = “area” are a pair of target
entities, identifying the relation “Entity-Destination” be-
tween e1 and e2 is the purpose of the relation classification
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task. Since relation extraction plays a significant role in
natural language processing (NLP) applications, such as
knowledge graph construction [2], machine translation [3]
and Automated Q&A [4]. As a result, many researchers
have devoted themselves to relational extraction research
in the past few years.

Among all the research methods, supervised learning
has gradually become dominant in relation extraction
tasks. In recent years, massive work related to supervised
relation extraction has arisen, and these methods mainly
tend to be influenced by the following ideas:

Joint different characteristics. These studies typically
combine word embeddings and position features as repre-
sentations for relation extraction.

Introduce syntactic analysis. To analyze the se-
quence’s grammar and identify the direct connection of
target entities, researchers usually require a special parser
[5].

Fine-tuning. The approach involves utilizing pre-
trained language models (PLMs) [6], such as BERT [7],
RoBERTa [8], etc, which are then fine-tuned to the down-
stream classification task.

Although the aforementioned technique achieves posi-
tive outcomes in relation extraction, there still exist lim-
itations. First of all, the majority of studies have not
considered the fact that relation classification depends on
both the sentence’s structure and semantic, not just one
alone. Second, some researchers overlook the fact that
the weights of semantic and structure information vary
according to the sentence itself.

To tackle the issue, we propose a novel fusing multi-
information model with a self-attentive strategy (Att-FMI),
which consists of a special parser, the pre-trained BERT
model and a self-attention mechanism [9-11]. Att-FMI
can obtain both the structure representation of sentences
with the dependency syntactic parser [12] and semantic
representation by using the pre-trained BERT model. In
order to make full use of these two representations, Att-
FMI is designed automatically adjust the weights subtly
of two representations via the self-attentive strategy.

The primary contributions of this article include the
following:

(1) We propose a novel Att-FMI model for the relation
classification, which are capable of extracting the semantic
and structure representations of texts and automatically
focusing on the information that contributes to classifying
based on the self-attentive strategy.

(2) When handling long texts that contain plenty of
irrelevant details, our algorithm still works well, showing
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great robustness to interference.
(3) Without any introduction of external resources and

background knowledge, Att-FMI significantly and con-
sistently outperform four popular benchmarks of relation
classification, including TACRED, TACREV, KBP-37 and
SemEval-2010, compared to existing baselines.

II. RELATED WORK

The existing study of relation classification had gone
through three stages including pattern matching [13],
machine learning [14] and deep learning [15]. Pattern
matching-based approaches mainly included rule-based
and word-driven relation extraction. In the early stages of
limited specialization and small corpus size, both of them
had achieved considerable progress, but they also encoun-
tered challenges with poor transferability and the high ex-
pense of manual annotation. In machine learning, the two
main categories of algorithms were kernel function-based
and feature vector-based relation extraction. The strategy
significantly outperformed earlier pattern-matching tech-
niques in terms of accuracy, precision and recall. However,
it still suffered from the drawbacks of slow computing
speed and heavy labour consumption.

Over the years, supervised relation extraction with deep
neural networks is gradually becoming a research focus.
As opposed to the conventional relation classification
methods, it overcomes the key issues of manual feature
selection and error propagation of troubling features and
contributes to better exploring and utilizing potential in-
formation among entities.

To classify relations, Zeng et al. [16] initially employed
convolutional neural networks (CNN) to access word-level
and sentence-level information while using the softmax
layer. This significantly enhanced the task’s performance.
The shortest dependency path and CNN were coupled for
entity relation extraction by Xu et al. [17] at the same time.
The performance of this approach had increased when
compared to utilizing only CNN, proving that the shortest
dependency path is effective for classifying relations.

Socher et al. [18] suggested employing Recurrent neural
networks (RNN) to explore entity relation extraction in
addition to CNN-based strategies. RNN was implemented
in the method to learn a representation of the connections
between the target entities in a syntactic parse tree, which
was then used for classification. However, there were some
challenges such as gradient disappearance and gradient
explosion when parsing the sentence by RNN. Researchers
began using long short term memory (LSTM) with greater
performance for relation extraction as a result.

The application of LSTM to the relation extraction task
was presented by Xu et al [19]. This method was based
on the shortest path of the syntactic dependency tree and
incorporated multiple features for relation classification.
Based on the idea that the input at the time was de-
pendent not only on the word preceding it but also on
the word following it, Zhang et al. [20] discovered that
bi-directional long short-term memory (Bi-LSTM) could
capture the bi-directional semantic dependencies to gain
additional sequential information. As a consequence, the
approach performed better than the model described in the

literature [16], proving the value of Bi-LSTM for relation
extraction.

An attention mechanism was introduced to decide the
crucial information for the relation classification task.
Wang et al. [21] proposed to use an attention mechanism
combined with CNN or RNN for this work. The entity-
aware self-attention mechanism proposed by Yamada et
al. [22] considered the types of tokens while computing
the attentive fraction and achieved excellent performance
on several entity-related tasks.

The pre-trained BERT model launched by Google in
2018 broke performance records across all 11 NLP tasks.
With the rise of PLMs, relation extraction researchers have
started concentrating more on how to fine-tune PLMs in
this work.

Wu et al. [23] tried employing the BERT to handle
information from the target entities. Firstly, they located
the target entities and transferred the original sequence
by using BERT, then concatenated the corresponding
encoding of the two entities as a relation representation
for classification. In addition, Wang et al. [24] further
proposed to introduce external resources based on keeping
the original pre-trained model parameters constant.

From the above, we can summarize that the pre-trained
BERT model is capable of better understanding the mean-
ing of texts and using the knowledge learned during
pre-training for downstream relation classification tasks.
However, it also suffers from some flaws. For instance,
the pre-trained BERT model is susceptible to interference
from noise. The recognition of relational trigger words will
be hampered when irregular words, words with logical
errors, and misspellings appear in the input sequence.
Furthermore, it is unable to learn the grammatical structure
of sentences.

Zhao et al. [25] proposed an adaptive learning method
for text classification tasks, which fused multiple feature
information and enhanced classification performance. In-
spired by this, we propose the Att-FMI mdoel, which
performs better in the relation extraction task by properly
combining semantic and structure information.

III. METHODOLOGY

A. Fine-tuning Pre-trained BERT Model
Unlike conventional language models, the pre-trained

BERT model is a multi-layer bidirectional transformer en-
coder. Pre-training is achieved using the masked language
model (MLM), which randomly masks some tokens of the
input sequence and forecasts the masked token by context.

Given a pre-trained BERT model M , previous
fine-tuning methods first convert the instance
x = {w1, w2, ..., wn} into an input sequence
{[CLS], w1, w2, .., wn, [SEP ]}, and use M to encode
all tokens of the input sequence into corresponding
vectors {h[CLS], hw1 , hw2 , .., hwn , h[SEP ]}. For a
downstream classification task, a task-specific head is
used to compute the probability distribution of label
y over the class set Y with the softmax function
p(y|x) = softmax(Wh[CLS]+b), where h[CLS] is the
hidden vector of the special token [CLS], W is a
randomly initialized matrix that needs to be optimized
and b is a learned bias vector.
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Fig. 1. The dependency tree for the sentence “ Ten buckets of water
were poured onto a space outside the house. ”. The shortest dependency
path between subject “[water]” and object “[area]” is composed of
multiple red lines. The edge “a → b” indicates that a govern b. The
dependency type labels between words after parsing are not shown here.

B. Dependency Syntactic Parser

To help relation extraction model relations capture long-
range relations between words, a dependency syntactic
parser is proposed. The parser can capture the shortest
dependency path (SDP) between any two words in a
sentence and investigate the complex structure between
them, it has been demonstrated to be incredibly successful
in relation classification task.

The SDP contains the most critical information while
automatically excluding the less relevant words. Ordinar-
ily, dependency structure is displayed in two different
ways: either by marking dependency arrows and grammat-
ical relations on the original sentence, or by presenting a
dependency tree graph. Figure 1 depicts the dependency
parse tree for the given sentence.

C. Overview

The framework for the Att-FMI proposed in this section,
which comprises three components, is shown in Figure 2.

(1) Obtain Semantic Representation: The pre-trained
BERT model encode the input sequence after locating
the target entities. To describe the sentence’s semantic
representation, we then combine the corresponding vector
of the target entities with the specific head “[CLS]”.
(Section E in detail)

(2) Capture Structure Representation: By employing
dependency syntactic parser, the shortest dependency path
between target entities is discovered. The tokens on SDP
are then mapped into word embedding and fed into the Bi-
LSTM to obtain the last hidden vector as the sentence’s
structure representation. (Section F in detail)

(3) Fusion of Two Representations: Motivated by
the attention mechanism, the self-attention strategy is
proposed, which can learn the weights of semantic and
structure at corpus respectively and automatically focus
according to the contribution of two types of information
to the classification result. (Section G in detail)

Additionally, we summarize the operational procedure
of the Att-FMI model in Algorithm 1 to assist the reader
to comprehend the entire process more clearly.

Algorithm 1 : Att-FMI Model
Input: D = {xn, yn} // training set
Output: Ŷ = {ŷ1, ŷ2, ..., ŷn} // the set of predictive labels
1: for n = 1, ..., N do
2: x

(1)
n , x

(2)
n ← Data Preprocessing for xn;

3:
4: if x(1)

n then
5: {H0, ..., Hn} ← BERT-Encoder (x(1)

n );
6: Calculate entity representations He1, He2;
7: Calculate first token ‘[CLS]’ representations Hcls;
8: Hse ← Add (He1, He2, Hcls);
9: end if

10:
11: if x(2)

n then
12: SDP ← Dependency syntactic parser (x(2)

n );
13: ESDP ← Word embedding for SDP ;
14: Hst ← Bi-LSTM (ESDP );
15: end if
16:
17: The embedding layer of BERT: Et = {E0, ..., EN};
18: Use Et to calculate average word vector Es;
19: Obtain attention weights Attse, Attst from Es, Hse, Hst;
20: Relation representation M = Concat(Attse∗Hse, Attst∗Hst);
21: Use M to predict result of classification ŷn;
22: end for
23: Calculate Cross− Entropy Loss;
24: Back propagation and update parameters in Att-FMI model;
25: return Ŷ = {ŷ1, ŷ2, ..., ŷn};

D. Data Preprocessing

The input sequences are subjected to the following two
forms of preprocessing, which assist the model to capture
the semantic and structure information.

Before a sentence is encoded by the pre-trained BERT
model, we first insert special tokens “[CLS]” and “[SEP]”
into the head and tail of the sequence. Meanwhile, in
order to make the BERT model can grasp the location
information of the two entities accurately, we add the
special tokens “$” and “#” at the start and end of the
target entities, respectively. For instance, following the
addition of the special tokens, the sentence with target
entities “water” and ”area” will convert to:

“ [CLS] Ten buckets of $ water $ were poured

into a vacant # area # outside the house. [SEP ] ”

To strengthen the generality of the model, we also
substitute ”Entity1” and ”Entity2” for the target entities
in the sentence before applying the dependency syntactic
parser. The specific example is as follows:

“ Ten buckets of Entity1 were poured into a

vacant Entity2 outside the house. ”

E. Sentence Semantic Representation

1) Encoding with The BERT Model: In this paper, we
first give an input sequence T with entities e1 and e2,
which outputs the final hidden state output from the BERT
model as H , where Hi to Hj refers to the hidden state
vector of entity e1, Hk to Hm refers to the hidden state
vector of entity e2, and H0 corresponds to the hidden state
vector of the token “[CLS]” at the beginning of the input
sequence. Hi, Hj , Hk, Hm, H0 ∈ Rd, d is the dimension
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Fig. 2. There exists an overall structure of the Att-FMI model. Once a sentence has been preprocessed, it is fed into the dependency syntactic
parser and the BERT model to capture structure and semantic representations, respectively.

of the hidden state vector. The two target entities are given
a vector representation by using an average operation, and
the results of the activation are then passed to the fully-
connected layer. Finally, the vector representations He1

and He2 of entities e1 and e2 are obtained. Equations (1),
(2), and (3) provide a mathematical formulation for this
process.

He1 = W1 × [tanh(
1

j − i+ 1

j∑
t=i

Ht)] + b1 (1)

He2 = W2 × [tanh(
1

m− k + 1

m∑
t=k

Ht)] + b2 (2)

Hcls = W0 × [tanh(H0)] + b0 (3)

where W0 ∈ Rd×d, W1 ∈ Rd×d, W2 ∈ Rd×d are
weight matrixes, b0 ∈ Rd, b1 ∈ Rd, b2 ∈ Rd are
biases. We make W1 and W2, b1 and b2 share the same
parameters. That is to say, W1 = W2, b1 = b2.

2) Information Integration: The entity representations
He1 and He2 contain local features associated with the tar-
get entity, while the hidden state vector Hcls incorporates
the global features of the whole sequence. The three are
now fused by adding to generate a semantic representation
of the sentence Hse:

Hse = Hcls +He1 +He2 (4)

where Hse ∈ Rd. By merging the local features of
the target entities with the global characteristics of the
sentence, this method allows Hse to integrate contextual
semantic information.

F. Sentence Structure Representation

1) Generate The Shortest Dependency Path: When a
sentence is so long, the interference information in the
sequence increases, resulting in a decrease in the sensi-
tivity of the model to relation trigger words. To tackle
the problem, we introduce spaCy [26] (Natural Language
Processing Tool) to produce the dependency graph. The
shortest distance between the target entities as the starting
and ending nodes is SDP:

SDP = {we1, w1, w2..., wn, we2} (5)

where wi(i ∈ [1, n]) is a token on the SDP . Most
of the fuzz words have been filtered off and only the
simplest structure information between the target entities
is retained, which is beneficial for the model to identify
the most critical relation trigger words in the path.

Firstly, we employ spaCy to parse the sentence and
acquire several triples containing dependency type and
direction between two words, Table 1 displays the specific
outcomes.

According to the results of Table 1, we can construct a
dependency graph on the original sentence, where nodes
are represented as words on a sequence, and arrows
describe the direction of the dependency. As shown in
Figure 3, from the dependency graph, we discover the
shortest dependency path between the target entities. With
eliminating irrelevant words, just the most basic syntactic
structure between the target entities is kept.

2) Word Embedding: Due to the temporary lack of a
consistent vector representation for dependency type, only
the words on the SDP are maintained for embedding.

To map the word wi on the SDP , we adopt the
word vectors produced by GloVe [27], in turn, to the
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Fig. 3. This diagram illustrates how to construct the shortest dependency path. In the dependency parsing graph, the words, their corresponding
lexical properties and the dependency types of the words are shown. By linking between “Entity1” and “Entity2”, we can find the shortest
dependency path between them.

TABLE I
THE RESULT OF THE DEPENDENCY PARSING IS THIS, WHERE THE

DEPENDENCY TYPE ILLUSTRATES THE RELATION BETWEEN THE TWO
LEXICONS AND “→” REFLECTS THE SUBJECT AND OBJECT OF THE

DEPENDENCY.

Dependency Type Direction

nsubjpass poured→buckets
auxpass poured→were

prep poured→into
nummod buckets→Ten

prep buckets→of
pobj into→Entity2
pobj of→Entity1
det Entity2→a

amod Entity2→vacant
prep Entity2→outside
pobj outside→house
det house→the

corresponding word vectors ewi :

ewi
= E(wi) (6)

where the word vector dimension of ewi
is lw, the SDP

can be denoted as the corresponding embedding matrix
ESDP :

ESDP = [ew1
, ew2

, .., ewn
] (7)

where ESDP ∈ Rn×lw , n is the length of the SDP .
3) Encoding with Bi-LSTM: while processing long-

term sequences, RNN experiences gradient disappearance
and explosion. To tackle this issue, we employ a bi-
directional long short-term memory network (Bi-LSTM)
to encode the word embedding matrix ESDP , which ef-
fectively captures more comprehensive sequence features.

By using the Bi-LSTM network to encode the word
embedding matrix ESDP , we can obtain the final hidden

state output Hst, which is the sentence’s structure repre-
sentation:

Hst = hSDP = Bi− LSTM(ESDP ) (8)

where Hst ∈ Rd, d is the dimension of the hidden layer
in the Bi-LSTM network.

G. Self-Attention Strategy

In common, the weights of semantic and structure
information vary according to the sentence itself, hence
the necessity of an efficient way to integrate the two pieces
of information. As shown in Figure 4, motivated by the
attention mechanism, we propose the self-attention strat-
egy to learn weights at the instance level. The method can
compute the attention weights of the structure representa-
tion Hst and the semantic representation Hse respectively,
and fuse them according to the attention weights.

First, we apply the average operation on word embed-
dings of the sentence to get efficient sentence representa-
tion Es, which contains extensive contextual information:

Es =
1

p+ 1

p∑
t=0

Et (9)

where E0 to Ep correspond to the word embedding
of the sequence, encoded by the embedding layer of
BERT respectively. Second, the fully-connected layer is
added to Es to convert the representations into semantic
space output Es1 and structure space output Es2, which
is formally expressed as:

Es1 = W3 × Es + b3 (10)

Es2 = W4 × Es + b4 (11)

where W3 ∈ Rd×d, W4 ∈ Rd×d are weight matrixes,
b3 ∈ Rd, b4 ∈ Rd are biases, Es1 ∈ Rd, Es2 ∈ Rd. Third,
we capture the similarity of representations by computing
the inner product. The output pse and pst are from Hse
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Fig. 4. The self-attention module illustrates how self-attention weights are constructed for two representations.

and Hst individually. The specific calculation process is
formalized as equations (12) and (13).

pse = Es1 ⊙Hse (12)

pst = Es2 ⊙Hst (13)

Last but not least, we use softmax to normalize
weights.

(Attse, Attst) = softmax(pse, pst) (14)

where Attse and Attst are the attention weights nor-
malized, which denote the contribution of the semantic
representation Hse and the structure representation Hst to
the final classification results, respectively. According to
the weights, we reasonably concatenate Hse and Hst as
the final relation representation M .

M = Concat(Attse ∗Hse, Attst ∗Hst) (15)

where M ∈ R2d. In summary, the self-attention strategy
help model learn the weights of the two representations
and effectively combine semantic information and struc-
ture information to enhance the performance of the relation
extraction task.

H. Model Training and Output

After the above operations are completed, we utilize
a softmax-classifier to predict the relation label ŷ. The
classifier takes the relation representation M as input:

M̃ = W6 × [tanh (W5 ×M + b5)] + b6 (16)

p = softmax(M̃) (17)

where W5 ∈ R2d×d, W6 ∈ Rd×L are weight matrixes,
b5 ∈ Rd, b6 ∈ RL are biases, L refers to the number
of relation types within the dataset. According to the
probability-distribution p, we can predict the relation of
the entity pair e1 and e2:

ŷ = argmax(p) (18)

Then, we use Cross-Entropy serves as the loss function
for the Att-FMI model:

Loss = − 1

N

N∑
n=1

yn × log(ŷn) (19)

Where yn and ŷn represent true and predicted labels
respectively. The training set has N instances in total.

Adam is an optimizer for the aforementioned procedure
to minimize cross-entropy loss. The parameters of our
model are randomly initialized and then update by employ-
ing back-propagation. Meanwhile, in order to alleviate the
overfitting, the Att-FMI model randomly discards some
neurons in the neural network by employing the dropout
layer.

IV. EXPERIMENT

In this section, to demonstrate the effectiveness of the
model, we conduct experiments on four commonly used
relation classification datasets.

A. Datasets and Metric

TACRED [28]: one of the largest and most widely
used datasets for relation classification. It is obtained via
crowd-sourcing and contains 42 relation types (including
“no relation”).

TACREV [29]: A dataset built on the original TACRED.
The errors in the original TACRED development and
test sets are corrected while the training set remains
unchanged, with the same number of samples and relation
types.

KBP-37 [30]: in this dataset, there are 18 types of
directed entity relations and one no-relationship type
“no relation”, for a total of 37 relation categories.

SemEval-2010 Task8 (SemEval) [31]: an established
dataset for relation classification, which involves 9 types
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TABLE II
STATISTICS OF RE DATASETS.

Dataset #Train #Dev #Test #Rel #Ratio(%)

SemEval 6,507 1,493 2,717 19 14.3

KBP-37 15,917 1,724 3,405 37 78.1

TACRED 68,124 22,631 15,509 42 87.4

TACREV 68,124 22,631 15,509 42 87.4

of directional relationships, for example, the relation
“Component-Whole (e1, e2)” and “Component-Whole
(e2, e1)” are treated as two different types and one special
type “Other”.

As shown in Table 2, the distinction between the four
datasets is reflected in the number of examples and relation
categories and the proportion of long sentences (sentence
length ≥ 20).

Compared with the SemEval-2010 Task8, it is quite
obvious that the KBP-37, TACRED and TACREV are
capable of better validating the model’s resistance to
information interference due to its multiple relationship
types and a higher proportion of long sentences. For all
the above datasets, F1 scores serve as our primary standard
for evaluation.

B. Experimental Detials

Depending on the size of the datasets, we encoded the
sample from TACRED and TACREV using RoBERTa-
Large as a pre-trained language model. For samples in the
dataset SemEval and KBP-37, we use RoBERTa-Base to
encode. In the meanwhile, the hidden size in the Bi-LSTM
network must match the hidden size in the RoBERTa
model in the experiments. Most hyper-parameters are set
following previous works. The key settings in our testing
are shown in Table 3:

TABLE III
PARAMETER SETTINGS.

Parameters Value

Number of epochs 30

Batch size 16

Max sequence length 128

Learning rate 3e-5

Hidden size 768

Word dim 200

Dropout 0.3

C. Baseline Methods

To verify the performance of the proposed Att-FMI
model, we compared experimental results with a number
of baseline method from recent years.

BiLSTM-CNN [32]: The method employed Bi-LSTM
to extract long-range relations between labels to produce
higher-level semantic representation, which were then fed

to CNN for relation classification, combining the strengths
of RNN and CNN.

PA-LSTM [28]: For the relation extraction challenge,
a neural sequence model of cognitive location is put
forth that can fully incorporate information about semantic
similarity and location based on the attention mechanism.

GLFN [33]: Word temporal properties were obtained
using a recurrent neural network, and they were further
divided into local and global temporal features using a
convolutional neural network. In the end, the model could
combine and filter the two aspects to produce a thorough
representation of the sentence semantics after introducing
a self-attention mechanism.

C-GCN [34]: The paper proposed an idea using a new
pruning strategy for noisy data filtering and introducing
graph convolutional networks to relation extraction tasks
to convolve the syntactic dependency graph of the text.

ATT-Gate-GCN [35]: An attention-guided gate-aware
graph convolution model based on attention was proposed.
While using the attention mechanism to perform soft
pruning, a graph convolutional network was constructed
to obtain relational features, and the two were integrated
for extracting crucial information.

R-BERT [23]: Based on BERT, a relational represen-
tation for classifying was generated by combining the
information from the sentence and the target entity.

Know-BERT [36]: In order to create a knowledge-
enhanced entity span representation, the approach was
proposed to explicitly model entity span in the input se-
quences by incorporating external information and jointly
training entity connectors. The contextual word represen-
tation was updated in the meanwhile to make sure it had all
of the entity information using the word-to-entity attention
mechanism.

MTB [37]: A novel pre-training task matching the
blanks was launched using BERT, which learned the
representation of relations from text without the use of
a knowledge graph or human annotation supervision.

Span-BERT [38]: A new pre-training method at the
word level is suggested that uses a representation of the
word boundaries to forecast the content of the location to
which the [MASK] is added.

LUKE [39]: The researcher suggests an entity-aware
self-attentive mechanism and a job specifically for dealing
with entity-related contextual representation in a large text
corpus and knowledge network for pre-training.

D. Comparison with Other Methods

The test results in Table 4 reveal that the approaches us-
ing the pre-trained model significantly exceed the methods
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TABLE IV
COMPARISON WITH RESULTS IN THE LITERATURE F1 SCORES (%). “-” INDICATES EXPERIMENTAL RESULTS ARE NOT PUBLISHED WITH THE
SOURCE PAPER AND THE REST OF THE RESULTS ARE FROM THE ORIGINAL PAPER. ”W/O” MEANS THAT NO ADDITIONAL DATA IS USED FOR

PRE-TRAINING AND FINE-TUNING, YET ”W/” MEANS THAT EXTRA DATA ARE USING FOR DATA AUGMENTATION. THE BEST RESULTS ARE BOLD.

Method Extra Data TACRED TACREV KBP-37 SemEval

Based on CNN/RNN

BiLSTM-CNN [32] w/o - - 60.1 81.9
PA-LSTM [28] w/o 65.1 73.3 - 84.8

GLFN [33] w/o - - 64.9 86.1

Based on GNN

C-GCN [34] w/o 66.3 74.6 - 84.8
Att-Gate-GCN [35] w/o - - 61.7 85.9

Based on PLMs

R-BERT [23] w/o - - - 89.25
Know-BERT [36] w/ 71.5 79.3 - 89.1

MTB [37] w/ 70.1 - 69.3 89.5
Span-BERT [38] w/ 70.8 78.0 - -

LUKE [39] w/ 72.7 80.6 - -

Att-FMI w/o 75.5 83.8 71.4 90.14

based on CNN/RNN or GNN in performance. We believe
that pre-trained models are more effective in enhancing the
performance of relation extraction tasks than traditional
models.

As opposed to similar approaches based on PLMs, our
Att-FMI model outperforms all other models in terms of
F1 scores. On the four datasets TARCED, TACREV, KBP-
37 and SemEval, our Att-FMI model exceeds the best
baseline with a relative improvement of 2.8%, 3.2%, 2.1%
and 0.61%, respectively.

E. Analysis of Model Performance

Considering the difficulty of model training and the cost
of complex manual design, we compared the performance
of our Att-FMI model with other baseline methods based
on PLMs in terms of both the number of parameters and
the use of manually labelled external knowledge, as shown
in Table 3.

Although KnowBERT and MTB employ BERT-Base as
the language model, allowing for a minimal number of
parameters, they each integrate a substantial quantity of
manually labelled external knowledge as data augmen-
tation throughout the fine-tuning and pre-training phase.
Contrarily, the Att-FMI model achieves significantly better
F1 scores than existing models on all four datasets without
the addition of any extraneous knowledge or difficult man-
ual design conditions, proving the approach’s effectiveness
and conciseness as well as its strong potential for relational
extraction tasks.

F. Choice of Contextual Representation

In the self-attention strategy, in order to assist the model
learn through the corpus and obtain attention weights
of semantic and structure representations, we require a
special feature vector (Es in Section 3.3) incorporating
contextual information, which originates from the mean
of the word embeddings.

TABLE V
COMPARISON OF MODEL REQUIREMENTS.

Method Pre-trained Model Size Extra data

R-BERT BERT-Large 340M w/o
Know-BERT BERT-Base 110M w/

MTB BERT-Base 110M w/
Span-BERT BERT-Large 340M w/

LUCK LUKE-500K-Large 480M w/
Att-FMI(TACRED) RoBERTa-Large 340M w/o
Att-FMI(TACREV) RoBERTa-Large 340M w/o
Att-FMI(KBP-37) RoBERTa-Base 110M w/o
Att-FMI(SemEval) RoBERTa-Base 110M w/o

There are four existing word embedding methods:
GloVe, Word2vec [40], Word2vec + GloVe and the em-
bedding layer of the BERT model. We choose the last one
for our approach. Figure 5 illustrates the comparison of
the implementation of different word embedding.

Performance is the best on all datasets with the em-
bedding layer of the BERT model. We consider that is
because the embedding layer of BERT is the composi-
tion of “Token Embedding”, “Segment Embedding” and
“Position Embedding” of the corresponding token of the
input sequence, compared with other embedding methods,
which can incorporate more information related to the
token.

G. Ablation Study

Empirical results have demonstrated the viability of our
approach. Next, we further want to understand the specific
contributions of the components of the Att-FMI model.
For this purpose, we create three more configurations and
evaluate their performance by Precision, Recall and F1

scores on different datasets.
Att-FMI-NO-ATT: The first configuration is to drop the

self-attention strategy and directly combine semantic and
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(a) On TACRED (b) On TACREV

(c) On KBP-37 (d) On SemEval

Fig. 5. F1 scores with various word embedding methods on RE datasets.

structure representations to get the relation representation
for classification. That is to say, this method gives equal
weights to these two kinds of representations. Meanwhile,
keep the rest settings the same.

Att-FMI-NO-SDP: The second configuration is to dis-
card the shortest path dependency of the input sequence
during the forward. In other words, we use the Bi-LSTM
network to encode a sentence to obtain the structure
representation. The other settings stay the same.

Att-FMI-NO-ENT: The third configuration is to re-
move the hidden vector output of two entities from the
semantic representation. That is, only Hcls as semantic
representation is directly fed into the self-attentive module.
Simultaneously, the other settings hold the same.

The results of the ablation study with the above three
configurations are shown in Table 6. We find that the Att-
FMI model has achieved leading performance in terms of
Accuracy, Recall and F1 scores on all datasets compared
to the other configurations. Now, we make a specific

analysis for each configuration:
(1) With the condition of dropping the self-attention

strategy, we observe that the performance of the model
is slightly decreased, which proves that the self-attention
mechanism plays an essential role in the efficient fusion
of the semantic and structure information.

(2) If we discard the use of dependency syntactic parser,
experimental results would be much worse, indicating that
the parser indeed contributes to capturing the structure
information of the sentence. Simultaneously, by comparing
the model’s performance on the four benchmark datasets
cross-sectionally, we further find that Precision, Recall
and F1 scores all decline more on the datasets KBP-37,
TACRED and TACREV compared to the SemEval dataset.
The analysis of the datasets in ”A. Datasets and Metric” of
this chapter shows that longer sentences are more abundant
in the latter three datasets. Therefore, we argue that the
shortest dependency path is favourable to grasping the
structure information of long sentences and minimizes the

TABLE VI
COMPARSION OF PRECISION, RECALL AND F1 SCORES OF METHODS WITH DIFFERENT COMPONENTS. THE BEST RESULTS ARE BOLD.

Configuration
TACRED TACREV KBP-37 SemEval

P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%)

Att-FMI-NO-ATT 73.39 75.69 74.52 82.11 82.79 82.45 68.8 70.28 69.53 88.84 90.33 89.58

Att-FMI-NO-SDP 72.1 73.57 72.83 80.04 82.2 81.11 68.05 68.98 68.51 90.04 88.4 89.21

Att-FMI-NO-ENT 71.96 70.87 71.41 80.45 79.02 79.73 66.67 69.03 67.83 86.92 88.88 87.89

Att-FMI 76.1 74.91 75.5 82.4 85.25 83.8 69.97 72.89 71.4 89.54 90.75 90.14
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interference of irrelevant words.
(3) Without considering the hidden vector output of the

two target entities, the performance of the approach is the
worst among the three configurations, which reflects that
integrating the information of the target entity assists in
enhancing the semantic representation.

V. CONCLUSION

In this paper, we propose a fusing multi-information
model with a self-attentive strategy (Att-FMI) for many-
class relation classification by capturing and fusing both
semantic and structure information effectively. The exper-
imental results on four benchmark relation classification
datasets show that Att-FMI significantly outperforms the
baselines without manual annotations and the introduction
of extra knowledge. Meanwhile, our model also shows
boosted resistance to interference information than previ-
ous methods.

In the future, we plan to examine ways to apply pre-
trained language models and dependency syntactic parser
to joint entity-relation extraction tasks, with the aim of
further enhancing our model’s performance on multiple
relation extraction tasks.
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