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Capability Process on a Two-Sided Extended
EWMA Control Chart for Moving Average with
Exogenous Factors Model

Yupaporn Areepong and Saowanit Sukparungsee

Abstract—Extended Exponentially Weighted Moving Average
(Extended EWMA) control chart was developed to detect small
changes and effectively detect changes quickly, especially with
correlated data. Average Run Length (4ARL) is a crucial feature
measure used to measure the performance of the control chart. This
research presents explicit formulas for in-control ARL (4RLo) and
out-of-control ARL (4RL;) for a two-sided Extended EWMA
control chart for moving average with exogenous factors (MAX)
model. In addition, the results of the ARL obtained by the explicit
formula were checked against the ARL calculated from the
numerical integral equation (NIE) method. The results showed that
both methods showed very consistent ARL values. The
performance of the Extended EWMA control chart was compared
with Exponentially Weighted Moving Average (EWMA) and
Cumulative Sum (CUSUM) control charts. The performance
comparison showed that the Extended EWMA control chart
outperformed because of the lowest ARL; at each change level.
Crude palm oil data prices were applied to the control charts to
illustrate their effectiveness in detecting changes.

Index Terms—Exponential white noise, explicit formula,
average run length, numerical integral equation

I. INTRODUCTION

TATISTICAL process control (SPC) is a quality control

method used to monitor and control a process, to
maintain its stability and consistency over time. SPC uses
statistical methods to analyze data, detect any changes or
variations in the process, and take corrective action if
necessary. SPC can be applied to any process that produces
measurable data, including manufacturing, service
industries, and administrative processes. Control charts are
one of the critical tools in SPC widely used in a wide range
of industries and processes, including manufacturing,
healthcare, service industries, and administrative processes
[1], [2], and [3]. A Cumulative Sum (CUSUM) [4] and an
Exponentially Weighted Moving Average (EWMA) [5]
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control charts are used in statistical process control (SPC) to
detect small and gradual shifts in the process output. It is
beneficial for detecting changes that occur slowly over time
rather than sudden or abrupt changes. It is handy for
detecting small to gradual shifts in the process mean or
average. Later, an Extended Exponential Weighted Moving
Average (Extended EWMA) control chart, which Naveed
[6], introduced is a statistical process control tool that uses
to monitor a process over time for any out-of-control signals.
The control chart is designed to detect small shifts in the
process mean or changes in the variability of the process.

Autocorrelation refers to the tendency of consecutive data
points in a time series to correlate. Control charts are
statistical tools used to monitor a process and detect when it
goes out of control. One approach to address autocorrelation
in a control chart is to use specialized methods considering
the correlation between consecutive data points. For
example, the autoregressive and moving average (ARMA)
control chart is a method that uses a combination of time-
series models and control charts to monitor a process with
autocorrelated data. Besides, the exogenous variables can
include any external factors that may influence the
dependent variable, such as economic indicators [7] and [8].
Examples of a time series model are autoregressive with
exogenous factors model (4RX(p,r)) and moving average
with exogenous factors model (MAX(q,7)).

The average run length (ARL) measures the expected
number of observations before a control chart signals a
change in the monitoring process. There are two
components: ARLy (in-control ARL) and ARL; (out-of-
control ARL). ARL, refers to the expected number of
observations or samples that will be collected before a
control chart signals a false alarm and should be as large as
possible, while ARL; represents the average number of
samples that will be collected before the control chart
signals that the process has changed and should be as small
as possible. Nowadays, there are various methods to
calculate ARL, such as Monte Carlo simulation, Markov
chain approach, numerical integration equation (NIE), and
ARL explicit formulas [9]. Roberts [5] proposed the
exponentially weighted moving average (EWMA) control
chart by using Monte Carlo simulation to estimate the 4ARL,
which helps detect the smaller as compared to the Shewhart
control chart. Champ and Rigdon [10] approximated ARL by
the Markov chain approach and numerical integral equation
using the midpoint rule for ARL on CUSUM and EWMA
control charts. Sunthornwat and Areepong [11] derived
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explicit expressions of the average run length (4RL). They
evaluated the results against the numerical integral equation
(NIE) method on the cumulative sum (CUSUM) control
chart for seasonal and non-seasonal moving average
processes with exogenous variables. In addition, the explicit
formula method is extremely useful for finding optimal
parameters and applied with the empirical data of a stock
price from the stock exchange of Thailand. The resulting
performance efficiency is compared with an exponentially
weighted moving average (EWMA) control chart.
Supharakonsakun et al. [12] investigated explicit formulas of
ARL on a modified exponentially weighted moving average
(EWMA) control chart for MA(1) process with exponential
white noise. The accuracy of the ARL obtained with the
modified EWMA control chart was compared to the
numerical integral equation method, and compare the
performance with the EWMA control chart. The results
show that the ARL obtained by the explicit formulas and the
numerical integral equation method are in close agreement.
Phanyaem [13] solved explicit formulas of average run
length (ARL) and developed numerical integration for the
ARL of the EWMA control chart on an autoregressive
integrated moving average, ARIMA(p,d,q) model. The
accuracy of the proposed formulas is presented by
comparing them to the numerical integration method. The
results show that in terms of computational time, the explicit
formula can reduce the computational time better than the
numerical integration. Recently, Kochaporn and Areepong
[14] proposed ARL explicit formulas on an Extended
EWMA control chart for a seasonal autoregressive process
of order p (SAR(p);) with exponential white noise. The
efficiency of the extended EWMA control chart was also
compared with the EWMA control chart utilizing the
explicit formulas technique for the ARL. Supharakonsakun
and Areepong [15] compared the performance of the
modified Exponentially Weighted Moving Average
(modified EWMA) and EWMA control charts via average
run lengths (ARLs) computed by using explicit formulas and
the numerically integrated equation (NIE) technique for
detecting shifts in the mean of an autoregressive process with
exogenous variables (ARX(p,r)) model. Kotchaporn et al. [16]
derived the explicit formulas for the ARL and compared them
to the numerical integral equation (NIE) method on a two-
sided extended EWMA control chart for the trend AR(p)
model with exponential white noise. Peerajit and Areepong
[17] proposed formulas for the average run length (4RL) on
the modified EWMA control chart for detecting small-to-
moderate shifts in the process mean of an autoregressive
fractionally integrated (ARFI(p, d)) process with exponential
white noise.

Therefore, it is interesting to study the explicit formula of
ARL when the data has a MAX(q,7) model on the Extended
EWMA control chart. The Fredholm-type integral equations
were applied to derive explicit formulas for ARLy and ARL;.
This paper is organized as follows. Control charts and their
properties are given in Section II. The derivation of ARL by
explicit formulas and the NIE method of the MAX(q,r)
process on the Extended EWMA control chart is proposed in
Section III. Next, the numerical results for the ARL of the
MAX(q,r) processes with exponential white noise by using

explicit formulas and the NIE method are presented in
Section IV. The efficiency performance between CUSUM,
EWMA, and Extended EWMA control charts are also
compared in Section IV. Furthermore, the applications of the
proposed explicit formulas with real data is reported in
Section V. Finally, conclusions are given in Section VI.

II. CONTROL CHARTS AND THEIR PROPERTIES
A. The CUSUM Control Chart
A Cumulative Sum control chart, or a CUSUM control
chart, is a statistical tool that monitors the process
performance over time. It is used to detect small shifts in the

process mean or variance. The CUSUM control chart can be
defined as

C, =max{0,C, ,+Y—a}; t=123, ... (1)

where C, is the CUSUM statistic, Y, is the sequence of
the MAX(q,r) process with exponential white noise, a is
usually called a reference value. C, =u is the initial value
when u €e, /'], where e and f are the upper control limit
(UCL) and lower control limit (LCL).

The stopping time of the two-sided CUSUM control chart
() is given by

r=inf{t>0:C, <eorC, > f}.

B. The Exponentially Weighted Moving Average Control
Chart (EWMA)

An Exponentially Weighted Moving Average (EWMA)
control chart is a statistical process control tool used to monitor
a process over time. It is similar to a traditional Shewhart control
chart but emphasizes recent data more by giving more weight to
the most recent observations. The EWMA control chart can be
expressed by the recursive equation

Z =(1-)Z_ +AY, t=12,.. @)

where Z, is the EWMA statistic, 4 is an exponential
smoothing parameter with 0 <A <1 and Zis the initial value
of EWMA statistics, Z, =u. The upper control limit (UCL)

and lower control limit (LCL) of EWMA control charts are
given by

/ A / A
UCL=d=u,+Lo,|——, LCL=b=u,—Lo,|—,
Ho t L4 ) Hy =4 )

where 4, is the target mean, o is the process standard
deviation, and L; is the suitable control limit width. The
stopping time of the two-sided EWMA control chart (z) is

givenby r=inf{t>0:Z, <bor Z, > d}.

C. The Extended Exponentially Weighted Moving
Average Control Chart (Extended EWMA)

The Extended EWMA control chart was presented by
Naveed et al. [6]. It is developed from the EWMA control
chart and effectively monitors and detects small changes in
the process mean. The Extended EWMA control chart can
be expressed by the recursive equation below.

E =(-A+A)E_ +AY, -AY . t=12.. (3
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where 4, and A, are exponential smoothing parameters
with (0< 4 <1)and (0< 4, <4 ), and the initial value is a
constant, £, =u . The upper control limit (UCL) and lower
control limit (LCL) of the Extended EWMA control chart
are given by

/112 +122 244, (0A-4,+4,)
200 —2) s 7o)’
A4 22 =202 (1= A + 1)
20— 2)~(h— 1)

>

UCL=1=pu, +L20'\/

LCL=h=,uO—L20'\/ >
where 1, is the target mean, o is the process standard
deviation, and L, is the suitable control limit width.
The stopping time of the two-sided Extended EWMA
control chart (r) is given by r=inf{t>0:Z <horZ >1},
where 7 is the stopping time.

III. EXPLICIT FORMULAS FOR THE AVERAGE RUN LENGTH
OF MAX PROCESS ON EXTENDED EWMA CONTROL CHART

A. The MAX(q, r) Process

A moving average with exogenous variables is a statistical
model that estimates the relationship between a dependent
variable and one or more independent variables. It is
commonly used in time series analysis to account for the
influence of external factors on the dependent variable and is
defined as

Y=p+e-0s,-0¢ —.-0s + Zﬁ,Xﬂ; t=123,. 4

where x4 is a constant, 8, is moving average coefficient

as a real-valued constant for i=1, 2,..,q, & are
independent and identically distributed (i.i.d.) observations

from exponential distribution (‘5} ~Exp(a)) , X

it

are

explanatory variables of Y. The initial value for the

s

MAX(q,r) process is ¢

t-1°

E gy

B. Explicit Formulas for the ARL of MAX(q,r) Process

From the recursion of Extended EWMA statistic in
Equation 2 as follows

E, :(1_41 +ﬂ’2)Et—l +AY, -4Y .

The Extended EWMA statistic for MAX(q,r) process can
be written as,

E =(1= A+ L)E. + Au+e,-Y 06+ Y fX,) -0,

Consider the in-control process, given LCL = h, UCL =
initial value E, =u and

h<E, <l
h<(1=2+ 2 ut A=Y 06, + Y B X,)+ e, Y, , <1
i=1 Jj=1

—(1- Y, y
h—( ﬂﬁjlz)u“lz = _lu+i0i‘c"r—i_zﬂfo’ <&
i=1 J=1

. I-(1=4 +24,)u+AY,_,
P

q r
_/u+zeigz—i _Zﬁijz'
i=1 =

The stopping time 7 =inf{t>0; E, <h or E, >/} then
the ARL is defined as,
ARL =M u)=E_(1).
We study the change-point time at =1, then we set

Y, =v and ¢, =e. Therefore, M(u) can be expressed by
Fredholm integral equation of the second kind as follows,

I-(1-4 +A)¢1 )WJQV*/”H;E*ig,SH 72‘[1/)(”
M@u)=1+ [ M(E) f(g)de,. ()
h=(1=2+ 24, Ju+2yv

q r
g a0+ Oe=) BiX
1 i=2 Jj=1

Let,
w=E :(1711+/12)u7/12"+j'1(;u7'9137201814+ZﬂjX,'1)+/1|gla
i=2 j=1
then d—wzﬂ.‘, de, =idw.
& A4

After changing the variable, Equation (5) can be rewritten as

M) = 1+%.[M(w)f(£l Y

1 w—(1=4 + 4, )u+ Ay
=l+— M -
ﬂil W ﬂq
q r
+Oe+ D 08— Y BX )dw. (6)
i=2 Jj=1

Since we determine &, ~ Exp(a), then f(x)= —e .
a

Thus,
| / —wH+(1=4 +4, Ju—Ayv ‘170'67201517#;/3//\,”
M@)=1+—[Mw)—e ’ dw
S Rl
| (A ey MTATEO T v
e “ J.M(w)ea;“' dw. (7)
al, [/
Let,
—6e— ) 06+ > X
(klﬁ/‘q)u—@vv” ; /Zﬂ:ﬂ / i
S R
h
Then,
D
M@,):HﬁN. ®)
ak
Consider,

1 -w 1 —-w
N = J’M(w)e“" dw = J[l +MN}2M‘ dw
n ) at,

q r
u=Ge=y 0_+y BX,
i=2 j=1

-w 1 (=4+4)w—2v -w
2 z zZ
=—-ate™ +—Ie “ “ -e™dw
" aﬂ'l h
g r
pu—Ge-) Ge_+) p,X;
R “hy 20 ; T S aw
:_aﬂ’l(eaﬂl _ea/”q)_i__ea/'»] a Ie aky aw

aﬂ“l h
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. ,
U-Be-Y 6 +Y 5K,
N h iy zz ; S S R VR 5

N=—a4(ﬂ—e7“)—(ﬂ1l_\/%) o “ (e @ —e “ )

Then, it can be written as

-/ —h
—all(ﬂl—ﬂz)(etﬂ' _ead.l)
6e-3 0543 5%,

AN = = —(4-%)! (4 =%)h
O A N

Substituting N in Equation (8), we have

(-A+d)e -1 —h
(h=A)e 4 (™ —e™) )
o= 06+ X

Apv = = ) —(h=A)! —(h=Ap)h

(ﬂq—/k)eﬂ' a +(e ah _, o )

Therefore, the explicit formulas for the ARL of the
MAX(q,r) process running on the Extended EWMA control
chart can be solved using Fredholm integral equations of the
second kind. When the process is in the in control state with
exponential parameter a=ay, the explicit solution ARLy can
be obtained as follows:

(=A+h)u -l =
ARL, =1 (A =Ae “ (e —e™h) (10)
(i P ;
ﬂ,(ﬂﬁk;g'g"' +;/j’x" Gl i
(/11 — ﬂ'z)e%;ﬂ @y + (e ayky —e A )

Additionally, when the process is in an out of control state
with an exponential parameter a=a;, the explicit solution
can be written as
(=A+d)u -1 —h

@k (efl!;w 760’111 )

4 =A)e
ﬂ,olgfiaq,, +ZB,X,\

Ay =) = ) —(h=4)!

(1)

ARL, =1~

(A=A

G=mges e e

Theorem 1: Banach’s Fixed-Point Theorem

Let 7: X — X represent a mapping of contractions with
the contraction constantg €[0,1), and let X represent a
whole metric space. There is a unique M()e X, and
then T(M (u)) = M (u), i.e., a unique fixed-point in X. Next
step, M,,M, is given to be a solution to Equation (5) for all
M M, eX, |T(M)-T(M,)|<g|M,-M,|as is proved
below.

Proof: Let T be a contraction mapping as specified in
Equation (5) for all M,,M, € u[h,[]

Thus, |[T(M,)-T(M,)|| < g|M, - M,||, VM .M, €ulh,I]

with g €[0,1) under the norm ||M ||w = sup |M (u)|, o)
uelh,l]
"T(A/ll)_T(A/[z)"30

u=bie=y O+ ) B X p

1 (=A+2)u=2pv i—2 j=1 1 v
L. e “ IM(w)eM' aw
= sup |24, b

uelh,l]

! b

[, = M, (w))e *“dw

u-e=y 06+ BX;

(=A+4 Ju=Apv = i e i

< sup HM -M H “ “ ~(—aﬂq)(ei’“‘ —eiTAA‘)

uelhl]

. ,
1=0e= 05+ B X
T D il S

:HM, —Msz sup le  “ “
uelh,l]

e @ —e “|< g|M, - M, .

Therefore, as confirmed by applying Banach's fixed-point
theorem, the unique solution exists.

C. The Numerical Integral Equation for the ARL of
MAX(q,r) Process

From the integral Equation (4)

w—(l—ﬂ1 +/12)u+/12v
7 .

The approximation for an integral is evaluated by the
quadrature rule as follows

J.f dx~2wkf ak

where ay is a point and wy is a weight that is determined
by the different rules.

M (u) :1+%jF(w)f(

Using the quadrature formula, we obtain

—(-A+Ah)a + 4y

M(a,)=1+
(@) A

ZWAF(anf(

y+6e+26£,, Zﬂ, 2)
A4S

The system of n linear equations is as follows;

M(a,):1+%iWkF(ak)f(M—wae+iag, ,—Zﬂ/xﬂ)
= 1 =
M(“Z):1+LiwlrF(alr)-/v(Miﬂ+gle+iaél Zﬂ/ )
A 4 =
M(aJ:H%iwf(aQ/(—ak ~(1=4 ;jﬁ)”"%”fwe,ﬁﬁa,glﬂ “Spx )

This system can be shown as

M_ =1 +R_L I -R =1

nxl nxl nxn —nx1% Tn nxn nxl1
or Mnxl = (ln _Rnxn )71 lnxl >
M(a])
M
where M, | ()| | _ diag(1,1,...,1)
M (a,)
1
1
and 1, =
1
Let R, , is a matrix and define the n to n" is an
element of the matrix R as follows
[R ]"ZWAI( (1 i‘;f”)a +//12v_/u+ele+zq:9i‘("lﬂ Z/B/ /I
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If (I-R)"
integral

M, =(I,,-R,, )71 1,.,. Finally, we substitute a, by u

exists the numerical approximation for the

equation is the term of the matrix,

nxl1

in M (ab), the approximation of numerical integral for a
function M (u) is,

(1= + 24, )u+ Ay

M(u):wfiwmwnf(“‘_ 7 —pt0e+ Y06, - X))

(12)

IV. NUMERICAL RESULTS
Here, the details of the simulation study to compare the
efficacies of the NIE method (M(u)) and the explicit
formulas (M (u)) for the ARL of a MAX(q,r) process on the
Extended EWMA control chart are provided.

The numerical procedure for calculating the ARL values
for the MAX process can be summarized as follows.

Step 1: Set the value of the parameters of the MAX(q,r)
model, the parameter of exponential white noise
(a,) for the in control process, and the
smoothing parameters; A;, A>.

Determine the initial value of the MAX model,
the initial value of the Extended EWMA statistic.
Select an acceptable in-control value of ARL,

Step 2:

Step 3:
and decide on the change parameter value
a, = (1+0)a, for an out-of-control state.

Step 4: Specify the lower control limit (%) equals 0.001

or 0.005 and compute the upper control limit (/)

that yields thedesired average run length for in

control process by Equations 7 and 10.

Compute the solution of 4RL; for shift sizes in

the monitoring process where a, =(1+9)e, by

Step 5:

Equation 8.
Compare the ARL of the explicit formula and the
NIE method.

Step 6:

This research uses criteria to compare the results obtained
by the explicit formula and the numerical integral equation
method by the absolute percentage difference (Diff%) and it
is defined as

Diff (%) |M(”)_M(”)|x100 (13)
1 =

T M

Moreover, the relative mean index (RMI) [19] is

employed to evaluate each control chart's effectiveness
under different A conditions. The RMI is calculated using
the formula shown below:

1 (ARLI. (r)— Min[ ARL, (s)]J (14)

RMI(r)=—

") ,Z:;‘ Min[ARLi (s)]
where ARL(r) is the ARL of the control chart for the shift

size in a row i and MinfARL;(s)] denotes the smallest ARL of

the three control charts compared to the shift size in a row i,

fori = 1, 2,..., n. The criterion is that the control chart with
the lowest RMI is the most effective for detecting changes.

Additionally, average extra quadratic loss (AEQL) is
another criterion that can be used to measure the
performance of a control chart [20]. The AEQL is calculated
in (15) as follows:

2

1%,
AEQL = Y. (87 x4RL(3))

=i

(15)

where ¢, is change level value at each level i, ARL(S)) is
the ARL value of the control chart for the amount of shift §,,
and A is the total numbers of shift levels from &5, to &, .

It has similar criteria to the RMI which the control chart with
the lowest AEQL is the most effective for detecting changes.

Table I provides the upper control limits of Extended
EWMA with MAX(qg,r) processes ARLy)=370 for the
simulation study. For example, if the parameter values were
setas 4 =0.5, 4, =0.34, the upper control limit would be
equal to 0.00553453 for MAX(1,1) for u=0.5 6, =0.1,
B, =0.5.In addition, Tables II and III compared the ARL
results from the explicit formula and NIE method for MAX
(2,1) and (3,2) models for different choices, &, respectively.

The results show that the ARL derived by the explicit
formula is close to the ARL obtained by the NIE method,
with the numerical estimate having an absolute percentage
difference of less than 0.000001%. According to Tables IV
and V, the comparison of the ARL for MAX(q,r) processes
on CUSUM, EWMA, and Extended EWMA control charts
are presented. The parameter values were set as ARLy=370,
4,=0.05, 0.1, 0.2; in-control parameter o, =1, and the
shift size varied as 0.001, 0.003, 0.005, 0.007, 0.01, 0.03,
0.05, 0.07, 0.1, 0.3, and 0.5. Equations (10) and (11) were
used to evaluate the ARL on Extended EWMA of the
MAX(q,r) processes. The ARL values derived from the
explicit formulas for the Extended EWMA control chart
were less than those for the CUSUM and EWMA control
charts for all shift sizes and all values of A,. In addition, as
A, increases, the result shows that the ARL; values
decreased accordingly. When the ARL values obtained from
each chart shown in Tables IV and V were used to find the
RMI and AEQL values to see the performance of each chart
shown in Table VI, it was found that the Extended EWMA
control chart had the best performance because it gave the
lowest RMI and AEQL at A, =0.94,. Therefore, it also can
be concluded that the Extended EWMA control chart
performs better than the EWMA and CUSUM control charts
in all situations.
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V. PRACTICAL APPLICATIONS WITH REAL DATA

We applied the explicit formulas for the ARL of a
MAX(q,r) process on CUSUM, EWMA, and Extended
EWMA control charts using 60 real-world data observations
of the price of crude palm oil in the south of Thailand. The
exogenous factor is the export value of vegetable oils and
fats from January 2018 to December 2022. The model has
an improvement pattern with two MAX processes, i.e.,
MAX(1,1) and MAX (2,1), so these two models should be
included in the model estimation, as shown in Table VII.
Consequently, the MAX(2,1) has the lowest RMSE and
Normalized Bayesian Information Criteria (Normalized
BIC) value, implying that the best model is the MAX(2,1), as
shown in Table VIII. Based on the final result of a
coefficient parameter in Table VII, we get the MAX(2,1)

coefficient parameters as follows: 6, =—1.323, 6, =—0.794,

and ﬁ =0.004. The in control parameter is equal to 9.6501,

as shown in Table IX. Through the parameter of this
prediction model, we get the equation for MAX (2,1) model
as follows:

Y =1.323¢,, +0.79%¢, , +0.004X,

According to Tables X and Fig. 1, it is evident from the
results that the ARL values for the explicit formulas method
on the Extended EWMA control chart were less than those
for the CUSUM and EWMA control charts for all shift sizes.
Additionally, we compared the detection of shifts in the
process means for the MAX(1,1) process with real data on
the two types of EWMA control charts only, the results for

which are shown in Fig 2 (a) and (b). The results showed
that the Extended EWMA control chart could detect a
change in the price of crude palm oil for the first time at the
first observation while the EWMA control chart has no
observations outside the control limit, can therefore be
concluded that the Extended EWMA control chart is more
efficient in detecting mean changes than the EWMA control
chart.

VI. CONCLUSIONS

We have definitively proved the formula for the ARL of
the MA(q,r) process with exponential white noise on the
Extended EWMA control chart and used simulated data to
validate it by comparing the differences. The results showed
that although the ARL was very similar between the explicit
formula and numerical integral equation methods, the
explicitly formulated method took much less computation
time. This research also compared performance with
CUSUM and EWMA control charts using ARL values. It
was found that the Extended EWMA control chart was more
effective than CUSUM and EWMA control charts in all
situations considering the lowest RMI and AEQL criteria. In
addition, the Extended EWMA control chart also has been
applied to the real data. For further study, the Extended
EWMA chart can be applied to other types of models such
as ARMAX, ARIMAX, ARFIMAX, Etc. or various
applications for real-world data. Besides, using explicit
formulas of ARL, the optimal value of the control chart
could be considered.

TABLE I
CONTROL LIMITS OF EXTENDED EWMA CONTROL CHART WITH MAX PROCESSES

Coefficients A =0.05
Models
4 0, 0, A S, 4,=034, 4,=054, 4,=0.74 2, =0.97,
MAX(1,1) 0.5 0.1 0.5 0.00553453 0.00266576 0.00161246 0.001225246
MAX(1,2) 0.5 0.1 0.5 1 0.00266637 0.00161262 0.001225296 0.0010828623
MAX(2,1) 0.5 0.1 0.2 0.5 0.00654056 0.003034762 0.00174808 0.0012751180
MAX(2,2) 0.5 0.1 0.2 0.5 1 0.00303559 0.001748285 0.00127518 0.0011012089
MAX(3,1) 0.5 0.1 0.2 0.3 0.5 0.00848442 0.00374718 0.00200985 0.0013713730
MAX(3.2) 0.5 0.1 0.2 0.3 0.5 1 0.00374850 0.00201015 0.00137146 0.0011366180
Coefficients A4, =0.01
Models
oo 0, 0, A S, 2,=034 24,2054 4,=0.74 2, =0.97,
MAX(1,1) 0.5 0.1 0.5 0.010083450 0.00433289 0.002225030 0.001450497
MAX(1,2) 0.5 0.1 0.5 1 0.004334665 0.00222543 0.001450607 0.001165725
MAX(2,1) 0.5 0.1 0.2 0.5 0.012102700 0.00507159 0.002496320 0.001550243
MAX(2,2) 0.5 0.1 0.2 0.5 1 0.005074080 0.00249685 0.001550380 0.001202418
MAX(3,1) 0.5 0.1 0.2 0.3 0.5 0.016008150 0.00649815 0.003020000 0.001742755
MAX(3,2) 0.5 0.1 0.2 0.3 0.5 1 0.006502250 0.00302081 0.001742959 0.001273237
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TABLE II
COMPARISON OF ARL USING EXPLICIT FORMULAS AND NIE METHODS WITH MAX (2,1) PROCESS FOR DIFFERENT CHOICES OF € WITH

u=L£=054=0.05 aNp £ =0.001

Coefficients Shift sizes (J)
A Methods
6, 6, I 0.001 0.003 0.005 0.01 0.03 0.05 0.1
Explicit 132.900 58.574 37.745 20.199 7.441 4.783 2.774
CPUEgxp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
0.1 0.1 0.002116418 NIE 132.900 58.574 37.745 20.199 7.441 4.783 2.774
CPUnE (2.574) (2.578) (2.625) (2.687) (2.797) (2.594) (2.640)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 129.608 56.695 36.462 19.487 7.182 4.623 2.691
CPUEgxp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.1 0.00191399433 NIE 129.608 56.695 36.462 19.487 7.182 4.623 2.691
CPUNIE (2.562) (2.563) (2.563 (2.610) (2.875) (2.734) (2.609)
0.5 Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rl Explicit 136.327 60.567 39.112 20.962 7.720 4.955 2.8364
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
0.2 0.2 0.0023636886 NIE 136.327 60.567 39.112 20.962 7.720 4.955 2.8364
CPUnE (2.593) (2.641) (3.640) (2.562) (2.656) (2.594) (2.672)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 129.609 56.695 36.462 19.487 7.182 4.623 2.691
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.2 0.0019139944 NIE 129.609 56.695 36.462 19.487 7.182 4.623 2.691
CPUnE (2.547) (2.687) (2.687) (2.657) (2.703) (2.641) (2.594)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 117.819 50.186 32.061 17.061 6.305 4.082 2.410
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
0.1 0.1 0.0014105282 NIE 117.819 50.186 32.061 17.061 6.305 4.082 2.410
CPUnE (2.625) (2.625) (2.782) (2.687) (2.609) (2.641) (2.516)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 115.177 48.777 31.117 16.544 6.120 3.968 2.351
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.1 0.0013361076 NIE 115.177 48.777 31.117 16.544 6.120 3.968 2.351
CPUne (2.547) (2.547) (2.609) (2.672) (2.641) (2.562) (2.547)
0.7k Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
’ Explicit 120.574 51.676 33.062 17.610 6.503 4.204 2.473
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
0.2 0.2 0.0015014283 NIE 120.574 51.676 33.062 17.610 6.503 4.204 2.473
CPUnE (2.750) (2.656) (2.578) (2.546) (2.546) (2.609) (2.718)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 115.177 48.777 31.117 16.544 6.120 3.968 2.351
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.2 0.0013361076 NIE 115.177 48.777 31.117 16.544 6.120 3.968 2.351
CPUnie (2.656) (2.703) (2.578) (2.687) (2.547) (2.578) (2.640)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 105.655 43.830 27.826 14.755 5.480 3.575 2.149
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
0.1 0.1 0.0011509855 NIE 105.655 43.830 27.826 14.755 5.480 3.575 2.149
CPUnE (2.687) (2.641) (2.641) (2.688) (2.672) (2.594) (2.546)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 103.507 42.744 27.108 14.367 5.342 3.490 2.106
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.1 0.0011236162 NIE 103.507 42.744 27.108 14.367 5.342 3.490 2.106
CPUnie (2.625) (2.594) (2.718) (2.688) (2.625) (2.594) (2.703)
0.9 Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
’ Explicit 107.891 44.972 28.582 15.165 5.626 3.664 2.195
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
0.2 0.2 0.0011844146 NIE 107.891 44.972 28.582 15.165 5.626 3.664 2.195
CPUnE (2.610) (2.625) (2.610) (2.656) (2.632) (2.656) (2.500)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 103.507 42.744 27.108 14.367 5.342 3.490 2.106
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.2 0.0011236162 NIE 103.507 42.744 27.108 14.367 5.342 3.490 2.106
CPUne (2.688) (2.718) (2.546) (2.719) (2.547) (2.516) (2.765)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NOTE: THE NUMERICAL RESULTS IN PARENTHESES ARE COMPUTATIONAL TIMES IN SECONDS
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TABLE III
COMPARISON OF ARL USING EXPLICIT FORMULAS AND NIE METHODS WITH MAX (3, 2) PROCESS
FOR DIFFERENT CHOICES OF @ WITH =1, 6,=0.1, §,=0.5, B, =1, 4, =0.05 AND /2 =0.001

Coefficients Shift sizes (J)
A Methods
6, 6, /i 0.001 0.003 0.005 0.01 0.03 0.05 0.1
Explicit 123.464 53.257 34.129 18.196 6.715 4.334 2.541
CPUEgxp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
0.2 0.3 0.001612618 NIE 123.464 53.257 34.129 18.196 6.715 4.334 2.541
CPUnE (2.797) (2.656) (2.610) (2.750) (2.610) (2.813) (2.719)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 115.186 48.780 31.119 16.545 6.120 3.968 2.351
CPUEgxp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.3 0.0013361862 NIE 115.186 48.780 31.119 16.545 6.120 3.968 2.351
CPUNIE (2.672) (2.828) (2.641) (2.656) (2.813) (2.735) (2.766)
0.5 Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rl Explicit 117.828 50.190 32.064 17.062 6.306 4.082 2.410
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.2 0.3 0.0014106272 NIE 117.828 50.190 32.064 17.062 6.306 4.082 2.410
CPUnE (2.828) (2.735) (2.640) (2.828) (2.594) (2.656) (2.813)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 110.230 46.179 29.384 15.600 5.781 3.760 2.244
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.3 0.0012253455 NIE 110.230 46.179 29.384 15.600 5.781 3.760 2.244
CPUnE (2.782) (2.735) (2.781) (2.656) (2.609) (2.797) (2.797)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 110.222 46.176 29.382 15.599 5.781 3.760 2.244
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
0.2 0.3 0.0012252953 NIE 110.222 46.176 29.382 15.599 5.781 3.760 2.244
CPUnE (2.797) (2.656) (2.765) (2.641) (2.812) (2.765) (2.750)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 103.514 42.746 27.110 14.368 5.342 3.490 2.106
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.3 0.0011236425 NIE 103.514 42.746 27.110 14.368 5.342 3.490 2.106
CPUnie (2.594) (2.656) (2.641) (2.625) (2.703) (2.641) (2.656)
0.7 Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
’ Explicit 105.660 43.832 27.827 14.756 5.480 3.575 2.149
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.2 0.3 0.001151018 NIE 105.660 43.832 27.827 14.756 5.480 3.575 2.149
CPUnE (2.641) (2.625) (2.797) (2.719) (2.765) (2.625) (2.781)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 99.462 40.725 25.779 13.650 5.088 3.334 2.026
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.3 0.00108287942 NIE 99.462 40.725 25.779 13.650 5.088 3.334 2.026
CPUnie (2.672) (2.828) (2.797) (2.796) (2.671) (2.750) (2.703)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 99.458 40.724 25.779 13.650 5.088 3.334 2.026
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
0.2 0.3 0.00108286215 NIE 99.458 40.724 25.779 13.650 5.088 3.334 2.026
CPUnE (2.641) (2.828) (2.593) (2.718) (2.860) (2.609) (2.735)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 93.942 38.027 24.012 12.702 4.752 3.129 1.921
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.3 0.0010454756 NIE 93.942 38.027 24.012 12.702 4.752 3.129 1.921
CPUnie (2.703) (2.891) (2.609) (2.828) (2.750) (2.766) (2.609)
0.9 Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
’ Explicit 95.709 38.885 24.573 13.003 4.858 3.194 1.954
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.2 0.3 0.00105554404 NIE 95.709 38.885 24.573 13.003 4.858 3.194 1.954
CPUnE (2.734) (2.796) (2.719) (2.812) (2.688) (2.641) (2.609)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Explicit 90.584 36.418 22.964 12.142 4.555 3.009 1.860
CPUExp (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
-0.3 0.00103048316 NIE 90.584 36.418 22.964 12.142 4.555 3.009 1.860
CPUne (2.765) (2.656) (2.750) (2.656) (2.703) (2.797) (2.734)
Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NOTE: THE NUMERICAL RESULTS IN PARENTHESES ARE COMPUTATIONAL TIMES IN SECONDS
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TABLE IV

COMPARISON OF THE ARL FOR MAX(2,1) PROCESS ON CUSUM EWMA AND EXTENDED EWMA CONTROL CHARTS

WITH ¢ =0.5, 5, =0.5, 6,=0.1, 6,=0.2 AND /1 =0.005

. CUSUM EWMA Extended EWMA
Ao Shift s A=4 7 =034, % =054, % =074 7 =097,
d=5.4632 /=0.0302153042 1=0.01055612235 1=0.00703883655 1=0.0057489738 1=0.005275226137
0.000 370.024 370.000 370.000 370.000 370.000 370.000
0.001 366.768 208.072 165.212 143.705 126.473 112.646
0.003 360.359 111.294 78.741 64.966 54.929 47.441
0.005 354.091 76.172 51.875 42.152 35.262 30.225
0.05 0.01 338.995 42.863 28.233 22.669 18.822 16.057
0.03 286.031 16.118 10.421 8.346 6.941 5.945
0.05 207.815 10.235 6.636 5.343 4.474 3.860
0.10 87.149 5.691 3.751 3.068 2.613 2.296
0.30 51.990 2.594 1.825 1.570 1.408 1.299
0.50 24.991 1.965 1.454 1.293 1.195 1.132
d=5.4632 /=0.0560817852 1=0.0161338856 1=0.00907974825 1=0.00649811564 /=0.00555045983
0.000 370.024 370.000 370.000 370.000 370.000 370.000
0.001 366.768 209.656 165.435 143.759 126.484 112.647
0.003 360.359 112.648 78.891 64.999 54.936 47.442
0.005 354.091 77.221 51.983 42.174 35.266 30.225
0.1 0.01 338.995 43.513 28.295 22.682 18.824 16.058
0.03 286.031 16.371 10.443 8.351 6.942 5.945
0.05 207.815 10.391 6.649 5.346 4.474 3.861
0.10 87.149 5.770 3.757 3.069 2.613 2.296
0.30 51.990 2.619 1.827 1.570 1.408 1.299
0.50 24.991 1.980 1.455 1.293 1.195 1.132
d=5.4632 /=0.109909125 1=0.0273550128 /=0.01316781392 1=0.0079969031 1=0.0061009498
0.000 370.024 370.000 370.000 370.000 370.000 370.000
0.001 366.768 212916 165.883 143.868 126.506 112.649
0.003 360.359 115.472 79.193 65.064 54.948 47.443
0.005 354.091 79.421 52.199 42.220 35.274 30.226
0.2 0.01 338.995 44.884 28.419 22.707 18.829 16.058
0.03 286.031 16.905 10.488 8.360 6.943 5.946
0.05 207.815 10.721 6.676 5.351 4475 3.861
0.10 87.149 5.938 3.770 3.071 2.614 2.296
0.30 51.990 2.674 1.831 1.571 1.408 1.299
0.50 24.991 2.012 1.457 1.293 1.195 1.132
TABLE V
COMPARISON OF THE ARL FOR MAX(3,2) PROCESS ON CUSUM EWMA AND EXTENDED EWMA CONTROL CHARTS
WITH 1 =0.5, 5,=0.5, f,=1, 6,=0.1, 6,=0.2, 6, =0.3 AND h=0.005
2 ) CUSUM EWMA Extended EWMA
! Shift —  _25 A=4, 1, =032, 1, =052, 2, =074 2,=0.92
d=2.5795 /=0.021829073 1=0.00872182357 1=0.00636641964 1=0.005502030337 1=0.005184488311
0.000 370.059 370.000 370.000 370.000 370.000 370.000
0.001 367.809 195.082 156.066 136.361 120.589 107.891
0.003 363.379 100.608 72.701 60.587 51.684 44.974
0.005 359.019 67.985 47.573 39.126 33.068 28.584
0.05 0.01 348.418 37.814 25.751 20.970 17.613 15.165
0.03 309.943 14.112 9.489 7.723 6.504 5.626
0.05 276.937 8.961 6.054 4.957 4.204 3.665
0.10 212.738 4.999 3.442 2.865 2.474 2.195
0.30 90.680 2314 1.708 1.497 1.360 1.266
0.50 48.565 1.776 1.379 1.248 1.167 1.114
d=2.5795 /=0.0389456436 1=0.0124533443 1=0.00773377102 1=0.006004136092 1=0.005368980016
0.000 370.059 370.000 370.000 370.000 370.000 370.000
0.001 367.809 196.113 156.211 136.396 120.596 107.892
0.003 363.379 101.425 72.794 60.608 51.688 44.974
0.005 359.019 68.601 47.639 39.140 33.071 28.584
0.1 0.01 348.418 38.186 25.789 20.978 17.615 15.166
0.03 309.943 14.254 9.502 7.725 6.505 5.627
0.05 276.937 9.047 6.062 4.958 4.205 3.665
0.10 212.738 5.043 3.446 2.866 2474 2.195
0.30 90.680 2.328 1.709 1.497 1.360 1.266
0.50 48.565 1.784 1.380 1.248 1.167 1.114
d=2.5795 /=0.0740817523 1=0.0199456802 1=0.01047127404 1=0.00700857396 1=0.00573797361
0.000 370.059 370.000 370.000 370.000 370.000 370.000
0.001 367.809 198.217 156.503 136.467 120.610 107.894
0.003 363.379 103.107 72.982 60.649 51.696 44.975
0.005 359.019 69.873 47.771 39.168 33.076 28.585
0.2 0.01 348.418 38.956 25.863 20.993 17.617 15.166
0.03 309.943 14.546 9.529 7.731 6.506 5.627
0.05 276.937 9.227 6.078 4.962 4.205 3.665
0.10 212.738 5.132 3.453 2.867 2.474 2.195
0.30 90.680 2.356 1.712 1.498 1.360 1.266
0.50 48.565 1.800 1.380 1.248 1.167 1.114
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TABLE VI
RMI AND AEQL VALUES FOR IN THE INDICATED CAPABILITY OF CONTROL CHARTS
MAX(2,1)
Control Charts 2 0.05 0.1 0.2
CUSUM a=15 RMI 26.2968 26.2968 26.2968
AEQL 1.4024 1.4024 1.4024
EWMA =1 RMI 1.3285 1.3580 1.4210
AEQL 0.0921 0.0930 0.0948
Extended EWMA 2 =034, RMI 0.5996 0.6022 0.6078
AEQL 0.0662 0.0663 0.0664
2 =054, RMI 0.3252 0.3257 0.3267
AEQOL 0.0578 0.0578 0.0578
2 =074 RMI 0.1360 0.1360 0.1362
AEQL 0.0525 0.0525 0.0525
22097 RMI 0.0000 0.0000 0.0000
AEQOL 0.0490 0.0490 0.0490
MAX(@3,2)
CUSUM a=15 RMI 423133 423133 423133
AEQL 2.6054 2.6054 2.6054
EWMA A=4 RMI 1.1744 1.1922 1.2289
AEQL 0.0827 0.0831 0.0840
Extended EWMA 2, =032, RMI 0.5466 0.5483 0.5518
AEQL 0.0623 0.0624 0.0624
2,205, RMI 0.2995 0.2998 0.3006
AEQL 0.0554 0.0554 0.0554
2, =074 RMI 0.1263 0.1264 0.1265
AEQL 0.0509 0.0509 0.0509
2,=092, RMI 0.0000 0.0000 0.0000
AEQL 0.0479 0.0479 0.0479

NOTE: THE RESULTS ARE BOLD BECAUSE THEY HAVE THE LOWEST OF RMI AND AEQL VALUES.

MAX ESTIMATE FOR CRUDE PALM OIL PRICE WITH AN E)(Pog;A \i{;i: gF VEGETABLE OILS AND FATS AS THE EXOGENOUS VARIABLE
Data Variable Coefficient Std. Error t Sig.
MAX(1,1) MA(1) () -0.793 0.089 -8.928 0.000
Export value (8 ) 0.008 0.001 6.242 0.000
MAX(2,1) MA(1) (6,) -1.323 0.088 -14.959 0.000
MAQ) (6,) -0.794 0.093 -8.505 0.000
Export value (£ ) 0.004 0.001 3.691 0.001
TABLE VIII
MODEL FIT
Process RMSE Normalized BIC
MAX(L,1) 14.376 5.468
MAX(2,1) 10.950 4.991
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TABLE IX
EXPONENTIAL WHITE NOISE OF RESIDUAL USING THE KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST
Process Mean () Kolmogorov-Smirnov Z Sig.
MAX(2,1) 9.6501 1.265 0.081
TABLE X

COMPARISON OF THE ARL FOR MAX(2,1) PROCESS ON CUSUM EWMA AND EXTENDED EWMA CONTROL CHARTS
wiTH 0, = —1.323,0, =-0.794, B, =0.004, o, =9.6501 AND [/ = 0.005

A Shif CUSUM EWMA Extended EWMA
1t
a=15 A=24 2, =034, 2, =054 2,=0.74 2, =094
d=33.4673 =0.399902065 1=0.340189535 1=0.305835312 1=0.275209009 1=0.247858507
0.00 370.009 370.000 370.000 370.000 370.000 370.000
0.00 369.764 347.203 345.376 344.224 343.112 342.030
0.00 369.275 309.135 304.829 302.153 299.597 297.137
0.00 368.787 278.612 272.827 269.272 265.904 262.689
0.05 0.0l 367.571 223.520 216.177 211.753 207.624 203.735
0.03 362.759 125.094 118.384 114.480 110.924 107.651
0.05 358.029 87.072 81.731 78.663 75.894 73.367
0.10 346.556 49.786 46.374 44.437 42.703 41.133
0.30 305.212 18.941 17.552 16.771 16.075 15.448
0.50 270.145 12.043 11.159 10.662 10.220 9.821
RMI 6.7190 0.1361 0.0828 0.0528 0.0252 0.0000
AEQL 11.0825 0.6196 0.5751 0.5500 0.5276 0.5075
d=33.4673 /=0.8116347 1=0.683720595 1=0.61142703 1=0.547703473 1=0.491328735
0.00 370.009 370.000 370.000 370.000 370.000 370.000
0.00 369.764 347.861 345.778 344.487 343.256 342.074
0.00 369.275 310.701 305.769 302.761 299.927 297.236
0.00 368.787 280.736 274.082 270.077 266.338 262.819
0.1 0.01 367.571 226.260 217.754 212.748 208.152 203.892
0.03 362.759 127.668 119.797 115.346 111.373 107.781
0.05 358.029 89.140 82.845 79.340 76.241 73.466
0.10 346.556 51.114 47.077 44.859 42918 41.194
0.30 305.212 19.474 17.830 16.936 16.158 15.472
0.50 270.145 12.376 11.332 10.764 10.271 9.836
RMI 6.7190 0.1551 0.0930 0.0583 0.0276 0.0000
AEQL 11.0825 0.6365 0.5839 0.5552 0.5303 0.5082
d=33.4673 2169179475 1=1.397543292 1=1.23749819 1=1.09970567 1=0.98011674
0.00 370.009 370.000 370.000 370.000 370.000 370.000
0.00 369.764 349.193 346.588 345.015 343.547 342.162
0.00 369.275 313.909 307.675 303.988 300.593 297.437
0.00 368.787 285.121 276.641 271.706 267.213 263.081
0.2 0.01 367.571 232.000 220.994 214.772 209.220 204.206
0.03 362.759 133.203 122.742 117.126 112.284 108.042
0.05 358.029 93.631 85.181 80.733 76.947 73.667
0.10 346.556 54.029 48.558 45.732 43.356 41317
0.30 305.212 20.653 18.418 17.279 16.328 15519
0.50 270.145 13.112 11.697 10.977 10.376 9.865
RMI 6.7190 0.1964 0.1135 0.0698 0.0324 0.0000
AEQL 11.0825 0.6738 0.6026 0.5661 0.5357 0.5097
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