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Abstract—In this paper, we propose two kinds of single-
species models with swapping migration and Allee effect. We
aim to discuss how the Allee effect and swapping migration
influence the above models’ dynamical behaviours. The exis-
tence and stability of equilibria are addressed under weak Allee
effect and strong Allee effect, respectively. Also we investigate
the occurrence of saddle-node bifurcation which doesn’t exist in
the single-species Logistic model. The corresponding dynamical
behaviors are richer and more interesting than those in the
traditional logistic model with dispersal. We find that both Allee
effect and dispersal, especially the capacity of respective patches
can make the species “unstable”.

Index Terms—Allee effect, swapping migration, extinction,
stability, bifurcation.

I. INTRODUCTION

A large number of researchers have investigated the dy-
namical behaviors for single-species model with logistic
growth. The asymptotic stability, permanence, extinction and
existence of positive periodic solutions have been considered
during the last decades. Also, since the population can spread
over the homogeneous/heterogeneous patchy landscape, there
may be interaction between the patches. Migration between
different patches in ecosystem has become a focus of intense
research in order to keep the ecological balance ([1] -[4]). An
increasing number of scholars have extensively studied the
Logistic model with dispersal and many interesting results
have been obtained ([5] -[9]). For example, in [6], the authors
analyzed source-sink systems with asymmetric dispersal
between two patches. By using dynamical system theory
and applying the graphical analysis method, the authors
provided complete analysis on the system and demonstrated
a mechanism by which the dispersal asymmetry can lead to
either an increased total size of the species in two patches,
a decreased total size with persistence in the patches, or
even extinction in both patches. Subsequently, in [9], the
authors investigated a predator-prey system in which the
predator moves between two patches. One patch is a source,
where the predator and prey can persist, while the other
is a sink where the predator cannot survive. The authors
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showed whether or not the dispersal is beneficial to the
predator’s total abundance at equilibrium. We notice that for
the following system:

dx1

dt
= −x1 +D2x2 −D1x1,

dx2

dt
= x2(1− x2) +D1x1 −D2x2,

(1)

it is not difficult to obtain the corresponding asymptotic
stability as follows.

Theorem A System (1) has a trial equilibrium which is
a saddle and the unique positive equilibrium is globally
asymptotically stable.

From the above, the species are always permanent due
to the logistic growth for the species in the second patch.
The migration term is usually expressed by linear function
of densities. Nevertheless, as was pointed out in [3] and [4],
a kind of nonlinear migration, i.e., the swapping migration is
more reasonable. In other words, the species can move from
one patch to the other only when there are empty cells in the
destination. The authors in [3] and [4] took into account the
capacities of patches when considering the metapopulation
dynamic model on two patches. Let Ēi(t) = Si−Xi(t) be the
density of empty cell in patch i at time t, where Si, Xi denote
the the total cell number and the densities of the species in
patch i at time t, respectively. As a result, the migration
term in patch i can be presented as ĒjXi− ĒiXj which is a
nonlinear function of densities, where i ̸= j and i, j = 1, 2.
It is found that the population dynamics are largely affected
by nonlinear migration. However, we notice that the species
in each patch in [3] and [4] decay exponentially.

Actually, due to complication in finding mates, predation,
inbreeding depression, environment conditioning, etc., Allee
[10] pointed out that Allee effect may lead to lower birth rates
and higher death rates. Allee effects are mainly classified
into two categories: strong and weak. Recently, an increasing
number of scholars have investigated the ecological model
with Allee effect. For example, Conway and Smoller [11],
Bazykin [12] discussed the following single-species model
with strong Allee effect:

dx
dt

=
(
1− x

K

)
(x−m)x, (2)

where 0 < m < K. K is the carrying capacity and m reflects
the Allee effect. Also, a population with weak Allee effect
can be stated as

dx
dt

= x(1− x)
x

β + x
. (3)

In the case of strong Allee effect, there exists a threshold
population level and the species become extinct when the
Allee effect constant is below this threshold. The other case
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of weak Allee effect, the growth rate may reduce and remain
positive at lower population density. For details on Allee
effect, one can refer to [13]-[21]. In [16], the authors pro-
posed a single species logistic model with feedback control
and additive Allee effect in the growth of species. The result
shows that not only the Allee effect but also feedback control
can make the system become “unstable”. In [17], the authors
considered a regime switching model for species subject to
additive Allee effect. They concluded that Allee effect may
lead to the extinction of species.

However, it comes to our attention that, to this day, still
no scholars have investigated the ecological model with
Allee effect and migration. Motivated by the above, one
can naturally propose the following interesting question:
How about the dynamic behaviours when the species suffer
from Allee effect and swapping migration? Is the species
still permanent? Is the Allee effect and dispersal possible
to make the species become extinct? Different with the
logistic growth in [6] and [9], in this paper, we will discuss
the following two systems with Allee effect and swapping
migration:

dx1

dt
= −x1 +D(Ē1x2 − Ē2x1),

dx2

dt
= x2(S2 − x2)(x2 −m) +D(Ē2x1 − Ē1x2),

(4)
and

dx1

dt
= −x1 +D(Ē1x2 − Ē2x1),

dx2

dt
= x2(S2 − x2)

x2

β + x2
+D(Ē2x1 − Ē1x2).

(5)

In the above, Ēi = Si − xi and Si, xi denote the total cell
number and the densities of the species in patch i at time t,
respectively. And D is the dispersal constant.

The main contributions of this paper are summarized as
follows. (i) The existence and stability for the systems (4)
and (5) under strong Allee effect and weak Allee effect
are comprehensively discussed, respectively. On one hand,
System (4) and (5) in this paper may have one or two positive
equilibria which is different from that in system (1). Besides,
the unique positive equilibrium in system (1) is globally
asymptotically stable which means that the species is always
permanent. However, for system (4) and (5), in order to
decide whether the positive equilibrium is stable or not, one
should compare the size of S1 , S2 and the Allee constant
m,β. In other words, dispersal, the capacity of different
patches and Allee effect can make the corresponding system
“unstable”. (ii) The bifurcation phenomenon under different
Allee effect cases is also presented. Comparing with (1), sys-
tem (4) and (5) are experiencing more interesting dynamics
such as the saddle-node bifurcation when incorporating the
Allee effect and dispersal. (iii) Our results will be useful
to understand populations on heterogeneous landscapes and
then to take possible measures in order to protect desired
species.

The rest of this paper is as follows. In section 2 and 3,
we investigate the dynamic behaviours for system (4) and
(5), respectively. We also illuminate the main results. The
effect of dispersal and Allee effect for the above two kinds of

systems are both exhibited in Section 4. Finally, we present
a conclusion to end up this paper in Section 5.

II. DYNAMICS OF SYSTEM (4)

It is easy to see that system (4) always admits the trivial
equilibrium E0(0, 0). In the sequel, we will illustrate the
existence of the positive equilibria. We consider the positive
solution of the following equation:

x2
2 − (S2 +m)x2 +mS2 +

DS1

1 +DS2
= 0. (6)

Denote the discriminant of equation (6) by

△(m) = (S2 −m)2 − 4DS1

1 +DS2
.

Let

m∗ = S2 − 2

√
DS1

1 +DS2

be the unique root of △(m) = 0. If m < m∗, then
△(m) > 0. So it infers that (4) has two positive equilibria,
i.e., E1(x11, x12), E2(x21, x22), where

x1i =
DS1

1 +DS2
x2i, i = 1, 2,

x21 =
S2 +m−

√
△(m)

2
, x22 =

S2 +m+
√
△(m)

2
.

On the other hand, if m > m∗, then △(m) < 0. So (4) has
no positive equilibria. Also, system (4) has a unique positive
equilibrium E3(x13, x23) when m = m∗ which implies that
△(m) = 0, where

x23 =
S2 +m

2
, x13 =

DS1

1 +DS2
x23.

A statement concerning the existence of the positive equilib-
ria of system (4) is listed below.

Theorem 2.1.
(i) If 4DS1 < (1 +DS2)S

2
2 and

(a) if m < m∗, then system (4) has two positive equilibria
E1(x11, x12) and E2(x21, x22),

(b) if m = m∗, then system (4) has a unique positive
equilibrium E3(x13, x23),

(c) if m > m∗, then system (4) has no positive equilibria.
(ii) If 4DS1 ≥ (1+DS2)S

2
2 , then system (4) has no positive

equilibria.

Consequently, we will discuss the stability of the above
equilibria. Let’s start with the stability of the trivial equilib-
rium E0. In fact, the characteristic equation of JE0 is

λ2+(1+DS2+DS1+mS2)λ+(1+DS2)mS2+DS1 = 0.

Thus E0(0, 0) is a hyperbolic stable node.
Secondly, for the two positive equilibria Ei(x1i, x2i), i =

1, 2, the corresponding Jacobian matrix is

JEi =

[
−1−DS2 DS1

DS2 −3x2
2i + 2(S2 +m)x2i −mS2 −DS1

]
.

(7)
Thus the determinant and the trace of JEi

are denoted by

Det[JEi
] = (1 +DS2)(2x2i − (S2 +m))x2i,

T r[JEi
] = −2x2

2i + (S2 +m)x2i − 1−DS2 −
D2S1S2

1 +DS2
.
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Furthermore, we have

Det[JE1
] = −(1+DS2)x21

√
△(m) < 0,

Det[JE2 ] = (1+DS2)x22

√
△(m) > 0.

Therefore, E1 is always a saddle. At the same time,

Tr[JE2 ] < −x22(2x22 − (S2 +m)) = −x22

√
△(m) < 0.

Thus E2 is a hyperbolic stable node.
In short, the stability of the equilibria can be concluded

as follows.

Theorem 2.2. For system (4), E0(0, 0) is always a hyperbolic
stable node. If 4DS1 < (1 +DS2)S

2
2 and

(a) if m < m∗, then E1 is a saddle and E2 is a hyperbolic
stable node,
(b) if m = m∗, then E3 is an attracting saddle-node.

Proof. Here we only need to prove that E3 is an attracting
saddle-node when m = m∗. Let X1 = x − x13, X2 =
x2 − x23, then we transform system (4) to the following
system:

Ẋ1 = −(1 +DS2)X1 +DS1X2,

Ẋ2 = DS2X1 −
D2S1S2

1 +DS2
DS1X2 −

S2 +m

2
X2

2

−X3
2 + P (X2),

(8)

where P (X2) is the power serry with term Xi
2 satisfying

i ≥ 4. The Jacobian matrix of the above system at E3 is

JE3
=

 −(1 +DS2) DS1

DS2 −D2S1S2

1 +DS2

 . (9)

So the eigenvalues of JE3 are

λ1 = 0, λ2 = −
(
1 +DS2 +

D2S1S2

1 +DS2

)
.

Let(
X1

X2

)
=

(
DS1 1 +DS2

1 +DS2 −DS2

)(
Y1

Y2

)
, (10)

system (8) can be rewritten as Ẏ1 = c20Y
2
1 + c11Y1Y2 + c02Y

2
2 + P1(Y1, Y2),

Ẏ2 = d01Y2 + d20Y
2
1 + d11Y1Y2 + d02Y

2
2 + P2(Y1, Y2).

(11)
Here P1(Y1, Y2), P2(Y1, Y2) denote the power series with
term Y i

1Y
j
2 satisfying i+ j ≥ 3 and

c20 = − (S2 +m)(1 +D1)D
2
2

2((1 +D1)2 +D1D2)
,

c11 = − (S2 +m)(1 +D1)
2D2

(1 +D1)2 +D1D2
,

c02 = − (S2 +m)(1 +D1)
3

2((1 +D1)2 +D1D2)
,

d01 = − (1 +D1)
2 +D1D2

1 +D1
,

d20 =
(S2 +m)D2

2

2((1 +D1)2 +D1D2))
,

d11 =
(S2 +m)(1 +D1)D2

(1 +D1)2 +D1D2
,

d02 =
(S2 +m)(1 +D1)

2

2((1 +D1)2 +D1D2)
.

Also, D1 = DS2, D2 = DS1.

Let a new time variable τ = − (1 +D1)
2 +D1D2

1 +D1
t, we

obtain{
Ẏ1 = e20Y

2
1 + e11Y1Y2 + e02Y

2
2 +Q1(Y1, Y2),

Ẏ2 = Y2 + f20Y
2
1 + f11Y1Y2 + f02Y

2
2 +Q2(Y1, Y2).

(12)
Note that we still retain t to denote τ for notational simplic-
ity. And

eij = − (1 +D1)cij
(1 +D1)2 +D1D2

,

cij , dij(i + j = 2) are the same as those in (11). When

m = m∗, e20 can be simplified as e20 =
S2 +m

2
> 0.

Considering the new time variable τ and using the Theorem
7.1 in [22], E3 is an attracting saddle-node. This completes
the proof.

From the above, we notice that the species will be extinct
when (1 +DS2)S

2
2 ≤ 4DS1. In other words, dispersal may

lead to extinction when the capacity of the second patch is
low. Moreover, when (1+DS2)S

2
2 > 4DS1, the species may

be permanent or extinct. Whether the species can survive or
not depends on the size of m. The smaller m is, the more
likely the population is permanent.

Next, we can prove the existence of saddle-node bifurca-
tion when m = mSN , where

mSN = 1− 2

√
DS1

1 +DS2
.

Theorem 2.3. System (4) undergoes the saddle-node bifur-
cation when m = mSN .

Proof. We will use Sotomayor’s theorem in [23] to verify
the transversality condition and obtain the existence of the
saddle-node bifurcation when m = mSN . The Jacobian
matrix at E3 is given by (9). Since Det[JE3

] = 0, JE3
has

a unique zero eigenvalue denoted by λ1.
For the matrices J(E3) and J(E3)

T , V and W are the
eigenvectors corresponding to the eigenvalue λ1 as follows.

V =

(
V1

V2

)
=

(
DS1

1 +DS2

)
,

W =

(
W1

W2

)
=

(
DS2

1 +DS2

)
.

Moreover,

Fm(E3;mSN ) =


∂F1

∂m
∂F2

∂m


(E3;mSN )

=

 0

S2
2 −m2

4

,

where
F1 = −x1 +D(Ē1x2 − Ē2x1)

and

F2 = x2(S2 − x2)(x2 −m) +D(Ē2x1 − Ē1x2).
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It’s not difficult to obtain that V and W satisfy the transver-
sality condition

WTFm(E3;mSN ) =
(1 +D2S2

2)(S
2
2 −m2)

4
̸= 0,

WT [D2F (E3;mSN )(V, V )] = −(1 +DS2)
2(S2 +m) ̸= 0.

The above implies the existence of the saddle-node bifur-
cation occurs at E3 when m = mSN . Thus the proof is
completed.

The corresponding illustrative phase portrait in Theorem
2.1-2.3 is shown in Figure 1. Here we choose D = 0.5, S1 =
0.6, S2 = 1, m = 0.1 in case (a), D = 0.8, S1 =
0.16, S2 = 1, m = 0.2 in case (b) and D = 0.5, S1 =
0.6, S2 = 1, m = 0.4 in case (c). In case (a), system (4) has
a trivial equilibrium E0 and two positive equilibria E1, E2.
Also, E0 and E2 is stable nodes while E1 is a saddle. In
case (b), system (4) has a trivial equilibrium E0 which is a
stable node and a unique positive equilibrium E3 which is
an attracting saddle-node. In case (c), system (4) has a trivial
equilibrium E0 which is globally asymptotically stable.

III. DYNAMICS OF SYSTEM (5)

System (5) always has the trivial equilibrium Ē0(0, 0).
The existence of the positive equilibria is determined by the
following equation:

(1 +DS2)x
2
2 − ((1 +DS2)S2 −DS1)x2 + βDS1 = 0.

(13)
It shows that the above equation has no positive equilibrium
when (1 +DS2)S2 ≤ DS1. In the sequel, we will analyze
the case (1 +DS2)S2 > DS1. It is easy to obtain that the
discriminant of the above equation is

△(β) = ((1 +DS2)S2 −DS1)
2 − 4βDS1(1 +DS2).

Let

β∗ =
((1 +DS2)S2 −DS1)

2

4DS1(1 +DS2)

which satisfies that △(β∗) = 0. In this case, system (5) has
a unique equilibrium Ē3(x̄13, x̄23) with

x̄23 =
(1 +DS2)S2 −DS1

2(1 +DS2)
, x̄13 =

DS1

1 +DS2
x̄23.

If β < β∗, then △(β) > 0. So system (5) has two positive
equilibria, i.e., Ē1(x̄11, x̄21), Ē2(x̄12, x̄22) with

x̄1i =
DS1

1 +DS2
x̄2i, i = 1, 2,

x̄21 =
(1 +DS2)S2 −DS1 −

√
△(β)

2(1 +DS2)

and

x̄22 =
(1 +DS2)S2 −DS1 +

√
△(β)

2(1 +DS2)
.

Whereas, if β > β∗, then △(β) < 0. So system (5) has
no positive equilibria. Thus, we can get the resluts regarding
the existence of the positive equilibria as follows.

Theorem 3.1.
(i) If DS1 < (1 +DS2)S2 and

(a) if β < β∗, then system (5) has two distinct positive
equilibria Ē1(x̄11, x̄21) and Ē2(x̄12, x̄22),

x
1
 ’ = − x

1
 + 0.3 x
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 − 0.5 x

1
                    

x
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 (1 − x

2
) (x
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2
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Fig. 1. The dynamical behaviors of system (4) when 4DS1 < (1 +
DS2)S2

2 .
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(b) if β = β∗, then system (5) has a unique positive
equilibrium Ē3(x̄13, x̄23),

(c) if β > β∗, then system (5) has no positive equilibria.
(ii) If DS1 ≥ (1 +DS2)S2, then system (5) has no positive
equilibria.

Next, we will further investigate the stability of the above
equilibria. For the trivial equilibrium Ē0, the character equa-
tion of JĒ0

is

λ2 + (1 +DS1 +DS2)λ+DS1 = 0.

So Ē0(0, 0) is a hyperbolic stable node.
For the two positive equilibria Ēi(x̄1i, x̄2i), i = 1, 2, the

Jacobian matrix is

JĒi
=

 −1−DS2 DS1

DS2
△1

(1 +DS2)(β + x̄2i)

 , (14)

where

△1 = βDS1(2−DS2)−(S2(1+DS2)−DS1+D2S1S2)x2i.

The determinant and the trace of the Jacobian matrix are
given by

Det[JĒi
] =

1

β + x2i
[(S2(1+DS2)−DS1)x2i−2βDS1],

T r[JĒi
] = − △2

(1 +DS2)(β + x2i)
,

where

△2 = ((1 +D1)
2 + S2(1 +D1)−DS1 +D2S1S2)x2i

+β((1 +DS2)
2 − 2DS1 +D2S1S2).

So we have

Det[JĒ1
] =

√
△(β)

2(1 +DS2)(β + x21)
(
√
△(β)

− (S2(1 +DS2)−DS1)) < 0,

Det[JĒ2
] =

√
△(β)

2(1 +DS2)(β + x22)
(
√
△(β)

+ (S2(1 +DS2)−DS1)) > 0.

Thus E1 is always a saddle. Notice that

Tr[JĒ2
] ≤ − △3

4(1 +DS2)2DS1(β + x22)
,

where

△3 = ((1 +DS2)
2 +D2S1S2)S2(1 +DS2)

+D3S2S
2
1 +DS1(1 +DS2)

2 > 0.

We have Tr[JĒ2
] < 0 when β < β∗. So E2 is always a

stable node. Thus, the stability of the equilibria is shown as
follows.

Theorem 3.2. Ē0(0, 0) is always a hyperbolic stable node.
If DS1 < (1 +DS2)S2 and
(1) if β < β∗, then Ē1 is a saddle and E2 is a hyperbolic
stable node,
(2) if β = β∗, then Ē3 is an attracting saddle-node.

Proof. We will prove that Ē3 is an attracting saddle-node
when β = β∗. Let X1 = x − x̄13, X2 = x2 − x̄23, we
transform system (5) to the following system:

Ẋ1 = −(1 +DS2)X1 +DS1X2,

Ẋ2 = DS2X1 −
D2S1S2

1 +DS2
X2 + a0X

2
2 + P̄ (X2),

(15)

where P̄ (X2) denotes the power sery with term Xi
2 satis-

fying i ≥ 3 and

a0 =
2

(βS2 + x̄23)2
(β − (3β + S2 −

DS1

1 +DS2
)x̄23) < 0.

The Jacobian matrix of system (15) at Ē3 is the same as that
in Theorem 2.2. The eigenvalues of JĒ3

are

λ1 = 0, λ2 = −D2S1S2

1 +DS2
.

Under the same linear transformation as (10), system (15)
can be rewritten as Ẏ1 = c̄20Y

2
1 + c̄11Y1Y2 + c̄02Y

2
2 + P̄1(Y1, Y2),

Ẏ2 = d̄01Y2 + d̄02Y
2
1 + d̄11Y1Y2 + d̄20Y

2
2 + P̄2(Y1, Y2),

(16)
where P̄1(Y1, Y2), P̄2(Y1, Y2) denote the power series with
term Y i

1Y
j
2 satisfying i+ j ≥ 3 and

c̄20 =
a0(1 +D1)

3

(1 +D1)2 +D1D2
, c̄02 =

a0(1 +D1)D
2
1

(1 +D1)2 +D1D2
,

c̄11 = − 2a0D1(1 +D1)
2

(1 +D1)2 +D1D2
, d̄01 = − (1 +D1)

2 +D1D2

1 +D1
,

d̄20 = − a0D2(1 +D1)
2

(1 +D1)2 +D1D2
, d̄02 = − a0D1D2

(1 +D1)2 +D1D2
,

d̄11 =
2a0D1D2(1 +D1)

(1 +D1)2 +D1D2
. And D1 = DS2, D2 = DS1.

Introducing a new time variable

τ = − (1 +D1)
2 +D1D2

1 +D1
t,

we have the following system: Ẏ1 = ē20Y
2
1 + ē11Y1Y2 + ē02Y

2
2 + Q̄1(Y1, Y2),

Ẏ2 = Y2 + f̄02Y
2
1 + f̄11Y1Y2 + f̄20Y

2
2 + Q̄2(Y1, Y2),

(17)
where

ēij = − (1 +D1)c̄ij
(1 +D1)2 +D1D2

,

and c̄ij , d̄ij(i + j = 2) are the same as those in (16).
Moreover, ē20 can be simplified as

ē20 = − a0(1 +D1)
4

((1 +D1)2 +D1D2)2
> 0.

Thus we can deduce that Ē3 is an attracting saddle-node.
This completes the proof.

For system (3), the unique positive equilibrium x = 1
is globally asymptotically stable, which indicates that the
species is always permanent. Nevertheless, when dispersal is
incorporated, extinction may appear. That is, dispersal is not
beneficial for the species in the second patch. In detail, for
system (5), the species will extinguish if (1 + DS2)S2 ≥
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DS1. On the contrary, if (1 +DS2)S2 < DS1, the species
may survive. Lower β is propitious to the persistence of the
population.

Similar to Section 2, we will prove the existence of the
saddle-node bifurcation for system (5).

Theorem 3.3. System (5) undergoes the saddle-node bifur-
cation when β = βSN .

Proof. The Jacobian matrix at Ē3 is given by

JĒ3
=

 −(1 +DS2) DS1

DS2 −D2S1S2

1 +DS2

 .

Obviously Det[JĒ3
] = 0, then JĒ3

has a unique zero
eigenvalue, named λ1.

One can find that V and W in Theorem 2.3 are two
eigenvectors corresponding to the eigenvalue λ1 for the
matrices J(Ē3) and J(Ē3)

T . Moreover,

Fβ(Ē3;βSN ) =

 0

−4D3S2
1S2

(S2(1+DS2)+DS1)(S2(1+DS2)−DS1)

.

Here
F1 = −x1 +D(Ē1x2 − Ē2x1)

and

F2 = x2(S2 − x2)
x2

x2 + β
+D(Ē2x1 − Ē1x2).

We can derive that

WTFβ(E3;βSN ) =
−4D3S2(1+DS2)S

2
1

(S2(1+DS2)+DS1)(S2(1+DS2)−DS1)
̸= 0,

WT [D2F (E3;βSN )(V, V )] = a0(1 +DS2)
2 ̸= 0,

where a0 is the same as that in Theorem 3.2. The above
deduces that the saddle-node bifurcation occurs at Ē3 when
β = βSN . Thus we complete the proof.

The corresponding illustrative phase portrait in Theorem
3.1-3.3 is shown in Figure 2. Here we take D = 0.9, S1 =
5

9
, S2 = 1, β = 0.5 in case (a), D = 0.4, S1 = 1.75, S2 =

1, β = 0.125 in case (b) and D = 0.9, S1 =
5

9
, S2 =

1, β = 0.5 in case (c). In case (a), system (5) has three
equilibria, i.e., Ē0, Ē1, Ē2. And Ē0, Ē2 is stable nodes
while Ē1 is a saddle. In case (b), system (5) has a stable
node Ē0 and an attracting saddle-node Ē3. For system (5),
the species in both patches will die out which is presented
in case (c).

IV. EFFECT OF ALLEE EFFECT AND DISPERSAL FOR
SYSTEM (4) AND (5)

In this section, by analyzing the possible positive equilib-
rium, we focus on the impact of Allee effect and dispersal on
the total population abundances. For system (4) and (5), we
denote the total population abundances by T1 and T2, where

T1 = x12 + x22 =
(1 +D(S1 + S2))(S2 +m+

√
∆(m))

2(1 +DS2)
,

T2 = x̄12 + x̄22

=
(1 +D(S1 + S2))((1 +DS2)S2 −DS1) +

√
∆(β)

2(1 +DS2)2
.
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Fig. 2. The Dynamical behaviours of system (5) when (1 + DS2)S2 >
DS1.
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A. Effect of Allee effect

Through complicated analysis, we have

dT1

dm
=

1 +DS1 +DS2

2(1 +DS2)2
(1− S2 −m√

∆(m)
) < 0

and
dT2

dβ
= − (1 +DS1 +DS2)DS1

(1 +DS2)
√
∆(β)

< 0.

So we can conclude that not only weak Allee effect but also
strong Allee effect can lead to lower total population density
than without Allee effect.

B. Effect of dispersal

Due to the complexity of direct analyzing the impact of
dispersal on the total population T1 and T2, for system (4)
and (5), we mainly pay attention to the special case m = m∗

and β = β∗, respectively.
For system (4), one can calculate that

dT1

dD
=

S1

2(1 +DS2)2
√

DS1
1+DS2

[−3
DS1

1 +DS2
+2S2

√
DS1

1 +DS2
−1].

(18)
Let

u =

√
DS1

1 +DS2
, f(u) = −3u2+2S2u−1, ∆ = 4(S2

2−3).

Next, we can examine the impact of dispersal on the species
concretely. If S2 ≤

√
3, then ∆ ≤ 0. Thus dispersal can lead

to lower total population density. If S2 >
√
3, then ∆ > 0.

So the equation f(u) = 0 exists two positive solutions, i.e.,

u1 =
S2 −

√
S2
2 − 3

3
and u2 =

S2 +
√

S2
2 − 3

3
.

Furthermore, if√
DS1

1 +DS2
< u1 or

√
DS1

1 +DS2
> u2,

one has
dT1

dD
< 0. In addition, if

u1 <

√
DS1

1 +DS2
< u2,

it results in
dT1

dD
> 0. Thus, the corresponding analysis is

gained as follows.

Theorem 4.1. For system (4), assume that S1 and S2 are
fixed.
(1) Let S1 ≤ S3

2 . We have

lim
D→+∞

T1 =
(S1 + S2)(S

3
2 − S1)

S1(S2
2 +

√
S1S2)

and
(a) if S2 ≤

√
3, then T1 decreases when D increases.,

(b) if S2 >
√
3, then there exist D0 and D1 > D0 such that

T1 reaches the minimum at D0 and reaches the maximum at
D1, where D0, D1 satisfy that√

D0S1

1 +D0S2
=

S2 −
√
S2
2 − 3

3

and √
D1S1

1 +D1S2
=

S2 +
√

S2
2 − 3

3
.
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Fig. 3. Impact of dispersal for system (4)
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(2) Let S1 > S3
2 and D2 =

S2
2

S1 − S3
2

,

(a) if S2 ≤
√
3, then T1 decreases when D increases, and

if D ≥ D2, then T1 = 0,
(b) if S2 >

√
3, then T1 reaches the minimum at D0 and

reaches the maximum at D1, where D0, D1 is the same as
those in case (1). And if D ≥ D2, then T1 = 0.

In terms of system (4), as shown in Figure 3, the influence
of dispersal on the possible total population indensity is
depicted. We choose S1 = 0.5, S2 = 1 (case (a)), S1 =
0.5, S2 = 1 (case (b), (c)), S1 = 0.5, S2 = 1 (case (d))
and S1 = 0.5, S2 = 1 (case (e), (f)). In case (a) and
(c), one can find that if S2 ≤

√
3, T1 decreases when D

increases. The underlying reason is that the intrinsic growth
rate of the first patch is negative. When the capacity of the
species in the second patch is low, i.e., S2 ≤

√
3, dispersal

may lead to lower total population intensity (see case (a))
and even go to extinction in both patches (see case (d)).
However, when the capacity of the species in the second
patch is high, i.e., S2 >

√
3, the total population density T1 is

nonmonotonically decreasing. Actually, T1 has two extreme
points , i.e., D0 and D1(> D0). If 0 < D < D0 or D > D1,
T1 decreases when D increases. If D0 < D < D1, T1 is
increasing when D is increasing (see case (b), (c), (e), (f)).
Especially, when D is sufficiently large, the total population
intensity T1 remains at a steady positive level (see case (c))
or go to extinction in both patches (see case (f)). That is to
say, dispersal may lead to the extinction or the survival of
the species in both patches.

For system (5), notice that

dT2

dD
=

S1[S2 − 1 + (S2(S2 − 1)− 2S1)D]

2(1 +DS2)3
.

Firstly, if 0 < S2 ≤ 1, dispersal is unfavorable due to
dT2

dD
<

0. Namely, T2 is always less than T2(0) which is the total
population density without dispersal. Secondly, if S2 > 1

and S2(S2 − 1) ≥ 2S1, we recieve that
dT2

dD
> 0 and then

T2 > T2(0). Thirdly, if 0 < S2(S2 − 1) < 2S1, it follows
that

dT2

dD
> 0 for D ∈

(
0,

S2 − 1

2S1 − S2(S2 − 1)

)
and

dT2

dD
< 0 for D ∈

( S2 − 1

2S1 − S2(S2 − 1)
,+∞

)
.

It implies that T2 reaches its maximum at

D̄0 =
S2 − 1

2S1 − S2(S2 − 1)
.

Denote T̄2 =
(S1 + S2)(S

2
2 − S1)

2S2
2

, D̄1 =
S2

S1 − S2
2

. To

sum up, we can arrive at the effect of dispersal as follows.

Theorem 4.2. For system (5), assume that S1 and S2 are
fixed.
(1) Let S2 ≤ 1, then T2 decreases when D increases. If
S2
2 ≥ S1, then lim

D→+∞
T2 = T̄2. If S2

2 < S1, then T2 = 0

when D ≥ D̄1.
(2) Let S2 > 1 and S2(S2 − 1) ≥ 2S1 (it follows that S2

2 >
S1), then T2 increases when D increases. Also, lim

D→+∞
T2 =

T̄2.
(3) Let S2 > 1 and S2(S2 − 1) < 2S1, then T2 reaches the
maximum at D̄0. Furthermore, if S2

2 ≥ S1, lim
D→+∞

T2 = T̄2.

If S2
2 < S1, then T2 = 0 when D > D̄1.

In Figure 4, by numerical simulation, we show how
dispersal affects the possible total population intensity for
system (5). Similarly, we select S1 = 0.2, S2 = 0.5 (case
(a)), S1 = 0.5, S2 = 0.5 (case(b)), S1 = 0.5, S2 = 2 (case
(c)), S1 = 2, S2 = 2 (case (d)) and S1 = 5, S2 = 2 (case
(e)). In case (a) and (b), one can find that T2 decreases
when D increases. When the capacity of the species in
the second patch is low, i.e., S2 ≤ 1, dispersal may lead
to lower total population intensity (see case (a)) or go to
extinction in both patches (see case (b)). However, when
the capacity of the species in the second patch is high, i.e.,
S2 > 1, S2(S2 − 1) ≥ 2S1 the total population density T2

increases when D increases(see case (c)). Also, if S2 > 1
and S2(S2 − 1) < 2S1, T2 achieve the maximum at D̄1. In
fact, if 0 < D < D̄1, T2 is increasing when D is increasing.
If D > D̄1, T2 is decreasing when D is increasing (see case
(d), (e)). Particularly, when D is sufficiently large, the total
population intensity T2 remains at a steady positive level (see
case (d)) and even go to extinction in both patches (see case
(e)). This indicates that dispersal may result in the extinction
or the survival of the species in both patches.

Through the above analysis, for the single-species system
with strong Allee effect, dispersal is always beneficial under
certain condition. Also, under certain condition, interme-
diate migration intensity is favorable, but extremely small
or extremely large intensity is unfavorable. All the above
results will be useful in understanding population survival
and planning possible ways to maintain the diversity of the
population.

V. CONCLUSION

In this paper, we have investigated how Allee effect and
swapping migration have an influence on the single-species
models. We have achieved the dynamic behaviours under
strong Allee effect and weak Allee effect, respectively. The
above two models always have a trivial equilibrium which
is locally asymptotically stable. For the case of strong Allee
effect, only when 4DS1 < S2

2(1 +DS2), m < m∗, system
(4) has two positive equilibrium. For the case of weak
Allee effect, the condition for the existence of two positive
equilibrium is DS1 < S2(1 + DS2), β < β∗. One of the
above two positive equilibrium is local asymptotically stable
which shows that the species can be permanent. In other
words, for system (4), if the capacity constants S1 and S2

satisfy 4DS1 ≥ S2
2(1+DS2) or 4DS1 < S2

2(1+DS2), m >
m∗, the trivial equilibrium is globally asymptotically stable
which implies that the species in both patches are extinct.
However, for system (5), when DS1 ≥ S2(1 + DS2) or
DS1 < S2(1 + DS2), β > β∗, the species become
extinguished. From the above, we conclude that whether the
population lasts or not is strictly determined by the capacity
constants S1, S2, the dispersal intensity and the Allee effect
constant m, β. In detail, the bigger the capacity constant in
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Fig. 4. Impact of dispersal for system (5)

the second patch and the smaller the Allee effect constant
m, β, the less likely the species be extinct.

In brief, the obtained results, i.e., Theorem 2.1-2.3 and
Theorem 3.1-3.3 have revealed that both Allee effect and
the capacity have a vital effect on the dynamical behaviours
such as the species’ permanence, extinction and stability.
Especially, notice that S2(1 +DS2) ≤ DS1 implies S2

2(1 +
DS2) ≤ 4DS1 for sufficiently small capacity S2. The above
shows that the species under strong Allee effect is more
possible to become extinct than the case under weak Allee
effect. As a result, in order to retain the permanence of the
population, we should try to adjust the Allee effect and dis-
persal parameters simultaneously. In addition, it follows from
Theorem 4.1 and Theorem 4.2 that when the capacity of the
second patch is low, i.e., S2 ≤

√
3 (strong Allee effect case)

or S2 ≤ 1 (weak Allee effect case), dispersal is not beneficial
to the population survival, or even lead to the extinction in
both patches. The potential reason is that the species in patch
1 is exponentially decaying. For the strong Allee effect case,
if S2 ≥

√
3, the possible total population size T1 firstly

decreases, then increases and lastly decreases when dispersal
intensity D increases. For the weak Allee effect case, if
S2 > 1 and S2(S2 − 1) ≥ 2S1, the possible total population
size T2 increases when dispersal intensity D increases and
the species can survive in stationary state. For the weak Allee
effect case, if S2 > 1 and S2(S2−1) < 2S1, when dispersal
intensity D increases, the possible total population size T2

firstly increases and then decreases. Finally, the species can
stabilize in stationary state. Based on the above discussion,
we come to a conclusion that dispersal under weak Allee
effect is more advantageous to the species survival than that
under strong Allee effect.
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