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Traftic Accident Risk Prediction for Multi-factor
Spatio-temporal Networks
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Abstraci—Predicting the risk of ftraffic accidents has
significant implications for emergency response and urban
planning, and is critical in implementing intelligent
transportation systems. However, there are some challenges in
effectively capturing spatiotemporal correlations in accident-
prone regions. Firstly, existing models focus on capturing spatio-
temporal features of coarse-grained regions, and need to
dynamically integrate predictions for fine-grained regions with
those for coarse-grained regions. In addition to weather
conditions, environmental factors such as points of interest (POI)
and road attributes often influence traffic accidents. Therefore,
it is crucial to extract the semantic relation bhetween external
factors and accident risk. Thirdly, since traffic accidents are
rare events, the training of the model may encounter the
problem of zero inflation. To tackle the difficulties above, we
present a model for predicting traffic accident risk named Risk-
CCNMAGU. Specifically, we design Spatial-channel CNNs and
Multi-factor-Attention GCNs to catch spatial features in regions
of different granularity. We also implement a dynamic fusion of
coarse-grained and fine-grained regions through weighted
aggregation. Meanwhile, we construct static, dynamic, and
knowledge graph representation views to extract correlations
between multiple external factors. We introduce the GRU-
Attention module to capture nonlinear temporal correlations to
learn temporal features. Additionally, we employ a sample-
weighted MSE loss function to alleviate the data sparsity
problem. Also, we add introduce to the raw data before feeding
it into the model. Finally, we conducted comprehensive
experiments on NYC and Chicago datasets, showing that Risk-
CCNMAGU outperforms existing models on RMSE, MAE,
MAF, and recall metrics.

Index Terms—Traffic accident risk, Fine-grained regions,
Multi-factor, Zero inflation problem.

1. INTRODUCTION

ITH the rising urban demand, the prominence of traffic

accidents has also increased. According to statistics
from the World Health Organization [1], nearly 1.35 million
individuals succumb to traffic accidents yearly. Consequently,
there is a growing importance in accurately predicting the risk
of traffic accidents. Such predictive models can alert
drivers in advance, allowing them to avoid areas or periods

Manuscript received June 28, 2023; revised September 9, 2023. This
work was supported in part by the National Natural Science Foundation of
China (No. 71961016, 72161024), "Double-First Class" Major Research
Programs, Educational Department of Gansu Province (No. GSSYLXM-04).

Qingrong Wang is a professor at School of Electronic and Information
Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China. (e-mail:
wangqro03@163. com).

Kai Zhang is a postgraduate student at School of Electronic and
Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070,
China. (Corresponding author, e-mail: zhangk925@163.com).

Changfeng Zhu is a professor at School of Traffic and Transportation,
Lanzhou Jiaotong University, Lanzhou 730070, China. (e-mail:
cfzhu003@163. com)

Xiaohong Chen is a postgraduate student at School of Electronic and
Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070,
China. (e-mail: 2937325132(@qq.com).

with a higher likelihood of accidents and enabling them to
take proactive measures to mitigate the risk of collisions.
This area of research has gamered significant interest
among scholars.

Traffic accident risk prediction utilizes forecasting future
accident risks based on historical spatiotemporal data.
Compared to traditional time series prediction problems,
traffic accident risk prediction faces challenges such as
spatiotemporal heterogeneity and complex nonlinear re-
lationships, making it difficult to establish high-performance
prediction models. Initial research predominantly employed
methodologies like machine learning to predict traffic
accident risks [2][3][4]. However, these approaches fell short
in accounting for both spatial and temporal correlations,
leading to a decrease in the accuracy of predictions.

The recent advances in deep learning have significantly
improved the prediction of spatio-temporal data problems
[5][6]. Relevant scholars have applied Recurrent Neural
Networks (RINNs) and their variants, such as Long Short-
term Memory Networks (LSTMs) [7] and Gated Recurrent
Units (GRUs), to model the temporal dimension. Meanwhile,
Convolutional Neural Networks (CNNs) [8] have found wide
applications in capturing spatial correlations. However,
forecasting traffic collision probabilities is frequently cha-
racterized as a graph modeling problem. Consequently, to
gain a more comprehensive understanding of the nonlinear
spatial correlations within traffic accident data, some scholars
have introduced GCNs [2][10] to investigate the non-
FEuclidean correlation of road networks and use attention
mechanisms to capture dynamic features [11], thus obtaining
better  predictive  performance. However, external
environmental factors, including weather, distribution of
points of interest (POI), holidays, and road properties, often
influence traffic accidents [12]. These features are necessary
for the predictive accuracy of these models to be satisfactory.

In general, there 1s a direct or indirect relationship between
external environmental factors and traffic data, which can
impact the traffic circumstances within a city. For example,
related scholars [13][14][15] have effectively improved
traffic forecasting by incorporating a limited set of external
factors. However, these studies ignored the impact of
correlations between external factors and traffic conditions.
Therefore, some researchers [16][17] collected factors such
as traffic volume, meteorological conditions, road
infrastructure, POIs, and historical traffic accident
information to investigate the prediction of traffic accident
risks. Huang et al [18] formulated a deep dynamic
amalgamation network framework to examine the influence
of intricate temporal associations and external variables on
traffic accidents. Similarly, Liu et al. [19] employed a multi-
task learning framework to integrate external variables to
characterize traffic accidents. Although these prior studies
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effectively integrated external factors with traffic accident
data to enhance prediction accuracy, the key to further
improving prediction performance lies in the adept fusion of
diverse, multi-source heterogeneous data, particularly
concerning accident-prone regions.

The development of Knowledge Graphs (KGs) has pro-
vided a broader way of looking at these issues. KGs exhibit
remarkable efficacy in handling graph structures and
facilitating information retrieval, particularly excelling in
scenarios featuring complex topological arrangements.
Therefore, researchers increasingly apply KGs in social
networks [20] and intelligent recommendations [21].
Meanwhile, related scholars also use KGs in transportation,
such as Xu et al. [22], who added temporal information to the
knowledge base model, which performs well in analyzing and
detecting emergency events. Muppalla [23] et al. pioneered
constructing a KG utilizing dynamic image features, giving
rise to the Image-based Traffic Sensing Knowledge Graph
Model (ITSKG), significantly advancing traffic event
detection. In order to construct semantic relationships
between various environmental factors and traffic data, Zhu
et al. [24] designed a KF-Cell to fuse the KGs embedding of
environmental features and traffic flow features into a spatio-
temporal graph convolutional network, which better captures
the semantic relationships between spatio-temporal features
and traffic information. Wang et al. [25] introduced a traffic
flow forecasting approach called KGR-STGNN, which
harnesses the complete information from external variables
by KGs. Given this backdrop, a pressing need exists to
explore the potential of KGs in capturing intricate
correlations among multiple external factors and traffic
information. This path shows substantial potential for
improving the anticipation of traffic accident probability.

Furthermore, traffic collisions tend to happen in various
city regions, each exhibiting distinct spatiotemporal attributes.
For example, scholars [26][27] have effectively harnessed the
segmentation of the study area into grids to capture the spatio-
temporal relationships. Others [28] used the "global
interaction + node query" approach to capture dynamic
spatio-temporal correlations. Moreover, some studies [29][30]
focus on the disparate distribution of traffic conditions across
different spatial domains, aiming to capture spatio-temporal
features. However, these methods tend to make predictions in
a coarse-grained area, ignoring the impact of local vital
features. Hence, there is an immediate requirement for a
forecasting approach that incorporates fine-grained regional
and multi-source heterogeneous spatio-temporal data.

This study addresses the challenges above and proposes a
model called Risk-CCNMAGU, which adopts a multi-view
and multi-factor approach and aims to forecast the likelihood
of traffic accidents in a unit area over some time in the future.
Specifically, the model divides the road network into unit
areas of different granularity by the latitude and longitude of
the city. We should consider the effects of static factors (e.g.,
POI, road attributes, etc.) and dynamic factors (e.g., weather,
traffic flow, etc.) for different granularity areas. In the coarse-
grained regions, We use the Spatial-channel Convolutional
Neural Networks (Spatial-channel CNNs) to train the weights
of various feature channels (e.g., weather, POI distribution.)
to capture the space-time attributes of the region. Meanwhile,
we access the correlation of static and dynamic features in the

fine-grained region to construct the static, dynamic, and
knowledge graph representation views. Then, we employ
multi-factor-CCNs models to learn multi-view feature
representations.

We introduce a GRU-Attention module dedicated to
temporal feature acquisition to learn the non-linear time
correlation. Meanwhile, this article employs a weighted MSE
cost function, alleviating data sparsity issues. Finally, we
dynamically fuse coarse-grained and fine-grained regions to
understand the non-linear, evolving spatio-temporal
correlations.

II.  PRELIMINARIES AND PROBLEM DEFINITION

This section will introduce the close correlation between
spatiotemporal attributes and traffic accident risks, such as
time, weather conditions, road attributes, and other external
environmental factors. We will construct multi-views through
these external factors and define the problem studied in this
article.

A. Spatio-temporal Features

The presence of complex topologies and traffic flows in
urban networks is a potential factor for traffic accidents.
Additionally, severe weather conditions, like heavy rain and
snow, significantly reduce roadway capacity and visibility,
increasing the risk of road accidents. Therefore, the
occurrence of traffic collision incidents is influenced by
various static and dynamic factors with strong spatial and
temporal correlations.

A.1 Static Features

Static factors significantly influence traffic accidents,
including road attributes, POI, and time attributes [31]. For
example, a high traffic volume during peak commuting hours,
especially on shorter road segments, can lead to widespread
vehicle congestion. Additionally, congestion dissipates at a
slow rate, making it more likely for traffic accidents to occur.

Fig.1 Temporal features.

Fig. 1 on the left shows that traffic incidents happen more
frequently on weekdays during peak commuting hours,
whereas the probability decreases during the evening or late
at night. Moreover, the data in Fig. 1 on the right indicates an
upsurge in traffic accident risk from May to July, which could
be attributed to increased summer tourism or distracted
driving due to higher temperatures. Hence, predicting traffic
accident risk displays conspicuous temporal features that
exhibit periodicity and trends.

A.2 Dynamic Features
In the spatial dimension, there are interactions between
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traffic conditions on different roads, e.g., a congested road
section may affect the traffic conditions on its neighboring
roads, and the interactions are significantly dynamic.
Furthermore, changes in weather conditions may also
significantly impact road traffic conditions, thereby elevating
the likelihood of accidents, as shown in Fig. 2.
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B. Multi-view Construction

In the urban road network, semantic relationships exist
between different unit areas, e.g., they may have similar road
features, POI distributions, time characteristics, etc. As a
result, these areas have similar traffic accident risk trends. In
order to grasp the intricate spatiotemporal associations from
diverse viewpoints, this article proposes a method to
construct a static, dynamic, and knowledge graph
representation view. Fially, it predicts the traffic accident
risk in fine-grained areas through these views.

B. 1 Static and Dynamic Views

We hold that the distribution of POIs, road grades, road
types, and other factors within a region significantly impact

the traffic conditions of that area. Hence, these features can
reflect the semantic correlation of traffic accident risk [32].

This article considers each fine-grained area as a node in a
graphical network, and the nodes contain the features in the
unit region. Therefore, this section calculates the similarity
between two nodes based on the Jensen-Shannon (JS), which
calculates the similarity of road features, POI distribution,
and accident risk. As an example, the procedure for
calculating road characteristics is as follows.

Resgyy—1— JS(R:(2),R;(x)) (D
K E ZRf ($)
[P RG  rE
SRR = 5| + @

= n 2R (z)
2 RE@)log gron’ pecy

Where K is the dimension of road characteristics, B;(z) and
B,;(z) denote the road segment characteristics of node i and

node j, respectively. Similarly, we calculate the similarity of
the POl distribution Respy s simultaneously and use the

risk of regions to calculate Resgy 5. In addition, we will
select the 1. most similar regions to obtain the adjacency
matrix A € (A,y, Ay, Ag.) of the topology map, which is set

to 1 when there is an edge between two nodes; otherwise, it
1s set to 0. Therefore, we will construct the static view

G,(V,E, A) and the dynamic view G3(V,E, A).

B.2 KG View Construction

KG, a semantic-based network structure, comprises
multiple triplets (head entity, relationship, tail entity) and
represents the semantic relationships between entities [33].
Fig. 3 shows that external environmental factors, such as
weather conditions, peak periods, POI distribution, and road
class, easily affect traffic accident risk. In particular, the risk
of traffic accidents is higher under unfavorable conditions
such as low wisibility, peak hours, and superstores.
Meanwhile, KG can integrate multiple heterogeneous data
sources while retaining the original information. Hence,
using KG for knowledge representation is more appropriate
for forecasting the likelihood of traffic accidents.

In order to understand the knowledge structure and
semantical context between accident segments and
environmental features, this article employs a KG model KR-
EAR [34] based on entity-attribute-relation. It divides KG
relationships into attribute triplets and relation triplets. We
use the triplet form of Gy =(R.,5.,Yw) to denote the

accident section, its attributes, and their relationships, where
R, represents the relation triplet between section v; and

section v;, 8, represents the attribute triplet between the
accident section and corresponding attribute, and ¥,

represents the correlation between various attributes.
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Since the KR-EAR model can represent the connections
between entities and their attributes, this model can be used
to acquire embedding vectors X, for entities, relationships,
and properties. Given the low-dimensional vector X, the
objective function can be formulated to maximize the
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combined probability of relationship and attribute triplets,
effectively capturing the correlations between accident roads
and attributes and between attributes. The objective function
is defined as follows.

]___[ P((vhrs)vj)lxs) *

(m,r o) A,

1__[ P((v:y 81,04 v.)lX)

(B0, )c 8

P(Ressnlxs) =

In Eq., the relationship triple (&, ) and the attribute triple (8,)
are mutually independent. P((v,,r,,v,)|X,) represents the
probability of the relationship triple of the accident road,
given the embedded vector X.. P{(v,,0;,a;-.)|X,) is the
conditional probability of attribute triple (‘U,-,ak,a,_w) .

Moreover, TransR [35] generates the conditional
probabilities for the relation triplet and the attribute triplet,
which will be defined as follows.

Where g(*) denotes the energy function portraying the
correlation between road segments ¢, and v;. M, stands for
the mapping matrix, which is respongible for projecting
entities from the entity space to the relationship space.
Additionally, & representsthe bias value, while L1 and L2
correspond to the L1norm and L2 norm, respectively.

We know that relationships and attributes will exhibit
different characteristics. Therefore, we utilize a classification

model to process data effectively to capture the relationship
between entities and attributes.

P((0,00, 00 )| X) — — P (B(¥,08,0:-0))

E mcp(h(vn“hai w.))

By Cop,

h(ﬂ,—,ﬂ;, “‘k—w) ==

Where h{-) denotes the scoring function. f{-} is anonlinear

— [ floW, +b)— Vel L2 T b (7)

function that projects the entity embeddings into the attribute
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space via 1-NN and then computes the correlation between
the transformed embeddings and the cormresponding attribute
value embeddings. In addition, V; 1s the embedding vector of
attribute value a,_,,, and b, and b, are the bias values.

Traffic accidents in a particular region are often strongly
correlated with various attributes of that region. Therefore, it
1s necessary to consider the correlation between these
attributes.

Suppose S(att) = {(Ui: aiﬂ &'k—v‘) I(”i) &k:&k—m) = Sa} are

other attributes of ¥; except (¥,,ax,a:—,). The conditional
probability of the property triplet is defined as.

€Xp (z(vi!ak:akfms(att)))
Y exp ({0 di-n, S (att)))

Gy—v, S0y

P((viya1,00 ) |8 (att)) =

(8)

2 (Vs Gy G, S (alt) ) ox
P (a1, 81—0) | By 8n-0)) (Aa - 4) @

22

(va8,6: ) S(att)

Where z(+) is the scoring function between the measured
attributes. (A, - A;) denotes the dot product of attributes A,
and A; . P((ax,8¢_.)|(8z,8x_.)) notes the correlation
between attribute values (ag,a4—s) and (&, 85—y -

In summary, we construct the traffic knowledge graph
representation Gy, =(X.,S(att),A) given the traffic

network topology matrix A, the knowledge graph embedding
vector X,, and other attributes S (a#t).

C. Problem Definition

Definition 1. Cell region. In order to collect spatio-
temporal features that impact the incidence of road accidents,
we divide the irregular urban road network into @ x< b grid
regions, thereby constructing equally sized unit areas. Each
coarse-grained region comprises multiple fine-grained
regions, and a coarse-grained region contains a/e X b/e grid

regions, with each coarse-grained unit area containing ¢ X ¢
fine-grained regions, where ¢ is the coarsening factor.

Definition 2. Accident risks. This article sets the risk level
of traffic accidents to 1, 2, and 3 based on the number of
casualties [36]. For example, an area with three minor or one
fatal accident has a risk level of 3.

Definition 3. Traffic accident data. In order to
comprehensively leverage both Near-term and extended-term
temporal dependencies, we employ a multi-scale approach
informed by the findings of our time attribute analyses in
Section A.1. The model's inputs comprise traffic accident data
for the same periods in the previous k periods, the previous p
weeks, and the previous np weeks, t=k+p+np.

Definition 4. Multiple views. We are inspired by the
GSNet model, and in this article, we capture the nonlinear
spatio-temporal correlation by constructing different views,
specifically static, dynamic, and knowledge graph
representation views. Among them, the static view 1s
constructed based on the distribution of POIs and road

characteristics, Gup=(V,Ey,A,) and G, =(V,E,., A,,) .
The dynamic view then constructs Qg =(V, Bz, Ag,) from

the traffic accident risk values. Finally, the knowledge graph
view constructs G, =(X.,8(att),As,) by fusing traffic
flow, weather conditions, and POL. In the above view, V, E,
and A denote the nodes, edges, and graph adjacency matrix.
See Section B for specific construction information.

This article's traffic accident risk problem is a nonlinear
model f. With inputs including a traffic network topology

matrix A, amulti-view feature Xg of the previous T periods,
and a traffic knowledge graph Gy,. our objective is to forecast

the probability of road incidents during the upcoming T+1
periods.

y:f(A:XGvag) (10)

IIT.  MODEL CONSTRUCTION

Fig.4 shows the model framework proposed in this article.
In order to make the traffic data more in line with reality, we
add noise to the raw data in coarse-grained and fine-grained
regions. The model primarily comprises three central com-
ponents: spatial feature module, temporal feature module,
and multi-region spatiotemporal {usion module. Firstly, in the
spatial feature module, the grid data with added noise is used
as input in the coarse-grained region, and Spatial-channel
CNNs are used to capture complex spatial correlations. After
convolution processing, the residual structure enhances the
network's learning ability. Meanwhile, in the fine-grained
region, the fusion of dynamic and static features’ multi-views
and knowledge graph representations are used as GCN inputs,
and we use the multi-factor self-attention mechanism for
spatial feature learning.

Secondly, for the time feature module, this article uses
information such as hours, days, and whether it 1s a holiday
as data sources to capture time features. We employ the
Attention-GRU module to capture insights into the temporal
correlations within the input data. Next, in the multi-region
spatio-temporal fusion module, this article integrates the
spatio-temporal features of coarse-grained and fine-grained
regions. Then, it inputs the fused features to the Fully
Connected Layer to acquire the predicted outcomes. Finally,
we also designed a sample-weighted MSE loss function to
remission the sparsity problem of traffic data. This approach
significantly enhances the model's efficacy in sparse data.

A. Spatial Features Module

A.1 Spatial Features of Coarse-grained Regions

Each coarse-grained region contains multiple interrelated
unit regions, and the traffic conditions between these unit
regions are highly correlated. Therefore, this article adopts a
CINN-based method to capture the spatial correlation of
coarse-grained regions. However, using traditional CNN also
leads to some problems, such as neglecting the influence of
external environmental variables on the risk of road accidents.
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given time interval t.
= After the convolution operation, we obtain the cutput
Comgi ™ Com i i CE=[01,€2y00016m], Where ¢ denctes the feature embedd-
l;:t;]:lmm i’:‘;ﬂmm ing learned on each channel. Subsequently, we aim to reduce

Ouiput = FC2 «+ 5VD =« FCl1 + GAP
T sE

Fig 5 The framework of Spatial- chanmel CHN s

Ag g result, this article further improves the CMNM model.
Agchown in Fig 5, We fully consider external env ronmental
factors (e g, weather, holidays, POL, ete)) to capture spatial
correlation more effectively. In addition, thiz article
introduces Global Average Pooling (GAP) and a Fully
Connected Layer bazed on Singular Walue Decomposition
(8VD) We utilize these compeonents to compute attention
scores for each channel, enabling adaptive leaming of the
impacts of distinct features on the risk of traffic accidents

Different unit areas often present zimilar spatial features
within the same time frame, Therefore, this article uses multi-
channel feature C (including external environmental factors,
road attributes, traffic accident risks, etc) as the input of
Spatial-channel CNNs to obtain spatial featuresthat affect the
risk of traffic accidents,

F =W « G+ &) (11

Where % represents the conv olution process, W and # are

the trainable parameters of the convolution operation,
respectively. ¢ izthe RelU function, and GF represents the

output generated by the k<th convolutional layer within the

the number of parameters in the CHNNs We use GAF to
compute the average of all elements within each feature map
{channel) to mitigate ov erfitting.

1 S, .
wa;;ﬂﬁ:})

Subsequently, we employ a two-layver, fully commected
layer based on Singular Value Decomposition (SVD) to
leam the non-linear correlations among different channels.
This approach enables the capture of spatial correlations at
a coarse-grained region.

svd fe'! = GAP c * svd_fc

GAP c=

(12)

(13)

Cy = Sigmoid(W_; * ReLu(W,, * svd_fc'})(14)

F=0r % C; (15)
Where svd_fe isthe singularvalue decomposition op eration,
C; denctes the value of the channel weights obtained after

two fully connected layers based on SVD, and Of denotes

the output after enhancing or suppressing certain chantiels on
the featuremap, 1.e, spatial features in coarse-grained regions.
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A2 Spegtinl Features of Fine-grained Regions

Typically, factors such as road characteristics, traffic flow,
weather conditions, and POT distribution are fused differently
in each unit area, which affects the rislkz of traffic accidents to
different degrees However, as fine-grained regions can
extract spatial variations on smaller scales, they help to
capture spatial features within a localized area better
Therefore, in order to catch the spatial relationship of fine-
grained regions, this study will model the spatial correlation
of fine-grained regions from three perspectives: static view,
dynamic view, and knowledge graph representation view
SeeFig 6 for an illustration.
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Fmbedding = Embedding  Embedding g K W
! ! 1 ey
Gy G2 Gy Embedding
f
G,

Fig7 Self-Attention block.

With multiple views constructed by Definttion 4, we will
employ the Multi-factor GCHs module to learn about each
view tocapture the spatial correlation of fine-gramed regions,
The Multi-factor GCHs operation at tiume t proceeds as
follows.

l—oc(A*GI '« W, +b,) (16)

Where Wy and b, dencte the learnable parameters of the
graph convolution process, respectively o is the Relu
activation function. & denotes the multi-factor convolution

output at time t. We use @&, =[GF,Gf,Gf] to denote the graph
embedding with three views,

However, we must perfect the features obtained through
the Multi-factor GCHs to reflect the spatial correlation of
fine-gramned regions, as they may be affected by node sparsity
and imbalanced neighbor nodes. Therefore, we ermploy a self-
attention mechanism to allocate weights to distinct nodes
flexibly, thereby better considering each node's importance to
capture the different impacts of the three views on road
accident risk forecasting Inspired by self-attention, we map
the cutput & of the multigraph convolution into Q, K, and ¥

matrices using three matrices, namely W, W, , and W, ,

respectively, as shown in Fig 7. The following is the
calculation process of the self-attention mechanism,

QK*
\/a)"

InEq., Q, K, and V represent query vectors, key vectors, and
value vectors, respectively, and +/d, 1s the dimension of the

o= soﬂrm( (7

attention rechanism

This section employs a multi-head attention mechanism to
stmultaneously attend to data from different spatial locations
to extract more comprehensive and representative features
from each wiew. “We contact the & output matrices
0y 250y Oy 111 Eq. (17) to acquire the final ultimate matrix

Gle R4

G — concat{ o, az,..., 03 ) Wop (18

In Eq , Wo e R*? i5 a weight matrix that is independent of
the mumber of heads.

After the multi-head attention layer, we use residuals to
concatenate the final output &, thus avoiding the destruction

and mformation loss of the output features by the ruilti-head
attention layer This approach expedites the model's con-
vergence rate and unproves training efficiency. A softrmax
laver is employed to gauge the significance of different
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features.

Gf = softmaz(7G, + (1 —17)G;) (19)

In Hq., GF denotes the spatial feature captured at the fine-

grained region.

B.  Time Features Module

Predicting traffic accident risk is a classic problem in
spatiotemporal data prediction, and unlike other time series
prediction problems, it faces a more significant challenge in
the time dimension. With the results of the analysis of
temporal properties in Section A.1, we should consider the
dynamic spatio-temporal properties of both neighboring and
long-term periods, and then predict the risk of future periods
more accurately.

:-L—b —bh:l_,al
=
2
%1 |
Gf‘—p%—»ht — O3 P z
a & g
=
g g —»H,—» g—bﬂz
- I 2
R e
-
o
\"—

G > —>h >, ———
Fig.8 The framework of GRU-Attention.

In this article, we introduce the GRU-Attention module to
catch short-term and long-term temporal characteristics to
extract the temporal relevance of historical road crash risk, as
shown in Fig.8. Specifically, taking fine-grained regions as
an example, we extract temporal features based on the output
of Multi-factor-Attention GCNs. Following Definition 3, we
construct a data sequence [GF...,GpveyGiapey G ], using t-
period historical traffic data, and then employ GRU to capture
the potential temporal patterns that influence the risk of traffic
accidents.

Zg:a(ws t [fg_l,Gtz]—i_bx) (20)
Tt:U(Wr'[.ft—liG:]—i_br) (21)
fi— tanh(W - [r,©® f,_,,GF ] +b) 22)
ft:(l_zt)(aft—l+zt®ft (23)

Where G denotes the current input, and f;_, denotes the
hidden state at the previcus moment, W, W,., W andb, . &,,
b denote the weight matrix and the bias term, respectively.
We use o to denote the sigmoid function to limit the values
of 2 and r; to between 0 and 1. The hyperbolic tangent

activation function tanh calculates the candidate hidden state

ft. > denotes the Hadamard product.
In addition, the GRU-Attention module -effectively

captures crucial information across different time steps
through an attention mechanism when dealing with long-time
series. Thus, we use this module to assign different weights
to each time step, placing more weight on the most critical
information for the current task. This approach provides
richer temporal features in traffic accident risk prediction,
which enhances prediction accuracy.

ey = ReLu(W.[f,, £] +b.) (24)
o, = exp(e,) / > exper) (25)
G = ol (26)

Where ¢' denotes the time step in the past, e denotes the
weight value from the historical time to the target time. Gf
denotes the weighted hidden state of the fine-grained region,
emphasizing the historical information more critical for the
prediction task. Similarly, we denote the spatio-temporal
features of the coarse-grained region by Cf;*.

C. Multi-region Spatio-temporal Fusion Module

In traffic accident risk prediction, coarse-grained regions
focus on global-level factors, such as overall traffic
conditions and weather. In contrast, fine-grained regions
focus on local details like road type, traffic flow, and POI
distribution. Thus, we dynamically fuse the coarse-grained
region with the fine-grained region, which helps to extract the
multi-scale spatiotemporal characteristics. This approach
enables the model to maintain excellent generalization while
attending to local information, thereby enhancing the stability
of the prediction results. We employ fully connected layers to
perform a weighted fusion of spatio-temporal features from
coarse-grained and fine-grained regions to achieve this
objective. This results in prediction results considering
features at all scales.

GCf=FC(W, * Gfr + W, * Cf}) (27)

In Eq., FC(-) denotes the fully connected layer, Wy and W,
are learnable parameters, and GCF denotes the likelihood of

traffic accidents at the subsequent time after dynamic fusion.

I'V. LOSS FUNCTIOON

In general, road accidents are small probability oce-
urrences, which may lead to a zero-inflated problem in the
prediction process. In order to address this challenge, we
employ the weighted Mean Square Error (MSE) loss function
1n this study. We utilize this loss function to assign weights to
each sample, allowing the model to focus more on high-risk
samples. Specifically, according to the actual accident risk,
we categorize the samples into four levels corresponding to
weight values of 0.05, 0.2, 0.25, and 0.5. The computation of
the loss function proceeds as follows.

i« 1 5
Loss (f,y) = ) Z w; (§: — 1) :
i=1

Where ; represents the predicted values, y; represents the

(28)
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actual values, and w; represents the weight of the road crash

risk class i.

V. EXPERIMENT

We experimentally assess the performance of Risk-
CCNMAGU 1in this section. Firstly, we outline the exper-
imental configuration, encompassing the dataset, evaluation
metrics, hyperparameter configurations, and the baseline
model. We then analyze the experimental results and compare
Risk-CCNMAGU's performance with the baseline model
using NYC and Chicago datasets. In addition, in this section,
we perform an ablation study and a hyperparameter analysis
to confirm the effectiveness of the model components
introduced in this article and to assess how different
hyperparameters affect the model's performance. Finally, we
perform an experimental analysis of multi-step prediction and
provide a visual presentation of the prediction results for the
NYC dataset.

A. Datasets

A1 Data Description

As shown in Table I, this study utilizes two traffic accident
datasets from NYC and Chicago for experimental analysis. In
addition, we use taxi trip data to accurately reflect the urban
traffic flow as taxis frequently traverse urban areas, recording
the number of taxi entrances and exits in each area. Therefore,
we use this data as an essential parameter for measuring
traffic volume, enabling better analysis and predicting traffic
accident risk.

Table I Details of dataset

Data Types Features
Accident Data Latitude, longitude, times, Casualtics, etc.
Traffic flow Number of cab inflow/outflow.
POIs Schools, recreation, residential areas, etc.
Weather Temperature, humidity, visibility, ete.
Risk Mild, moderate, severe
Road Features Road type, road length and width, etc.
Peak time 8:00-13:00, 16:00-21:00

1000

0
0123 4506878 910MM12131415161718192021 2 23

Hour of Day
Fig. 9 Taxi flow

A.2 Data Preparation

(1) Taxi traffic data
This study reveals the dynamics of the urban traffic flow
by analyzing taxi volume data. As shown in Fig. 9, taxi flows

are usually at their maximum during the tidal hours of the day.
This phenomenon indicates the quantity of vehicles on the
road increases and the level of traffic congestion rises
accordingly, thus raising the risk of traffic accidents.

(2) POI and accident risk data

Within each area of a city, the distribution and density of
POIs greatly affect the probability of accidents. As shown in
Fig. 10, traffic accidents are more likely to occur at
intersections, junctions, and traffic signal locations, typically
characterized by high traffic volumes and a tendency to
violate traffic rules. Fig. 10 also illustrates that traffic
accidents are rare, and accident data generally suffer from the
zero-inflation problem. Therefore, it is necessary to consider
the data imbalance when constructing models.
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2 E 2
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§ 800 -3 5 -3
S 600+ 3 600
§ 400 - 'g 400
] <4
200 - 200+
o T ; 0-
False True False True
Amenity
y B 1000 =
800 - 2 2
= 3 800+ 3
g Ly g 600 -
g 400 - g 400
200+ 200 1
0-— 0-
False True
Junction
1000 - 1 1
1 2 800+ 2
. 800 — - -3
§ E 600 -
E 600 - E
= = 400 -
8 400 7
b b
200 200+
0 T T 0-
False True False True
Stop Traffic_Signal
Fig. 10 Influence of POI on risk level.
(3)KG

In this study, we construct a knowledge graph using
multiple sources of information, including taxi flows, POI
counts, weather conditions, and road features. Inspired by the
KST-GCN model, we use attribute triples to represent this
information, e.g., (road 1, schools, 3) indicates that there are
three schools around road section 1, and (road 2, taxi flow,
accident risk) shows that there 1s a correlation between taxi
mobility in the road section 2 and the accident risk in that
road section. In addition, we consider the relationship
between time and weather For instance, (road 3, weather,
time t) represents the weather conditions on Road 3 at time t,
reflecting the impact of weather changes on traffic
circumstances.
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Fig.ll The data after adding noise.

A3 Data Processig

We understand that actual traffic accident data contains
rich information but also suffers from various types of noise,
W introduce noise before feeding theraw data into themodel
to make the dataset used in this article closer to the actual
situation. Therefore, we add noise following the Gaussian
distribution N €{0,0r?) (¢ =0.4,0.6,0.8, 1) and Poisson

distribution P{A) (A1,2,4,8) Fig 11 illustrates the data
after adding noise,

B. Evaluation Metrics

We employed four evaluation metrics to evaluate the
model's performance: Foot Mean Square Error (EMEE],
Mean Absclute Error (MAE), MMean Average Precision
(MAT), and Recall Lower EMEE and MAFE values signify
enhanced predictive model performance, indicating that the
predicted risk closely aligns with the actual risk. Conversely,
higher MAP and Recall values indicate superior model
performance

S YT

RMSE= | §‘=1:||y.- il 29)
Ly

MAE= ‘§= | (30)

n_ |3y

MAP— EZPG)XR@ b

Recall = %;xﬁﬁxj{xﬂ

Where g and g denote the actual and forecasted values at

(1)

32)

time t, respectively. P(4) denotes the precision of the top
rank list, and R{§) denctes the occurrence of regional

accidents X, M X% denctes the intersection of the set of

regions with the highest predicted risk and the region of the
actual occurrences of accidents, and X3 is the region of the

actual occurrences of accidents in the prediction results.

. Hyperparaneters

In this study, we implemented the Risk-CCNMAGT
model using the PyTorch framewarle. We split the dataset into
60% as the training set, 2006 as the validation set, and 20%
as the test set. In order to enhance the efficiency of model
training, we employ the Max-Min technique to normalize all
the data within the range of [0, 1] When setting the model
parameters, we choose the adjacency time k=3 and the long
period np = 4. For the Spatial-channel CMNNz module, we set
the convolution kernels to 3x3 with a convolutional layer
depth of 2. For the Multi-factor-Attention GCHs module, we
have configured the graph convolutional network with a
depth of 2 layers, each with 64 kemels Moreover, within the
GRUI-Attention module, we configure the GRU netwarke with
5 layers and hidden state sizes of 256 The training uses a
learning rate of 000001 with a batch size of 32, The Adam
optirnizer is employed, and a prediction time step 1 15 used

I Baselines

(13 LETII: This model effectively captures the long-term
dependencies i time series data of road accidents, enabling
the estimation of traffic accident hazards in forthcoming
times.

(2) BDCAE [37]: This model divides the city into regions
It captures spatial dependencies by stacking rmultiple
denoising convolutional lavers to forecast the risk of traftic
accidents at the city scale.

(3% T-HCH [38]: This model combines GCIM and GETU to
consider spatial and temporal influences, resulting in more
accurate traffic flow predictions.

(4 EST-GCH: Thiz model introduces EF-Cell to
effectively integrate traffic features and lknowledge graph
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representations, allowing KST-GCN to comprehend the

connections between traffic conditions and external variables.

(5) ST-RiskNet: This model integrates local and global
spatiotemporal features and considers multiple source factors
such as time, weather, and traffic flow that influence accident
occurrences, enabling the prediction of traffic accident risk.

(6) GSNet: This model learns spatiotemporal correlations
from geographic and semantic perspectives to predict traffic
accident risk.

E. Experiment Result

E.1 Performance Comparison

Tables I and I show the Risk-CCNMAGU and baseline
models' prediction performance under the four evaluation
metrics on both datasets. The LSTM does not perform as well
as the other composite models because it only considers
temporal correlations and ignores spatial ones. While
SDCAE captures spatial correlations, it performs poorly in
mining temporal features. T-GCN captures nonlinear spatio-
temporal correlations through a combination of GCN and
GRU, which improves the model's predictive performance.

Still, its RMSE value is higher than that of the SDCAE model,

possibly due to the influence of outliers or outliers in the data
distribution. However, both SDCAE and T-GCN ignore the
impact of multiple external variables on traffic data. The
KST-GCN model considers both temporal and spatial
correlations and the impact of multiple external variables.
Thus, the KST-GCN model outperforms the T-GCN model,
which validates the importance of multiple external factors
for enhancing model performance. Unfortunately, the KST-
GCN model has a higher MAE value, which may be due to
the imbalanced dataset, which causes the model to be more
inclined to predict common risk classes. However, the lower
RMSE value of the KST-GCN model compensates for this
drawback to some extent and has a minor impact on the
model's predictive performance.

Compared to the results of KST-GCN, we find that ST-
RiskNet and GSNet, which are models based on local and

global regions, perform better in their prediction performance,

which indicates that local and global semantic features help
improve the model performance. However, these models
ignore the influence of interconnections among various
external variables on traffic accidents. Therefore, the
proposed Risk-CCNMAGU model can adeptly encompass
the influence of diverse external variables on traffic accident
risk and fuse the temporal and spatial correlations of coarse-
and fine-grained regions. Risk-CCNMAGU performs better
on all four metrics than the baseline models mentioned above.

Table II Performance comparison of different models on the NYC.

Metric
Siodels RMSE MAE MAP Recall
LSTM 9.9143 72647 01216 0.2287
SDCAE 7.1782 6.8576 0.1418 0.2906
T-GCN 8.5873 6.0572 0.1461 0.2954
KST-GCN 7.0829 74691 0.1538 03022
ST-RiskNet 7.0056 6.9992 0.1674 0.3293
GSNet 6.6694 6.3488 0.1689 0.3300
Risk-CCNMAGU 6.5729 6.3874 0.1809 0.3314

Table IIT Performance comparison of different models on the Chicago.

Metric
Models RMSE MAE MAP Recall
LSTM 10.7582 84617 0.0624 0.1209
SDCAE 84871 7.9335 0.0845 0.1958
T-GCN 8.5913 6.0304 0.1462 0.1893
KST-GCN 84868 7.8015 0.0878 0.1931
ST-RiskNet 8.7527 7.4495 0.0906 0.1986
GSNet 8.7010 8.26l6 0.1109 02277
Risk-CCNMAGU 8.4168 7.8632 0.1293 02236
E.2 Ablation Study

We assess the efficacy of all components of the Risk-
CCNMAGU model through ablation experiments in this
section. We design five models, MAG-HAU, CAC-HAU,
CCMG-HAU, CCN-MAG-HAU, and CCN-MAG-AU, by
removing coarse-grained regions, fine-grained regions,
spatial attention mechanism, dynamic feature fusion, and
peak hours, respectively.
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Fig. 12 Performance comparison of Risk-CCNMAGU with its variant

model

Fig. 12 illustrates the comparison results between Risk-
CCNMAGTU and its five variant models on RMSE, MAE,
MAP, and Recall. The results show that Risk-CCNMAGU
outperforms the other variant models under all four eva-
luation metrics, affirming the efficacy of the introduced
components in the model. The model prediction performance
decreases when removing coarse-grained or fine-grained
regions, especially on MAP and Recall. It 1s much lower than
that of the other variant models, which indicates that it 15 vital
to consider the characteristics of coarse-grained and fine-
grained regions. When we exclude the spatial attention
mechanism, CCMG-HAU displays slightly lower predictive
accuracy than the Risk-CCNMAGU model on the NYC
dataset. Still, the error value is much higher than that of Risk-
CCNMAGU on the Chicage dataset, which suggests that
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capturing the dynamic features can improve the prediction
performance.

Additionally, our simple linking of two different
granularity region features leads to performance degrad-
ation, demonstrating the effectiveness of dynamically
fusing spatio-temporal features from two regions. Model
performance is also impaired when we remove peak hour
features, demonstrating the necessity of introducing peak
hour data. As a result, the components designed in the
Risk-CCNMAGU model effectively enhance the accuracy
of the likelihood of traffic accident prediction.

FE.3 Hyperparameter Study

In order to analyze the effects of various hyper-parameters
on model performance, we perform experiments on the NYC
dataset. This includes investigating parameters like the
number of GCN filters, GRU layers, and the inclusion of
Gaussian and Poisson noise.

(1) The effect of GCN filters on the model.

oW REUNA X

Fig. 13 Comparison of GCN-filters performance.

The results shown in Fig. 13 show that the model works
well when the filter count is 64. However, both insufficient
and excessive numbers of filters have an influence on the
model's performance. This occurrence is attributed to the fact
that an excessive number of filters augment the model's
parameter count, potentially causing overfitting issues. On
the other hand, insufficient filters can't adequately capture
the complex relationships and features in multiple views.

(2) The effect of GRU hidden layers on the model.

C =R Wh X

Fig. 14 Comparison of GRU hidden layers performance.

As presented in Fig. 14, the experiments in this study

involve different quantities of GRU hidden layer units,
precisely 32, 64, 128, 256, and 512. The results indicate that
the model's performance improves considerably when the
number of GRUs is 236. Conversely, the model's
performance across the four evaluation metrics decreases
significantly when the number of hidden units is reduced
below 256.
(3) The effect of Gaussian/Poisson noise on the model.
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Fig. 15 Risk-CCNMAGU disturbance analysis.

Fig.15 presents the performance analysis outcomes of the
Risk-CCNMAGU model using MAE and RMSE metrics for
different noise conditions. The Risk-CCNMAGU model has
the highest RMSE and MAE values without noise. This
phenomenon is because actual traffic accident data
commonly contain noise, and therefore, the spatio-temporal
characteristics cannot be adequately captured using data with
noise removed. However, when we add noise, the RMSE and
MAE values of the model decrease significantly. In particular,
we use Gaussian noise (0 = 0.4 ) when the error metric is the

smallest.

In contrast, the RMSE and MAE values are higher than
Gaussian noise when the parameters 7. of the Poisson noise
are 1, 2, 4, and 8. This phenomenon demonstrates the
influence of added noise on the performance of the Risk-
CCNMAGU model. Moderate Gaussian noise can improve
the model's prediction accuracy, while higher-intensity
Poisson noise may lead to performance degradation.

E.4 Multi-step Forecasting

This article also evaluates the performance of the Risk-
CCNMAGU model under different prediction horizons,
validating the model performance on the NYC dataset and
analyzing its performance by setting the prediction steps to 1,
2, and 3. When a long period is 4, we compare the MAE and
RMSE metrics between peak- and non-peak-hour data.

It can be seen by observing Figures 16, 17, and 18 that the
Risk-CCNMAGU model exhibits better performance in
MAE and RMSE values when using peak-hour data,
compared to when not using peak-hour data when
considering prediction horizons 1, 2, and 3. This phenomenon
indicates that the peak-hour data favorably impacts the
model's performance. In addition, the peak-hours MAE value
in Figure 17 is marginally higher than the off-peak hours
MAE value. Still, as the prediction step increases, the MAE
value of step 1 becomes progressively lower than the off-
peak-hour MAE value, indicating that Risk-CCNMAGU has
an advantage in capturing long-term correlations.
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Fig. 20 Performance changes of the Chicago dataset.

We validate the Risk-CCNMAGU model on the NYC and
Chicago datasets for prediction steps 1, 2, and 3 by adding
high-peak period data, as shown in Figures 19 and 20. We
observe that the Risk-CCNMAGU model's performance
deteriorates with the prediction step size increase. In
particular, the model has the lowest MAP and Recall values
at a prediction step of 3. This phenomenon indicates that the
model performs better in short-term prediction and can
effectively exploit the correlation between static and dynamic
factors. However, as the prediction step increases, the model
requires longer time intervals, which may result in the loss of
information and error accumulation, thus decreasing the
prediction accuracy.

The MAE value gradually decreases with increasing
forecast step, improving the performance of Risk-
CCNMAGU. However, the MAP and Recall values are
decreasing now, suggesting that they may sacrifice the
precision of near-term forecasting to capture long-term
spatiotemporal correlations. Therefore, this article chooses to
set the forecast step size to 1 to balance capturing spatio-
temporal short-term and long-term correlations better.

E.5 Research on Multi-factor Fusion

We validate the feature extraction performance of the
multi-view approach introduced in our model. Therefore, we
removed the knowledge graph representation view, static
view, and dynamic view, respectively, thereby constructing
three variant models of G, —G,—Gy—View

Gy — Gy —View, and G,, — G,, — G, — View .
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Fig. 21 Performance variation of various multi-views during peak hours.
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Fig. 22 Performance variation of various multi-views during off-peak

hours.

According to the results in Figures 21 and 22, whether we
introduce peak hours or not when we remove the knowledge
graph representation, the MAP and Recall values of the Risk-
CCNMAGU model have a smaller gap than other models.
Still, the MAE and RMSE values are significantly higher.
This phenomenon illustrates that capturing the correlation
between static and dynamic factors is crucial to improving the
model's predictive capability. In addition, when we remove
only static or dynamic views, it will also impact the model's
prediction accuracy. It's important to mention that during
peak hours, the error values of the G4 — Gy, — View and

G, —
illustrating that introducing peak hour data can effectively
predict traffic accident risks.

G, — G4 — View models are the smallest, further

E Model Interpretation

In section E.4, the Risk-CCNMAGU model utilizes
historical data to predict traffic accident risk with step
sizes of 1, 2, and 3. We visualize the prediction results in
Figures 23 to 25 for a detailed explanation. Note that this
section only showcases the results predicted through the
NYC dataset in a limited space.
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The results in Figures 23 to 25 demonstrate that the Risk-
CCNMAGU model effectively captures the varying trends of
traffic accident risk. In particular, the model aligns more
closely with the ground truth for prediction step size 1,
indicating higher accuracy. However, the model's predictive
performance 1s relatively poor when the forecast step size 1s
2 and 3, which may be because long-term forecasts need to
consider more factors to capture complex spatio-temporal de-
pendencies. Moreover, we observe significant discrepancies
between the model predictions and the actual observations at
the inflection points in the predictions. This deviation may be
due to extreme conditions such as heavy rainfall, fog, and
other unexpected events. Such abrupt events may impact
alterations in the probability of road accidents, influencing
the model's performance.

VI CONCLUSION

This article proposes a spatio-temporal network model
called Risk-CCNMAGTU to enhance the prediction of traffic
accident risk in coarse-grained and fine-grained regions. In
order to catch the complex spatial and temporal dependencies
in various granular regions, we designed the Spatial-channel
CNNs module and the Multi-factor-Attention GCNs module.
Meanwhile, we adopted a multi-view approach to extract
correlations between static and dynamic factors to incur-
porate external factors into the model better. In addition, we
employ a sample-weighted MSE loss function to mitigate the
issue of data sparsity.

We assess the efficacy of the Risk-CCNMAGU model
under different prediction step sizes through experimental
results, and when the prediction step size is 1, the model
performs better. In addition, further verified the prediction
performance using ablation experiments and perturbation
analysis with added noise. Compared to the baseline model,
the model presented in this article exhibits superior
performance across four key indicators, such as RMSE, MAE,
MAP, and Recall, which fully proves the effectiveness of
Risk-CCNMAGU in traffic accident risk prediction.

While the Risk-CCNMAGU model shows an improve-
ment in prediction performance compared with other baseline
models, we can still narrow its prediction horizon to the
minute level, and the prediction granularity can be further
refined to the road segment level, which represents its
limitation. Therefore, we shall consider these factors in our
forthcoming research to improve the generalization potential
of the model.
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