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Abstract—In the present paper, the authors consider the
perturbed initial value problem of the Chapman-Jouguet model
for the Chaplygin gas. We obtain the unique solution by
analyzing the elementary waves under the global entropy
conditions. We observe that the combustion wave solution may
be extinguished after perturbation which tells the instability of
the unburnt gas. And we also capture the transitions between
the deflagration wave and the detonation wave.

Index Terms—Wave interaction, Riemann problem, Detona-
tion wave, Deflagration wave, Chaplygin gas.

I. I NTRODUCTION

I N this study we investigate the ideal combustible Chap-
lygin gas equations






























ρt + (ρu)x = 0,
(ρu)t + (ρu2 + p)x = 0,
(ρE)t + (ρuE + pu)x = 0,

Q(x, t) =







0, if sup
0≤z≤t

T (x, z) > Ti;

Q(x, 0), if sup
0≤z≤t

T (x, z) ≤ Ti,

(1)

whereρ is the density,u is the velocity,p < 0 is the pressure.
T and Ti are respectively the temperature and the ignition
temperature.E = u2

2 + e + Q and e = − p
2ρ is the internal

energy,Q is the chemical binding energy. The state equation
is p = − 1

ρ
. We suppose that the process of combustion is

exothermic [1]. The discussions about the Chaplygin gas are
shown in [2], [3], [4], [5], [6].

In [7], they discussed the delta shock and the vacuum state
problem in detail by lettingp→ 0.

In [8], they studied the Riemann solutions, and investigated
the asymptotic behavior. The Riemann problem was studied
in [9], [10], [11].

We usually apply the two simplified models [1], [12] to
study the combustion phenomena. In [13], they studied the
idealized CJ model in Lagrangian coordinates






























ut + px = 0,
τt − ux = 0,
Et + (up)x = 0,

Q(x, t) =







0, if sup
0≤z≤t

T (x, z) > Ti;

Q(x, 0), if sup
0≤z≤t

T (x, z) ≤ Ti,

(2)

hereτ = 1
ρ
, p > 0.
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In [14] they discussed the SZND model














ut + px = 0,
τt − ux = 0,
Et + (up)x = 0,
Q(x, t) = −k

t
φ(T )q,

(3)

hereφ is the Heaviside function and they got the solution
uniquely. In [15] the authors studied the limit behaviors of
the solutions.

In [16], we investigated the Riemann problem for (1) and

(τ, u, p,Q) =

{

(τl, ul, pl, Ql), whenx < 0,
(τr , ur, pr, Qr), whenx > 0.

(4)

In [17], we studied the wave interactions for (1) when the
solutions contain noSδ.

In the present study, we analyze (1) and

(τ, u, p)(x, 0) =







(τl, ul, pl), −∞ < x < −ǫ,
(τm, um, pm), −ǫ ≤ x ≤ ǫ,

(τr, ur, pr), ǫ < x <∞,

(5)

where the parameterǫ > 0 is arbitrary and small enough.
We observe that for the most part (1) and (4) can preserve
the structure of the original solution after the perturbation,
while for some situations, the perturbation can bring about
significant changes. It is shown that the combustion wave
may be extinguished, and we capture the transitions between
the deflagration wave and the detonation wave.

This article is organized as follows. we give the prelimi-
naries in II. In Section III, we construct uniquely the solution
for (1) and (5) according the different cases. Section IV gives
the main conclusions.

II. PRELIMINARIES

For the later study, we give some preliminaries [16], [18],
[19], [20]. The characteristic roots of (1) are described by

λ1 = u−
√

−p
ρ
, λ2 = u, λ3 = u+

√

−p
ρ
. (6)

The right characteristic vector ofλ1, λ2, λ3 is given
respectively by

~ν1 = (1,−
1

ρ

√

−
p

ρ
,−

p

ρ
)⊤, ~ν2 = (1, 0, 0)⊤,

~ν3 = (1,
1

ρ

√

−
p

ρ
,−

p

ρ
)⊤.

It follows from∇λi · ~νi ≡ 0, i = 1, 2, 3.
−→
R (−)(or

←−
R (−)) is given by

{

pρ = p−ρ−,

u = u− ±
p−p

−√−p
−
ρ
−

, (p > p−, or p < p−),
(7)

IAENG International Journal of Applied Mathematics, 53:4, IJAM_53_4_30

Volume 53, Issue 4: December 2023

 
______________________________________________________________________________________ 



and
−→
S (−)(or

←−
S (−)) is given by

{

pρ = p−ρ−,
u−u

−

p−p
−

= ±
√

− 1
p
−
ρ
−

, (p− > p, or p− < p).
(8)

J is described by

{

[u] = [p] = 0,
ρ− 6= ρ+.

(9)

Suppose

ρ = ρ0 + σ(t)δ(x − x(t)), ρ0 =

{

ρ−, x < x(t),
ρ+, x > x(t),

(10)

u(x, t) =







u−, x < x(t),
uδ, x = x(t),
u+, x > x(t),

(11)

p(x, t) =







p−, x < x(t),
0, x = x(t),
p+, x > x(t).

(12)

Whenρ+ 6= ρ−,

σ(t) =
√

ρ−ρ+(u+ − u−)2 − (ρ+ − ρ−)(p+ − p−) t

uδ =
ρ+u+ − ρ−u− + dω(t)

dt

ρ+ − ρ−
,

whenρ+ = ρ−,

σ(t) = (ρ−u− − ρ+u+)t

uδ =
1

2
(u+ + u−).

Further, the entropy condition ofSδ is given by

u+ +
√

− p+

ρ+
<

dx(t)
dt < u− −

√

− p
−

ρ
−

. (13)

The noncombustion wave curves are given in(u, p) (Fig.
1.(i) and Fig. 1.(ii))

On the other hand, the R-H relations






ζ[u] = [p],
ζ[τ ] = −[u],
ζ[E] = [up],

reveal that

−τrp+ prτ = 2q0 > 0.

−→
D(+) in (u, p) (Fig. 2.) is described by

−→
D(+) :

u− u+

p− p+
=

√

−
2q0 + τ+(p− p+)

p+(p− p+)
, (14)

wherep+ < p < 0 or p < p+ −
2q0
τr

. The detonation wave
curve corresponds top+ < p < 0 and the deflagration wave
curve corresponds top < p+ − 2q0ρ+ [1].

-
6

−→
S (−)

(−)

−→
R (−)←−

S (−)

←−
R (−)

u

p

Fig. 1.(i) The backward wave curves.

-
6

−→
R (+)

(+)

−→
S (+)

u

p

←−
R(+)

←−
S (+)

Fig. 1.(ii) The forward wave curves.

WhenQr > 0,
−→
W (r) is given by as follows

−→
W (r)

.
=
−→
WS(r) ∪ Sδ(r) ∪

−−→
DF (r) ∪

−−→
DT (r),

and the forward noncombustion wave curve
−→
R(r) ∪

−→
S (r) is

described by
−→
WS(r).

-
6

u

p

Fig. 2. Combustion wave in(u, p).

(u+,p+)

(u+,p+−2ρ+q0)

−−→
DT

−−→
DF

For the situation thatQr = 0, Ql = 0, it is discussed in
the paper [19]. Therefore, we investigate the following cases.

-
6

−→
R (r)

(r)

−→
S (r)

u

p

−−→
DF

−−→
DT

(l)

Fig. 3. WhenQl = 0, Qr = q0 > 0.

←−
S (l)

←−
R(l)

Case 2.1.WhenQl = 0, Qr = q0 > 0 (Fig. 3.).
Notice that

←−
W (l) =

←−
WS(l)∪Sδ(l), and

−→
W (r) =

−→
WS(r)∪

Sδ(r) ∪
−−→
DF (r) ∪

−−→
DT (r).

Subcase 2.1.1If ul − ur <
√

− pl

ρl
+

√

− pr

ρr
, and the

intersection point of
←−
W (l) and

−→
W (r) is not unique, we should

get uniquely the solution fromglobal entropy conditions
(GEC):
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(i) η is as small as possible, whereη is defined by the
oscillation frequency ofT (η) between{η ∈ R1 : T (η) ≤ Ti}
and {η ∈ R1 : T (η) > Ti};

(ii) the combustion wave is as many as possible.

⋆1 and⋆2 are respectively the intersection points of
←−
WS(l)

with
−→
WS(r),

−−→
DF (r) or

−−→
DT (r). The temperature at the point

⋆1, ⋆2 is respectively denoted byT1, T2 (Fig. 5. and Fig. 6.).

(1) If Tl > Ti, T2 > Ti, thenη(⋆1) = 1, η(⋆2) = 1, due
to (ii) , we select⋆2 and gain

−→
S or
←−
R + J +

−−→
DFor

−−→
DT (Fig.

4.);

(2) if Tl > Ti, T2 ≤ Ti(⇒ T1 ≤ Ti), then η(⋆1) = 1,
η(⋆2) = 3, due to(i), we select⋆1 and gain

−→
S or
←−
R + J +

−→
S or
−→
R (Fig. 5.);

(3) if Tl ≤ Ti, T1 ≤ Ti, thenη(⋆1) = 0, η(⋆2) = 2, due
to (i), we select⋆1 and gain

−→
S or
←−
R + J +

−→
S or
−→
R (Fig. 5.);

(4) if Tl ≤ Ti, T1 > Ti(⇒ T2 > Ti), then η(⋆1) = 2,
η(⋆2) = 2, due to(ii) , we select⋆2 and gain

−→
S or
←−
R + J +

−−→
DFor

−−→
DT (Fig. 4.).

-

t

x

Tl

T2 >Ti

−−→
DF or

−−→
DT←−

S or
←−
R

Fig. 4. Combustion wave solution.

<Ti

6 J

-

t

x

Tl

←−
S or

←−
R −→

S or
−→
R<Ti

<Ti

Fig. 5. Non-combustion wave solution.

T1

6 J

Subcase 2.1.2As ul−ur ≥
√

− pl

ρl
+
√

− pr

ρr
, we obtain the

delta shock wave solutionSδ (see [17], [18], [19]).

Case 2.2.WhenQl > 0, Qr > 0 (Fig. 6.).

We know that
←−
W (l) =

←−
WS(l) ∪ Sδ(l) ∪

←−−
DT (l) ∪

←−−
DF (l),

and
−→
W (r) =

−→
WS(r) ∪ Sδ(r) ∪

−−→
DT (r) ∪

−−→
DF (r).

-
6

−→
R (r)

(r)

−→
S (r)

u

p

−−→
DF

−−→
DT

(l)

Fig. 6. WhenQl > 0, Qr > 0.

←−
S (l)

←−
R (l)

←−−
DT

←−−
DF

A

B

C
D

Subcase 2.2.1When ul − ur <
√

− pl

ρl
+

√

− pr

ρr
(Fig.

7.(i)(ii)(iii)(iv)).

- x

t

<Ti

<Ti <Ti

<Ti

Fig. 7.(i) Solution of the point A.

J
6

−→
S or
−→
R

←−
S or
←−
R

- x

t

<Ti

<Ti

<Ti

>Ti

←−−
DT −→

S or
−→
R

Fig. 7.(ii) Solution of the point B.

J6

- x

t

<Ti

<Ti

<Ti

>Ti

←−
S or
←−
R

−−→
DF

Fig. 7.(iii) Solution of the point C.

J

6

-

6

<Ti

>Ti >Ti

<Ti

←−−
DF −−→

DF

x

t

Fig. 7.(iv) Solution of the point D.

J

Since we haveη = 0 for Fig. 7.(i), η = 2 for the other
cases, we select A and gain

−→
S or
←−
R + J +

−→
S or
−→
R .

Subcase 2.2.2Whenul − ur ≥
√

− pl

ρl
+

√

− pr

ρr
, we gain

theSδ solution.
Theorem 2.1There is unique solution of (1) and (4).

III. I NITIAL PROBEM OF (1) AND(5)

WhenSδ appears, we just investigate the cases containing
the interesting combustion phenomena for simplicity. In the
following we discuss the six kinds of wave interactions:Sδ

and
←−−
DT , Sδ and

←−−
DF , Sδ and

−−→
DT , Sδ and

−−→
DF , J and

←−−
DF ,

J and
←−−
DT .

-

6
t

x
(−ǫ,0) (ǫ,0)

(l) (m) (r)

Sδ

←−−
DT

Fig. 8. The interaction ofSδ and
←−−
DT .

Case 3.1.Sδ and
←−−
DT (Fig. 8.) We divide the discussions

into four subcases as follows.
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Case 3.1.1(l) is burnt,(m) is unburnt and(r) is unburnt.

Sinceum−
√

− pm

ρm
< σδ < ul−

√

− pl

ρl
for Sδ, andur−

√

− pr

ρr
< σ < um −

√

− pm

ρm
for
←−−
DT , Sδ will overtake

←−−
DT

in the finite time. Notice thatul − um ≥
√

− pl

ρl
+
√

− pm

ρm
,

we proceed as follows. Iful−ur ≥
√

− pl

ρl
+
√

− pr

ρr
, we get

the Sδ solution; otherwise (Fig. 9.), we find the perturbed
solution is

←−
S or
←−
R + J +

−−→
DT .

-

6

u

p

p

(m)(r)

(l)
←−−
DT

Fig. 9. The wave curves in(u, p) for Subcase 3.1.1.

←−
S

←−
R

Case 3.1.2(l) is unburnt,(m) is unburnt and(r) is unburnt.

If ul−ur ≥
√

− pl

ρl
+
√

− pr

ρr
, we know that the perturbed

solution is the delta shock wave solution; otherwise, we get
the perturbed solution underGEC since for this case there
is at most three intersection points (Fig. 10.).

-

6

u

p

p

(m)(r)

(l)
←−−
DT

Fig. 10. The wave curves in(u, p) for Subcase 3.1.2.

(1) (2)
(3)

−−→
DT ←−−

DT

Sinceη = 2 for intersection point 1, 2, 3 (Fig. 11.(i)-(iii)),
from GEC, we get

←−−
DT + J +

−−→
DT (Fig. 11.(iii)).

- x

t

<Ti

<Ti

<Ti

>Ti

←−−
DT −→

S or
−→
R

Fig. 11.(i) Solution of the point 1.

J6

- x

t

<Ti

<Ti

<Ti

>Ti

←−
S or

←−
R

−−→
DT

Fig. 11.(ii) Solution of the point 2.

J

6

- x

t

<Ti

>Ti

<Ti

>Ti

←−−
DT −−→

DT

Fig. 11.(iii) Solution of the point 3.

J6

Case 3.1.3(l) is unburnt,(m) is unburnt and(r) is burnt.

If ul − ur ≥
√

− pl

ρl
+

√

− pr

ρr
, we obtainSδ, otherwise,

←−
W (l) intersects with

−→
W (r) uniquely, it yields that

←−−
DT +J+

−→
S or
−→
R (Fig. 12.).

Case 3.1.4(l) is burnt,(m) is unburnt and(r) is burnt.

From ul − ur ≥
√

− pl

ρl
+
√

− pr

ρr
, we get theSδ solution

(Fig. 13.).

-

6

u

p

p

(m)(r)

(l)
←−−
DT

Fig. 12. The wave curves in(u, p).

←−−
DT

−→
S

−→
R

←−
S

←−
R

-

6

u

p

p

(m)(r)

(l)
←−−
DT

Fig. 13. The wave curves in(u, p).

−→
S

−→
R

←−
S

←−
R

Theorem 3.1WhenSδ intersects with
←−−
DT , the combus-

tion wave may be extinguished. And for this case, it may
produce the combustion wave in the opposite direction.

Case 3.2.Sδ and
−−→
DT (Fig. 14.)
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-

6
t

x

(l) (m) (r)

Sδ

−−→
DT

Fig. 14. The interaction ofSδ and
−−→
DT .

(−ǫ,0) (ǫ,0)

Case 3.2.1(l) is burnt, (m) is burnt and(r) is unburnt.
SinceSδ will overtake the combustion wave, we consider
the fact thatul − um ≥

√

− pl

ρl
+
√

− pm

ρm
, and get thatul −

ur ≥
√

− pl

ρl
+

√

− pr

ρr
. It yields that the perturbed solution

is described by the delta shock wave (Fig. 15.)
Case 3.2.2(l) is unburnt,(m) is burnt and(r) is unburnt.
Due to ul − um ≥

√

− pl

ρl
+

√

− pm

ρm
, we konwul − ur ≥

√

− pl

ρl
+

√

− pr

ρr
, and get theSδ soltuin(Fig. 16.). Similar

with Case 3.1.2, we get
←−−
DT + J +

−−→
DT .

Theorem 3.2WhenSδ intersects with
−−→
DT , the detonation

wave may be extinguished. And the detonation wave may
persist and the combustion wave in the opposite direction
may produce.

-

6

u

p

p

(m)
(r) (l)

−−→
DT

Fig. 15. The wave curves in(u, p).

←−
S

←−
R

−→
S

−→
R

-

6

u

p

p

(m)
(r)

(l)

−−→
DT

Fig. 16. The wave curves in(u, p).

←−
S

←−
R

−→
S

−→
R

Case 3.3.Sδ and
←−−
DF (Fig. 17.)

-

6
t

x
(−ǫ,0) (ǫ,0)

(l) (m) (r)

Sδ

←−−
DF

Fig. 17. The interaction ofSδ and
←−−
DF .

Case 3.3.1(l) is burnt,(m) is unburnt and(r) is unburnt.
Sinceul − um ≥

√

− pl

ρl
+

√

− pm

ρm
, we discuss as follows.

Whenul − ur ≥
√

− pl

ρl
+

√

− pr

ρr
, we get theSδ solution;

when ul − ur <
√

− pl

ρl
+

√

− pr

ρr
,
←−
W (l) intersects with

−→
W (r) uniquely, the perturbed solution is

←−
S or
←−
R + J +

−−→
DT ,

othersize, there are at most two intersection points (Fig. 18.),
we should select the solution according toGEC.

-

6

u

p

p

(m)

(r)

(l)
←−−
DT

Fig. 18. The wave curves in(u, p).

−−→
DT

⋆D

⋆S

←−−
DF−−→

DF

−→
S

−→
R

For simplicity, we denote respectively⋆S, ⋆D the intersec-
tion point of

←−
WS(l) and

−→
WS(r),

−−→
DT (r). The temperature is

TS , TD at the point⋆S , ⋆D respectively.

(1) WhenTl > Ti, TD > Ti, thenη(⋆S) = 1, η(⋆D) = 1,
we pick out⋆D and get

←−
S or
←−
R + J +

−−→
DT .

(2) WhenTl > Ti, TD ≤ Ti(⇒ TS ≤ Ti), thenη(⋆S) = 1,
η(⋆D) = 3, we pick out⋆S and get

←−
S or
←−
R + J +

−→
S or
−→
R .

(3) WhenTl ≤ Ti, TS ≤ Ti, thenη(⋆S) = 0, η(⋆D) = 2,
we pick out⋆S and get

←−
S or
←−
R + J +

−→
S or
−→
R .

(4) WhenTl ≤ Ti, TS > Ti(⇒ TD > Ti), thenη(⋆S) = 2,
η(⋆D) = 2, we pick out⋆D and get

←−
S or
←−
R + J +

−−→
DT .

-

6

u

p

p

(m)

(r)

(l)

←−−
DT

Fig. 19. The wave curves in(u, p).

−−→
DT

1
2

3

4

←−−
DF−−→

DF

−→
S

−→
R

←−
S

←−
R

←−−
DT

←−−
DF

Case 3.3.2(l) is unburnt,(m) is unburnt and(r) is unburnt.

Sinceul−um ≥
√

− pl

ρl
+
√

− pm

ρm
, we discuss as follows.

Whenul − ur ≥
√

− pl

ρl
+

√

− pr

ρr
, we get theSδ solution;

whenul − ur <
√

− pl

ρl
+
√

− pr

ρr
, and

←−
W (l) intersects with

−→
W (r) uniquely, we get

←−
S or
←−
R + J +

−−→
DT , otherwise (Fig.

19.), Since we haveη = 0 corresponding to the intersection
point 1, andη = 2 for the other intersection points 2, 3, 4,
from GEC, we pick out the point 1 and get

←−
S + J +

−→
S .
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-

6

u

p

p

(m)

(r)

(l)

←−−
DT

Fig. 20. The wave curves in(u, p).

⋆S

⋆D−→
S

−→
R

←−
S

←−
R

←−−
DT

←−−
DF

Case 3.3.3(l) is unburnt,(m) is unburnt and(r) is burnt.
Due toul − um ≥

√

− pl

ρl
+

√

− pm

ρm
, we go on discussing.

Whenul − ur ≥
√

− pl

ρl
+

√

− pr

ρr
, we get theSδ solution;

when ul − ur <
√

− pl

ρl
+

√

− pr

ρr
, if
←−
W (l) intersects with

−→
W (r) uniquely, it follows that

←−−
DT +J+

−→
S or
−→
R , otherwise,

there are at most two intersection points (Fig. 20.), we should
select the solution according toGEC.

(1) WhenTr > Ti, TD > Ti, thenη(⋆S) = 1, η(⋆D) = 1,
we pick out⋆D and get

←−−
DT + J +

−→
S or
−→
R .

(2) WhenTr > Ti, TD ≤ Ti(⇒ TS ≤ Ti), thenη(⋆S) = 1,
η(⋆D) = 3, we pick out⋆S and get

←−
S or
←−
R + J +

−→
S or
−→
R .

(3) WhenTr ≤ Ti, TS ≤ Ti, thenη(⋆S) = 0, η(⋆D) = 2,
we pick out⋆S and get

←−
S or
←−
R + J +

−→
S or
−→
R .

(4) WhenTr ≤ Ti, TS > Ti(⇒ TD > Ti), thenη(⋆S) =
2, η(⋆D) = 2, we pick out⋆D and get

←−−
DT + J +

−→
S or
−→
R .

-

6
t

x

(l) (m) (r)

Sδ

−−→
DF

Fig. 21. The interaction ofSδ and
−−→
DT .

(−ǫ,0) (ǫ,0)

-

6

u

p

p

(m)

(r) (l)

−−→
DT

Fig. 22. The wave curves in(u, p).

p

p

←−
S

←−
R

−−→
DF

−→
S

−→
R

Case 3.3.4(l) is burnt,(m) is unburnt and(r) is burnt. Due
to ul−um ≥

√

− pl

ρl
+
√

− pm

ρm
, we proceed to discuss. When

ul − ur ≥
√

− pl

ρl
+

√

− pr

ρr
, we get theSδ solution; when

ul − ur <
√

− pl

ρl
+
√

− pr

ρr
, we get

←−
S or
←−
R + J +

−→
S .

Theorem 3.3 In this case, asSδ intersects with
←−−
DF , the

combustion wave is extinguished. Furthermore, we observe
DF may be transformed intoDT .

Case 3.4.Sδ and
−−→
DF (Fig. 21.)

Case 3.4.1(l) is burnt,(m) is burnt and(r) is unburnt.
Due toul−um ≥

√

− pl

ρl
+
√

− pm

ρm
, we know thatul−ur ≥

√

− pl

ρl
+
√

− pr

ρr
(Fig. 22.), and the perturbed solution is the

delta shock wave.
Case 3.4.2(l) is unburnt,(m) is burnt and(r) is unburnt.

Due to the factul − um ≥
√

− pl

ρl
+

√

− pm

ρm
, we know

that if ul − ur ≥
√

− pl

ρl
+

√

− pr

ρr
, we getSδ; otherwise,

similar discussions with Case 3.1.2, we get
←−−
DT + J +

−−→
DT

(Fig. 23.).

-

6

u

p

p

(m)

(r) (l)−−→
DT ←−−

DT

Fig. 23. The wave curves in(u, p).

p

p

⋆1
−→
S

−→
R

←−
S

←−
R

←−−
DF

Theorem 3.4 In this case, whenSδ intersects with
−−→
DF ,

the deflagration wave is extinguished for some case. Further-
more, we find thatDF may be transformed intoDT .
Case 3.5.J and

←−−
DF (Fig. 24.)

-

6
t

x
(−ǫ,0) (ǫ,0)

(l) (m) (r)

J
←−−
DF

Fig. 24. The interaction ofJ and
←−−
DF .

-

6

u

p

p

(l)=(m)

(r)

←−−
DT

Fig. 25. The wave curves in(u, p).

−−→
DT

−−→
DF

−→
S

−→
R

←−
S

←−
R

←−−
DF

Case 3.5.1(l) is burnt,(m) is burnt and(r) is unburnt. There
are at most two intersection points (Fig. 25.), we should
select the solution according toGEC.

(1) WhenTl > Ti, T2 > Ti, thenη(⋆1) = 1, η(⋆2) = 1,
we pick out⋆2 and get

←−
R + J +

−−→
DT .

(2) WhenTl > Ti, T2 ≤ Ti(⇒ T1 ≤ Ti), thenη(⋆1) = 1,
η(⋆2) = 3, we pick out⋆1 and get

←−
R + J +

−→
S .

(3) WhenTl ≤ Ti, T1 ≤ Ti, thenη(⋆1) = 0, η(⋆2) = 2,
we pick out⋆1 and get

←−
R + J +

−→
S .

(4) WhenTl ≤ Ti, T1 > Ti(⇒ T2 > Ti), thenη(⋆1) = 2,
η(⋆2) = 2, we pick out⋆2 and get

←−
R + J +

−−→
DT .
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Case 3.5.2(l) is unburnt,(m) is unburnt and(r) is unburnt
(Fig. 25.).

Since we haveη = 0, from GEC, we get
←−
R + J +

−→
S .

Case 3.5.3(l) is unburnt,(m) is unburnt and(r) is burnt.
There are at most two intersection points (Fig. 25.), we
should select the solution according toGEC. For simplicity,
we denote respectively⋆3, ⋆4 the intersection point of
←−
WS(l),

←−−
DF (l) and

−→
WS(r). The temperature isT3, T4 at

the point⋆3, ⋆4 respectively.
(1) WhenTr > Ti, T4 > Ti, thenη(⋆3) = 1, η(⋆4) = 1,

we pick out⋆4 and get
←−−
DF + J +

−→
S .

(2) WhenTr > Ti, T4 ≤ Ti(⇒ T3 ≤ Ti), thenη(⋆3) = 1,
η(⋆4) = 3, we pick out⋆3 and get

←−
R + J +

−→
S .

(3) WhenTr ≤ Ti, T3 ≤ Ti, thenη(⋆3) = 0, η(⋆4) = 2,
we pick out⋆3 and get

←−
R + J +

−→
S .

(4) WhenTr ≤ Ti, T3 > Ti(⇒ T4 > Ti), thenη(⋆3) = 2,
η(⋆4) = 2, we pick out⋆4 and get

←−−
DF + J +

−→
S .

Case 3.5.4(l) is burnt,(m) is burnt and(r) is burnt. In this
case we obtain

←−
R + J +

−→
S .

Theorem 3.5In this case, whenJ intersects with
←−−
DF , the

combustion wave is extinguished for some case. Furthermore,
we observe thatDF may be transformed intoDT .

-

6
t

x
(−ǫ,0) (ǫ,0)

(l) (m) (r)

J
←−−
DT

Fig. 26. The interaction ofJ and
←−−
DT .

-

6

u

p

p

(l)=(m)(r)

←−−
DT

Fig. 27. The wave curves in(u, p).

−−→
DT

−−→
DF

−→
S

−→
R

←−
S

←−
R

Case 3.6.J and
←−−
DT (Fig. 26.)

Case 3.6.1(l) is burnt,(m) is burnt and(r) is unburnt. There
are at most two intersection points (Fig. 27.), we should
select the solution fromGEC.

For simplicity, we denote respectively⋆5, ⋆6 the intersec-
tion point of

←−
WS(l) and

−→
WS(r),

−−→
DT (r). The temperature is

T5, T6 at the point⋆5, ⋆6 respectively.
(1) WhenTl > Ti, T6 > Ti, thenη(⋆5) = 1, η(⋆6) = 1,

we pick out⋆6 and get
←−
S + J +

−−→
DT .

(2) WhenTl > Ti, T6 ≤ Ti(⇒ T5 ≤ Ti), thenη(⋆5) = 1,
η(⋆6) = 3, we pick out⋆5 and get

←−
S + J +

−→
S .

(3) WhenTl ≤ Ti, T5 ≤ Ti, thenη(⋆5) = 0, η(⋆6) = 2,
we pick out⋆5 and get

←−
S + J +

−→
S .

(4) WhenTl ≤ Ti, T5 > Ti(⇒ T6 > Ti), thenη(⋆5) = 2,
η(⋆6) = 2, we pick out⋆6 and get

←−
S + J +

−−→
DT .

Case 3.6.2(l) is unburnt,(m) is unburnt and(r) is unburnt.

Since η = 0 for the intersection point of
←−
WS(l) and

−→
WS(r), andη > 0 for the other intersection points, we get
←−
S + J +

−→
S .

Case 3.6.3(l) is unburnt,(m) is unburnt and(r) is burnt.
There are at most two intersection points (Fig. 27.), we
should select the solution fromGEC. For simplicity, we
denote respectively⋆7, ⋆8 the intersection point of

←−
WS(l),←−−

DF (l) and
−→
WS(r). The temperature isT7, T8 at the point

⋆7, ⋆8 respectively.
(1) WhenTr > Ti, T8 > Ti, thenη(⋆7) = 1, η(⋆8) = 1,

we pick out⋆8 and get
←−−
DT + J +

−→
S .

(2) WhenTr > Ti, T8 ≤ Ti(⇒ T7 ≤ Ti), thenη(⋆7) = 1,
η(⋆8) = 3, we pick out⋆7 and get

←−
S + J +

−→
S .

(3) WhenTr ≤ Ti, T7 ≤ Ti, thenη(⋆7) = 0, η(⋆8) = 2,
we pick out⋆7 and get

←−
S + J +

−→
S .

(4) WhenTr ≤ Ti, T7 > Ti(⇒ T8 > Ti), thenη(⋆7) = 2,
η(⋆8) = 2, we pick out⋆8 and get

←−−
DT + J +

−→
S .

Case 3.6.4(l) is burnt,(m) is burnt and(r) is burnt. Since
there is unique intersection point of

←−
W (l) and

−→
W (r) (Fig.

27.), the solution is
←−
S + J +

−→
S .

Theorem 3.6 In this case, asJ intersects with
←−−
DT , the

combustion wave may be extinguished.

IV. CONCLUSION

Now we conclude our main results as follows.
There exists uniquely the solution of (1) and (5). By inves-

tigating the detailed elementary wave interactions, we capture
that for some cases the combustion process is extinguished
which shows the instability of the unburnt gas. Moreover,
we also see the transition from the deflagration wave to the
detonation wave.

We assume that the reaction rate of (1) is infinite for
simplicity. It is the important model to investigate the com-
bustion problem in many applications, while it has some
limitations due to the idealized assumptions. In the further
works, we will discuss the construction of solutions for the
self-similar ZND model which has the finite reaction rate.
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