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Perturbed Initial Value Problem for Chaplygin
System with Combustion

Yujin Liu and Wenhua Sun

Abstract—In the present paper, the authors consider the  In [14] they discussed the SZND model
perturbed initial value problem of the Chapman-Jouguet model

for the Chaplygin gas. We obtain the unique solution by up +ps =0,

analyzing the elementary waves under the global entropy T — Uy =0,

conditions. We observe that the combustion wave solution may E; + (up), =0, (3)
be extinguished after perturbation which tells the instability of Qa,t) = —k (T)

the unburnt gas. And we also capture the transitions between Tt 7

the deflagration wave and the detonation wave. here ¢ is the Heaviside function and they got the solution

Index Terms—Wave interaction, Riemann problem, Detona- uniquely. In [15] the authors studied the limit behaviors of

tion wave, Deflagration wave, Chaplygin gas. the solutions.
In [16], we investigated the Riemann problem for (1) and
I. INTRODUCTION | (7w, Q),  whenz <0, 4)
N this study we investigate the ideal combustible Chap- (m,u,p, Q) = (77, ur, prs Qr), Whenz > 0.

lygin gas equations . . .
yain 9 g In [17], we studied the wave interactions for (1) when the

pt + (pu)z = 0, solutions contain ne;.
(pu)i + (pu* +p)e =0, In the present study, we analyze (1) and
(PE): + (puE + pu), = 0,
0, if sup T'(z,z)> Ty (1) (71, ut, 1), —00 <& < —€
Qz,t) = [ os=st (1w, p)(,0) = ¢ (Tm, Um, Pm), —€<a <e (5)
’ Q(l‘, 0)7 if ()iugtT(m, z) <T; (Tr; urapr)v €< x <o,

wherep is the densityy is the velocityp < 0 is the pressure. where the parameter > 0 is arbitrary and small enough.

T andT; are respg:ctively the temperature and the ignitioﬁ/e otbsetrve th?tt:]or th,e_m?St plma;r.t 1) f‘;’mdté‘l) cart1 pl;ef_erve

temperaturel = % + ¢ + Q and ¢ = _2% is the internal r?'ls :cuc ure of the o_rlglnahso ution after the perturbation,

energy,@ is the chemical binding energy. The state equatiovﬁ lle for some situations, the perturbation can brl_ng about

is p = —1. We suppose that the process of combustion pgnificant changes. [t is shown that the combustion wave
£ y be extinguished, and we capture the transitions between

exothermic [1]. The discussions about the Chaplygin gas e defl . d the detonai
shown in [2], [3], [4], [5], [6]. e deflagration wave and the detonation wave.

In [7], they discussed the delta shock and the vacuum statér_h's.art'Cle IS organlzed as follows. we give the pre"?“"
problem in detail by letting) — 0. naries in Il. In Section Ill, we construct uniquely the solution

In [8], they studied the Riemann solutions, and investigatdd (1) and (5) ?cc_ording the different cases. Section IV gives
the asymptotic behavior. The Riemann problem was studigHa main conclusions.
in [9], [10], [11].

We usually apply the two simplified models [1], [12] to Il. PRELIMINARIES
study the combustion phenomena. In [13], they studied thegq, ihe |ater study,

. . . , ! we give some preliminaries [16], [18],
idealized CJ model in Lagrangian coordinates

[19], [20]. The characteristic roots of (1) are described by

Ut + Pz = 0, — —
thuxio, )\1:11,7’/71), )\QZU, )\3:U+ Tp (6)
0, it sup T(z,2) > T}; (2) The ng_ht characteristic vector ok, A2, A3 is given
Qa,t) = 0<2<t respectively by
' Q(z,0), if sup T(x,2) <T;, 1 5
0<2<t 7=(1,-=,/-5-9T, #=(1,00)",
hereT:%,p>0. PV PP
7 — (1 1 P DT
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and? )(or S )) is given by »
t
{ oy (8) u
u—u_ 1 , p , (— _
- =t/ 5, (p—>porp_ <p). S(*) a (=)
J is described by §(—) F(-)
[u] = [p] = 0. ”
9 . .
{ P ?é . ( ) Fig. 1.(i) The backward wave curves.
p
Suppose i
p = po+ o(t)5(z — (1)), po = { oo e CANE
+> 5 (10) (+)
u_, =< x(t), R RN
u(z,t) =< us, x=ux(t), (11)
Uy, X > Z(t)a
Fig. 1.(ii) The forward wave curves.
P, x<a(t), _
p(z,t) =< 0, x=u(t), (12) When@, > 0, W(r) is given by as follows
Py, T > Jj(f,)
W(r) = We(r) U Ss(r) UDE(r) U DT(r)

Whenp, # p-,
- and the forward noncombustion wave CLR@ U ?

described byWS( ).

t)=pps(uy —u)?>—(py —p_)(py —p-) ¢t

dw(t) pT
pPut+ — p-u—+ —5
Us = s w
P+ — P- DT
whenpy = p_, (utp+);
(usps—2p4q0)
o(t) = (p—u— — pruy)t f
1
us = §(u+ +u-). Fig. 2. Combustion wave itfu, p).
Further, the entropy condition dis is given by For the situation tha®), = 0, Q; = 0, it is discussed in
da(t) the paper [19]. Therefore, we investigate the following cases.

p

The noncombustion wave curves are giver(dnp) (Fig. T
1.(i) and Fig. 1.(ii)) o u
On the other hand, the R-H relations S (l)"'---..?(__t)”

[l = [p), Y
Clr] = —[u], Ry \
C[E] ] / R(l)
Y4
reveal that

—Tep + T = 2q0 > 0. Fig. 3. WhenQ; = 0, Q, = qo > O.

B(Jr) in (u,p) (Fig. 2.) is described by Case 2.1WhenQ, = 0. O, — g0 > 0 (Fig. 3.).

— Notice thatl¥ (1) W (1)USs(1), andiV (r) = Ws(r)U
B+ ?“*=¢—M°T*@$), 60y S0 DR DT
PP+ S Subcase 2.1.Uf w —u, < \/-E +  /-Ec and the

wherepy <p<0orp<py— T . The detonation wave intersection point OW andW( ) is not unique, we should
curve corresponds tp; < p <0 and the deflagration wave get uniquely the solut|0n fronglobal entropy conditions
curve corresponds tp < py — 2qop+ [1]. (GEC):
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(i) n is as small as possible, whefgeis defined by the '
oscillation frequency of (n) between(n € R' : T(n) < T;} l ¥
and {n € R' : T(n) > Ti}; SorR Sor®
(ii) the combustion wave is as many as possible. '
*1 ir)]d*g are respectively the intersection pointsl%fg(l)
with W s(r), DE'(r) or DT(r). The temperature at the point
*1, x2 IS respectively denoted ¥, 7% (Fig. 5. and Fig. 6.).
(1) Iif T, > T;, Ty > T3, thenT] *1) =1, 77(*2) =1, due
to (i), we select and gain?or% + J+ DForDT (Fig. t 5
4.); br
@it T > T, T < T(= T1 < Ty), thenn(x) = 1, "
7%*2) = 3, due to(i), we selectx; and gain?orR +J+
orﬁ (Fig. 5.);

Fig. 7.(i) Solution of the point A.

SorR

(3) if T, <T; T <1T;, thenn(*l) =0, 7’](*2 = 2, due
to (i), we select; and gainS or R +J + Sor E (Fig. 5.): Fig. 7.(i) Solution of the point B.
(4) if T <T; T > TL(i T > TL'), thenn((tl) = 2,
n(x2) = 2, due to(ii), we selectk, and gainSorR + J + t J BE
DForDT(Fig. 4.). I Gor' :

<T; >T;

T,
<T, <1

DF or DT

Fig. 7.(iii) Solution of the point C.

t

- J
Fig. 4. Combustion wave solution. F ﬁ)«’
>T; >T;
P
- <Ti \ ! <T;

Sor R __.-': v To B : v

T Fig. 7.(iv) Solution of the point D.

T,

; Since we haven = 0 for Fig.l.(i), n = 2 for the other
Fig. 5. Non-combustion wave solution. cases, we select A and gaﬁOT’R +J+ Sor

Subcase 2.2.2Vhenwu; — u, > ,/fﬁ—f + /fﬁ—”‘, we gain
the S5 solution.

Subcase 2.1.2A —u, > B —LE- "we obtain the . . .
S St e 2 ot oo W ! Theorem 2.1There is unique solution of (1) and (4).

delta shock wave solutiofs (see [17], [18], [19]).

Case 2.2When@; > 0, Q, > 0 (Fig. 6.). [1l. I NITIAL PROBEM OF (1) AND(5)
We know tﬂ)atW(l) = Ws(t) U Ss(1) u DTy U DF(), When S; appears, we just investigate the cases containing
andW(r) = Wg(r) U Ss(r) U DT'(r) U DF(r). the interesting combustion phenomena for simplicity. In the

following we discuss the six kinds of wave interactionss:
and@% andDF, S; and DT, S; and DE, J and DF,
J and DT.

u :

S5 bT
(1) (m) (r)
(—€,0) (€,0)

Fig. 6. When@; > 0, Q, > 0. Fig. 8. The interaction of5s and E"

Subcase 2.2.1When w; — u, < /=L 4 /-L* (Fig. cCase 3.1.55 and DT (Fig. 8.) We divide the discussions
7.() (i iy (iv)). into four subcases as follows.
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Case 3.1.1() is burnt,(m) is unburnt andr) is unburnt.

t 7 3%
S o ® _
Sinceu,,, — p'" <os < U — for S5, andw,. — ;
<T; ;: >T;
Lo < Uy — 1/ P for §3T 55 WI|| overtake DT 7
<T; 3 K

in the finite time. Not|ce thaul — Uy > )~ ’Iji A/ /’jm : ’

we proceed as follows. hle > _% + _%, we get Fig. 11.(ii) Solution of the point 2.
the S5 solution; otherwise (Fig. 9.), we find the perturbed

. . t
solution is SorR + J + DT 57 J
T 7
STy, | >T)
P i
T <T; <T;
= T
u Fig. 11.(iii) Solution of the point 3.

Case 3.1.3) is unburnt,(m) is unburnt andr) is burnt.

If w —u, > 1;; ”T , we obtainSs, otherwise,
W(l) intersects WltHW( ) unlquely, it yields thaﬁUrJJr
(Fig. 12.).

Fig. 9. The wave curves i, p) for Subcase 3.1.1.

Case 3.1.4(1) is burnt, (m) is unburnt andr) is burnt.

Case 3.1.21) is unburnt,(m) is unburnt andr) is unburnt. ~ Fromu; —u, >, /=% + /==, we get theS; solution
(Fig. 13.).
If w —w, > Jg—; + f%, we know that the perturbed
solution is the delta shock wave solution; otherwise, we get T b

the perturbed solution und&EC since for this case there
is at most three intersection points (Fig. 10.).

Fig. 12. The wave curves ifw, p).

Fig. 10. The wave curves ifu, p) for Subcase 3.1.2.

Sincen = 2 for intersection point 1, 2, 3 (Fig. 11.(i)-(iii)),
from GEG, we getDT + J + DT' (Fig. 11.(iii)).

t Fig. 13. The wave curves ifw, p).
i
br f S o B
>T; ':
Theorem 3.1When S5 intersects Withﬁ“, the combus-
<Ti tion wave may be extinguished. And for this case, it may

x

Fig. 11.() Solution of the point 1 produce the combustion wave in the opposite direction.

Case 3.2.9; and DT (Fig. 14.)

Volume 53, Issue 4: December 2023



TAENG International Journal of Applied Mathematics, 53:4, [JAM 53 4 30

DT
(r)

Ss
U] (m
—e0) (0)
Fig. 14. The interaction ofs and DT

T

Case 3.2.1(1) is burnt, (m) is burnt and(r) is unburnt.

Since S5 will overtake the combustion wave, we consider

the fact thatu; — u,, > /=5 4, /—E=, and get thaty —

up > /=E+ /=L It yields that the perturbed solution
is described by the delta shock wave (Fig. 15.)
Case 3.2.2(1) is unburnt,(m) is burnt and(r) is unburnt.

Due tou; —u,, > /-2 + . /—B2 we konwu; — u, >
1 0

P Pm
/L [ px
o+ £, and get theS;

with Case 3.1.2, we gebT + J + DT.
Theorem 3.2When S intersects Witﬁ, the detonation
wave may be extinguished. And the detonation wave m

soltuin(Fig. 16.). Similar

Case 3.3.1(1) is burnt,(m) is unburnt and(r) is unburnt.
Sinceu; — uy, > —% + —%, we discuss as follows.

,/—ﬁ—f + /—ﬁ—f, we get theSs solution;

iRV Al W(l) intersects with

() uniquely, the perturbed solution S or R + .J + DT,

Whenu; — u, >

when u; — u, <

othersize, there are at most two intersection points (Fig. 18.),

we should select the solution accordingG&C.

T

P

b7

Fig. 18. The wave curves ifw, p).

ayFor simplicity, we denote respectively, xp the intersec-

persist and the combustion wave in the opposite directi@n Point of Ws(l) andWs(r), D‘T)(T)- The temperature is

may produce.

(7”)é
;) /

Fig. 15. The wave curves ifu, p).

B /

Fig. 16. The wave curves ifwu, p).

Case 3.3.5; and DF (Fig. 17.)

t

|

bF
(m) (r)
(—€,0)  (€,0)
Fig. 17. The interaction ofs and bF.

Ss
()

x

Volume 53, Issue 4

Ts, Tp at the pointxg, xp respectively.

(1) WhenT, > T;, Tp > T;, thenn(xs) = 1, n(*p) = 1,
we pick outxp and getSor R + J + DT.

(2) WhenT; > T;,Tp < Ti(= Tsé Tg)_’ thenn(*
n(*p) = 3, we pick outxg and getSorR + J + §§

(3) WhenT,; < T3, T5<_§ T-&thenn(* ) =0, n(*xp) =2,
we pick outxg and getSorR + J + §0r

(4)WhenT; <T;,Ts > T;(= TDg Ti&thenn(*s) =2,
n(*p) = 2, we pick outxp and getSorR + J + DT.

) =1L
or

Fig. 19. The wave curves ifu, p).

Case 3.3.21) is unburnt,(m) is unburnt andr) is unburnt.
y2i

B+, /—%, we discuss as follows.
by /—%, we get theS; solution;

—b+ /-5 and W(l) intersects with

pL
W/(r) uniquely, we get<§or<1§ +J+ lﬁ otherwise (Fig.
19.), Since we havg = 0 corresponding to the intersection
point 1, andn = 2 for the other intersection points 2, 3, 4,
from GEC, we pick out the point 1 and ge¥ + J + S'.

Sinceu; — Uy, > 4/ —
Whenu; — u, >

whenu; —u, <

: December 2023



TAENG International Journal of Applied Mathematics, 53:4, [JAM 53 4 30

Fig. 20. The wave curves ifw, p).

Case 3.3.3(1) is unburnt,(m) is unburnt and(r) is burnt.

Due tou; — u,y, > —% :

_Pr
1
=

Whenu; — u, > /2

—B e W(l) intersects with

W () uniquely, it follows thatDT +.J + S or &, otherwise,

whenu; — u, <

there are at most two intersection points (Fig. 20.), we should

select the solution according BEC.

(1) WhenT,. >T;, Tp > 1T;, then (*S) =1, n(*D) =1,
we pick outxp and getﬁ“ +J+ SorR.

(2) WhenT,. > T;,Tp < T;(= Tsé T@ thenn(ag) =1,
n(*xp) = 3, we pick outxg and getSorR + J + Sor

(3) WhenT,. < T;, TS<_§ T@ thenn(ag) =0, n(*xp) =2,
we pick outxs and getSorR + J + Sor

(4) WhenT, <T;, Ts > T;(= Tp > T;), thenn(xs) =
2, n(xp) = 2, we pick outxp and geﬁT +J+ Sork.

t

|

DF
(r)

Ss
(1) (m
(—€,0) (€,0)

Fig. 21. The interaction 0§ and DT.

x

Fig. 22. The wave curves ifw, p).

Case 3.3.41) is burnt,(m) is unburnt andr) is burnt. Due

_ > __ b __Dm
0 U —um 2 Pl + pm’

> —m _Dr
U‘l U7 - P + IJT,

= =
up — Uy < —%Jr,/—%,we getSorR+J+§>.

Theorem 3.3In this case, as; intersects Withﬁ?, the

./—2=, we go on discussing.

we get theSs solution; when

Case 3.4.5; and DE (Fig. 21.)

Case 3.4.1(1) is burnt, (m) is burnt and(r) is unburnt.
Due tou; —1,, > —%Jm /—%, we know thatu;—u, >

ﬁJr \ /—% (Fig. 22.), and the perturbed solution is the

elta shock wave.

Case 3.4.2(1) is unburnt,(m) is burnt and(r) is unburnt.
Due to the factu; — u,, > \/T% + —ﬁ— we know

that if u; — u, > pr

similar discussions with Case 3.1.2, we gel’ + J + DT
(Fig. 23.).

1/J;%, we get.Sy; otherwise,

(m)

Fig. 23. The wave curves ifw, p).

Theorem 3.41In this case, wherb; intersects withD‘F>,
the deflagration wave is extinguished for some case. Further-
more, we find thatDF' may be transformed int®T'.

Case 3.5.7 and DF (Fig. 24.)
t

J DF
(m) (r)

(—€,0)  (€,0)
Fig. 24. The interaction off and bF.

)

x

Fig. 25. The wave curves ifu, p).

Case 3.5.11) is burnt,(m) is burntandr) is unburnt. There
are at most two intersection points (Fig. 25.), we should
select the solution according 6EC.

(1) WhenT; > T;, TQ%> T;, thenn(x1) = 1, n(*2) = 1,

we proceed to discuss. When pick outx, and getR + J + DT.

(2) WhenT’l >T;, Ty < TL(:> T < TL‘), then’ﬂ(*l) =1,
n(*2) = 3, we pick outx; and getR +.J + S'.
(3) WhenT, < T;, Ty < T;, thenn(x1) = 0, n(x2)
. s
we pick outx; and getR +J + S.

21

combustion wave is extinguished. Furthermore, we observe(4) WhenT; < T;, Ty > T;(= T; > T;), thenn(x1) = 2,

DF may be transformed int®&T'.

n(*2) = 2, we pick outx, and getR + J + DT

Volume 53, Issue 4: December 2023
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Case 3.5.2(1) is unburnt,(m) is unburnt andr) is unburnt Slnce n = 0 for the intersection point oﬁ/I_/ ) and

(Fig. 25.). WS( ), andn > 0 for the other intersection pomts, we get
Since we have) = 0, from GEC, we getR+J+§> §+J+

Case 3.5.3(1) is unburnt,(m) is unburnt and(r) is burnt. Case 3.6.3(1) is unburnt,(m) is unburnt and(r) is burnt.

There are at most two intersection points (Fig. 25.), Wehere are at most two intersection points (Fig. 27.), we

should select the solution according®&EC. For simplicity, should select the solution froBEC. For simplicity, we

we denote respectivelys, x4 the intersection point of denote respectively,, s the intersection point otV (1),
s(), DF(1) and Ws(r). The temperature igs, T at DF(1) and W s(r). The temperature i§%, Tx at the point

the pointxs, x4 respectively. *7, *g respectively.

(1) WhenT,. > T;, Ty > T;, thenn(xs) = 1, n(x4) =1, (1) WhenT, > T}, Ty > T}, thenn(x7) = 1, n(xs) = 1,
we pick outx4 and getDF' + J 4 5. we pick outxg and getDT + J +

(2) WhenT,. > Ty, Ty < Ty(= T;(;_S T;), thenn(x3) =1, (2) WhenT,. > T;, Ts < T;(= T7; < T;), thenn(x7) = 1,
n(x4) = 3, we pick outxz and getR +.J + 5. n(*g) = 3, we pick outx; and getg +J+

(3) WhenT,. < T, Ty < T;, thenn(x3) = 0, 1(x1) =2, (3) WhenT, < T, T; < T}, thenn(x7) = 0, n(xs) = 2,
we pick outxz and getR +J + S. we pick outx; and getg + J+

(4) WhenT,. < T;, T3 > Ty(= Ty > T0), thenn(xs) = 2, (4) WhenT, < T}, Ty > Ti(= Ts > T}), thenn(x7) = 2,
n(*4) = 2, we pick outxs and getDF + J + S. n(xs) = 2, we pick outxs and ge T+ J+
Case 3.5.41) is burnt,(im) is burnt and(r) is burnt. In this - Case 3.6.4(1) is burnt, (m) is burnt and(r) is burnt. Since
case we obtain® + J + there is unique intersection point ®F(!) and W (r) (Fig.

Theorem 3.5In this case, whed intersects wnlﬁF the 27.), the solution isS + J + 8

combustion wave is extinguished for some case. FurthermoreTheorem 3.61n this case, ag/ intersects wnhﬁf the
we observe thaD F' may be transformed int®7". combustion wave may be extinguished.

t

IV. CONCLUSION

Now we conclude our main results as follows.
There exists uniquely the solution of (1) and (5). By inves-

J br tigating the detailed elementary wave interactions, we capture
) (m) (r) that for some cases the combustion process is extinguished
—e0)  (€0) z which shows the instability of the unburnt gas. Moreover,

we also see the transition from the deflagration wave to the
detonation wave.
Tp We assume that the reaction rate of (1) is infinite for
simplicity. It is the important model to investigate the com-
bustion problem in many applications, while it has some
limitations due to the idealized assumptions. In the further
works, we will discuss the construction of solutions for the
self-similar ZND model which has the finite reaction rate.

Fig. 26. The interaction off and DT
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