
 

  

Abstract—Bipolar objects are widespread in nature, and 

their two attributes describe the opposition and unity of the 

things. Motivated by characterizing fuzzy topological structures 

by means of fuzzy graphs, we propose a bipolar fuzzy 

topological graph to measure the features of bipolar fuzzy 

systems. The topological characteristics in bipolar neutrosophic 

and bipolar interval-valued fuzzy settings are discussed as well. 

Several instances are manifested to clarify new definitions and 

conclusions. Furthermore, the properties of edge calculating 

and graph isomorphic are determined. 
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I. INTRODUCTION 

uzzy graph research has witnessed many years of 

contributions from scholars. Kauffman [1] first 

defined the framework of fuzzy graph which was later 

expanded by Rosenfield [2]. Akram [3] argued a bipolar 

fuzzy graph, and several properties and applications were 

obtained in [4] and [5]. Yang et al. [6] suggested a 

generalized version of bipolar fuzzy graphs. Furthermore, 

fuzzy line graph, fuzzy tree, fuzzy block, fuzzy planner graph, 

and fuzzy incidence graph were introduced by Mordeson [7], 

Sunitha and Vijayakumar [8, 9], Samanta and Pal [10] and 

Dinesh [11] respectively. Fuzzy graph models have been 

prevalent and widely used in various decision-making 

algorithms and applications in recent years (Sitara et al. [12], 

Jia et al. [13], Karaaslan [14], and Akram et al. [15], [16] and 

[17]). 

The topological indices of graph structures are widely 

investigated (see Gao et al. [18], [19] and [20], Anuradha et al. 

[21], Azeem et al. [22] and Mondal et al. [23]). Notably, the 

topological indices of various fuzzy graphs in distinct 

settings are studied. Authors in [24] revised the concepts of 

fuzzy graphs (FGs), and they defined and researched fuzzy 

connectivity and distance-based indices for fuzzy graph 
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setting (see [25], [26] and [27]), including the bipolar fuzzy 

connectivity index and bipolar fuzzy Wiener index. Binu [28] 

applied the fuzzy Wiener index to illegal immigration 

networks, and Ali et al. [29] considered the fuzzy graphs with 

the Hamiltonian cycle.  

Recently, Atef et al. [30] characterized the fuzzy 

topological (FT) structures of fuzzy sets (FSs) by means of 

FGs and applied them in smart cities. Fueled by this 

contribution, we aim to feature the fuzzy topological 

structures of bipolar fuzzy set (BFS), neutrosophic set (NS), 

bipolar neutrosophic set (BNS), interval-valued fuzzy set 

(IVFS), and bipolar interval-valued fuzzy set (BIVFS) in 

light of FGs called a bipolar fuzzy topological graph (BFTG), 

neutrosophic topology graph (NTG), bipolar neutrosophic 

topology graph (BNTG), interval-valued fuzzy topology 

graph (IVFTG) and bipolar interval-valued fuzzy topology 

graph (BIVFTG), respectively.  

The following parts of this work are built as follows: 

concepts and notations are introduced first; then the parallel 

classes and their fuzzy graphs in various settings are 

determined; new algebraic operations on fuzzy topological 

graphs in different settings are presented subsequently. The 

main conclusions are manifested in Section III and Section 

IV, and each section is divided into several subsections 

corresponding to different settings. The arguments are stated 

in this paper along with some examples to clearly explain the 

connotation of contents.  

Note that the bipolar fuzzy graph in this article has 

analogous definitions from the bipolar fuzzy graph in [14-17, 

24-28], but it still involves tiny differences. The bipolar fuzzy 

graph in other articles are fuzzy graph structure itself, and its 

edge membership function (MF) and vertex set MF are 

determined by the fuzzy data itself. However, the bipolar 

fuzzy graph (BFG) in this article is determined by the 

relationship of bipolar sets in special settings, and a vertex in 

the BFG represents a BFS. This essential difference is also 

applied to neutrosophic graphs (NGs), bipolar neutrosophic 

graphs (BNGs), etc. 

 

II. PRELIMINARIES 

The purpose here is to review the concepts and 

terminologies of FSs, NSs, BNSs, IVFSs and BIVFSs. 

Let V be a universal set (US) with at least one element, 

and {( , ( ), ( )) : }P N

K KK v v v v V =   be a BFS in V if 

two maps satisfy : [0,1]P

K V →  and : [ 1,0]N

K V → − . 

V  or   in short is a null BFS on V such that 
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( ) ( ) 0N Pv v  = =  for any v V .  is absolute BFS 

on V if ( ) 1P v =  and ( ) 1N v = −  for all v V .  

Let 
1 11 {( , ( ), ( ))}S SS v v v + −=  and 

2 {( ,S v=  

2 2
( ), ( ))}S Sv v + −

be two BFSs on V. If 
1 2
( ) ( )S Sv v + +  

and 
1 2
( ) ( )S Sv v − −  hold for any v V ,  then we say 

1S  

is a bipolar fuzzy subset of 
2S , denoted by 

1 2S S . If 
1S  

is a part of 
2S , then we say 

1S  is a bipolar fuzzy partial 

subset of 
2S . 

Let G and G’ be two fuzzy graphs (bipolar fuzzy graph, 

interval-valued fuzzy graph or others). The two graphs are 

isomorphic 'G G , if there is a bijective : 'f V V→  to 

establish a corresponding one-to-one relationship for the 

vertex and edge membership functions. 

Tehrim [31] introduced the bipolar fuzzy topology as 

follows: let V be a universal set, ( )BF V  be the family of all 

bipolar fuzzy sets on V, {( ,1, 1),X v= − } ( )v V BF V   

be an absolute bipolar fuzzy set, ( )X  be the class of all 

bipolar fuzzy subsets of X, and   be the subclass of ( )X . 

Then   is a bipolar fuzzy topology if (i) , X   , where 

{( ,0,0), }v v V =  ; (ii) 1 2,S S   
1 2S S   ; (iii) 

lS   where 
l

l

l S


 


   . If   is a bipolar fuzzy 

topological on X , then ( , )V   is a bipolar fuzzy topological 

space over X . 

For a universal set V, a neutrosophic set is denoted by 

{( , ( ), ( ), ( )) : }K K KK v T v I v F v v V=  , 

where , , [0,1]K K KT I F   denotes the membership value of 

truthness, indeterminacy and falsity, respectively. Thus, 

0 3K K KT I F + +  . The basic operation of inclusion, 

equality, union, intersection and complement can be referred 

to Tang [32].  

Let {( ,0,1,1)) : }v v V =   and {X = ( ,1,0,0)) : }v v V  be 

null neutrosophic set and absolute neutrosophic set 

respectively. Let V be a universal set, ( )N V  be the family of 

all neutrosophic sets on V, ( )X N V  be an absolute 

neutrosophic set, ( )X  be the class of all neutrosophic 

subsets of X, and   be the subclass of ( )X . Then  is 

called neutrosophic topology if (i) , X   ; (ii) 

1 2,S S
1 2S S     ; (iii) lS   where l   

l

l

S





  . If   is a neutrosophic topological on X , then 

( , )V   is the neutrosophic topological space over X . 

The bipolar neutrosophic set of the universal set V is 

formulated by 

{( , ( ), ( ), ( ), ( ), ( ), ( )) : }K K K K K KK v T v I v F v T v I v F v v V+ + + − − −=  , 

where ( ), ( ), ( ) [0,1]K K KT v I v F v+ + +   are positive membership of 

truthness, indeterminacy and falsity respectively; and 

( ), ( ), ( ) [ 1,0]K K KT v I v F v− − −  −  are negative membership of 

truthness, indeterminacy and falsity respectively. The basic 

operations of inclusion, equality, union, intersection and 

complement can be referred to Zhu et al. [33] and Ali et al. 

[34].  

Let {( ,0,1,1,0, 1, 1)) : }v v V = − −   and {( ,X v=  

1,0,0, 1,0,0)) : }v V−  be a null bipolar neutrosophic set 

and an absolute bipolar neutrosophic set respectively. Let V 

be a US, ( )BN V  be the family of all bipolar neutrosophic 

sets on V, ( )X BN V  be an absolute bipolar neutrosophic 

set, ( )X  be the class of all bipolar neutrosophic subsets 

of X, and   be the subclass of ( )X . Then   is called 

bipolar neutrosophic topology if (i) , X   ; (ii) 

1 2 1 2,S S S S     ; (iii) lS   where 
l

l

l S


 


    

(see Tehrim [31]). If   is a bipolar neutrosophic topological 

on X , then ( , )V   is the bipolar neutrosophic topological 

space over X . 

For the universal set V, an interval-valued fuzzy set is 

denoted by 

{( ,[ ( ), ( )]) : }l u

K KK v v v v V + +=  , 

where 0 ( ) ( ) 1l u

K Kv v + +   and [ ( ),l

K v+ ( )]u

K v+
 is 

an interval in [0,1]. Let {( ,[0,0]))v = : }v V  and 

{( ,[1,1])) : }X v v V=   be a null IVFS and an absolute 

interval-valued fuzzy set respectively. Let V be a US, 

( )IVF V  be the family of all interval-valued fuzzy sets on V, 

( )X IVF V  be an absolute interval-valued fuzzy set, 

( )X  be the class of all interval-valued fuzzy subsets of 

X, and   be the subclass of ( )X . Then   is called 

interval-valued fuzzy topology  (IVFT) if (i) , X   ; (ii) 

1 2 1 2,S S S S     ; (iii) lS  where l 
l

l

S





  . 

If  is an IVFT on X , then ( , )V   is interval-valued fuzzy 

topological space over X . 

For a universal set V, a bipolar interval-valued fuzzy set is 

denoted by 

{( ,[ ( ), ( )],[ ( ), ( )]) : }l u l u

K K K KK v v v v v v V   + + − −=  , 

where 0 ( ) ( ) 1l u

K Kv v + +   , 1 ( ) ( ) 0l u

K Kv v − −−    , 

[ ( ), ( )]l u

K Kv v + +
 is an interval in [0,1] and [ ( ),l

K v−
  

( )]u

K v−
 is an interval in [-1,0]. Let {( ,[0,0],v =  

[0,0])) : }v V  and {( ,[1,1],X v= [ 1, 1])) : }v V− −   

be a null bipolar interval-valued fuzzy set and an absolute 

bipolar interval-valued fuzzy set respectively. Let V be a US, 

( )BIVF V  be the family of all BIVFSs on V, 

( )X BIVF V  be an absolute bipolar interval-valued 

fuzzy set, ( )X  be the class of all bipolar 

interval-valued fuzzy subsets of X, and   be the subclass of 

( )X . Then   is called bipolar interval-valued fuzzy 

topology (BIVFT) if (i) , X   ; (ii) 1 2,S S  

1 2S S     ; (iii) lS   where l    
l

l

S





 . 
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If   is a BIVFT on X , then ( , )V   is bipolar 

interval-valued fuzzy topological space over X  [35]. 

If two graphs 1G  and 2G  are obtained from the 

neutrosophic set, bipolar neutrosophic set, interval-valued 

fuzzy set or interval valued bipolar fuzzy set, then we can 

define the isomorphism 1 2G G  using the same fashion as 

in the bipolar setting. 

 

III. PARALLEL CLASSES 

We raise new concepts of parallel classes of bipolar 

fuzzy set, NSs, BNSs, interval-valued fuzzy sets and 

BIVFSs. 

A. Parallel classes in bipolar fuzzy setting 

Definition 1. Let V be a universal set, ( )BF V  be the 

class of all bipolar fuzzy sets of V, and 
1 2, ( )C C BF V . 

We say 1C  is parallel to 2C  (denoted by X Y , where 

,X Y  are bipolar fuzzy sets in ( )BF V , each element in 

1C  is a bipolar fuzzy partial subset of X, and each element in 

2C  is a bipolar fuzzy partial subset of Y), if there exists a 

bijective bipolar fuzzy mapping :F X Y→  such that for 

any 1 1c C , we have 1 2( )F c c=  and 2 2c C . Let 

X Y= . In this case, 1C  is parallel to 2C  if there exists a 

bijective bipolar fuzzy mapping :F X X→  satisfying 

1 2( )F C C= . 

Example 1. Let 1 2 3{ , , }V v v v=   be a universal set, 

and 1 2 3{( ,0.4, 0.2), ( ,0.5, 0.3), ( ,0.1, 0.8)}X v v v= − − −  

be a bipolar fuzzy set on V . Set 
1 3{{( ,0.1, 0.8)},C v= −  

1 2 3 1{( ,0.4, 0.2), ( ,0.5, 0.3)},{( ,0.1, 0.8), ( ,0.4, 0.2)}}v v v v− − − − , 

2 1 2 3{{( ,0.4, 0.2)},{( ,0.5, 0.3), ( ,0.1, 0.8)},C v v v= − − −

1 2{( ,0.4, 0.2), ( ,0.5, 0.3)}}v v− − . 

Clearly, all the elements in 1C  and 2C  are the bipolar 

fuzzy partial subsets of X . There is a bijective bipolar 

mapping :F X X→  with  

3 1({( ,0.1, 0.8)}) {( ,0.4, 0.2)}F v v− = − , 

1 2 2 3({( ,0.4, 0.2), ( ,0.5, 0.3)}) {( ,0.5, 0.3), ( ,0.1, 0.8)}F v v v v− − = − − , 

3 1 1 2({( ,0.1, 0.8), ( ,0.4, 0.2)}) {( ,0.4, 0.2), ( ,0.5, 0.3)}F v v v v− − = − − . 

Therefore, 1C  and 2C  are parallel.  

From Example 1, we know that the essence of parallelism 

is the one-to-one correspondence between the elements in the 

bipolar fuzzy set. In this example, we can see the 

correspondence between the following elements in X: 

1 2( ,0.4, 0.2) ( ,0.5, 0.3)Fv v− ⎯⎯→ − , 

2 3( ,0.5, 0.3) ( ,0.1, 0.8)Fv v− ⎯⎯→ − , 

3 1( ,0.1, 0.8) ( ,0.4, 0.2)Fv v− ⎯⎯→ − . 

Next, we argue that any class of BFSs is denoted by a BFG 

in view of operation   between bipolar fuzzy set classes. 

Let 1, , nS S  be bipolar fuzzy sets, 1{ , , }nC S S=  be 

class of these bipolar fuzzy sets and G be a BFG 

corresponding to C. BFG G is constructed as follows: each 

vertex in G corresponds to a BFS among 1, , nS S , and 

there are 
i jS S  edges between vertices iS  and 

jS . The 

following example is applied to illustrate such a kind of BFG. 

Example 2. The classes of BFSs  

1 1 1 2 2{ {( ,0.2, 0.7)}, {( ,0.3, 0.6)},C S v S v= = − = −  

3 1 2{( ,0.2, 0.7), ( ,0.3, 0.6)}}S v v= − − , 

2 4 1 2 3{ {( ,0.2, 0.7), ( ,0.3, 0.6), ( ,0.8, 0.1)},C S v v v= = − − −  

5 4 5 6 3{( ,0.4, 0.6), ( ,0.9, 0.3)}, {( ,0.8, 0.1),S v v S v= − − = −  

4( ,0.4, 0.6)}}v − , 

3 7 3 6 8{ {( ,0.8, 0.1), ( ,0.6, 0.6)},C S v v S= = − − =  

7 8 9{( ,0.4, 0.9), ( ,0.3, 0.5), ( ,0.2, 0.7)},v v v− − −  

9 3 9 10{( ,0.8, 0.1), ( ,0.2, 0.7), ( ,0.4, 0.3)}}S v v v= − − − . 

represent the same bipolar fuzzy graphs which are depicted in 

Fig 1. 

 

Fig 1. A bipolar fuzzy graph represents 1C , 2C  and 3C . 

 

Definition 2. Let { : }iC C i I=   be a collection of all 

classes of a BFS X, and hence iC  can be expressed by the 

same BFG G ({ : }iC i I   which is formulated by the 

graph number of a BFG G).  

Example 3. Consider 1C , 2C  and 3C  as defined in 

Example 2, we get  

1 1 2{( ,0.2, 0.7), ( ,0.3, 0.6)}C v v = − − , 

2 1 2 3{( ,0.2, 0.7), ( ,0.3, 0.6), ( ,0.8, 0.1),C v v v = − − −  

4 5( ,0.4, 0.6), ( ,0.9, 0.3)}v v− − , 

3 3 6 7{( ,0.8, 0.1), ( ,0.6, 0.6), ( ,0.4, 0.9),C v v v = − − −      

8 9( ,0.3, 0.5), ( ,0.2, 0.7),v v− − 10( ,0.4, 0.3)}v − . 

The numbers of a BFG 1C , 2C  and 3C  are 2, 5 

and 6 respectively. 

Next, we argue that any BFG G can be expressed by a class 

of BFSs. Notation   is re-formulated to an operator for 

vertices of BFGs.  

Definition 3. Let G be a BFG and ,i jv v  be two vertices of 

G. Suppose that iv  and 
jv  correspond to bipolar fuzzy sets 

iS  and 
jS  respectively, then ( , )i jN v v  i jS S=  . Note 
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that ( , )i iN v X S=  (resp. ( , )jN v X  
jS= ) if iS  (resp. 

jS ) is a bipolar fuzzy subset of X. 

Example 4. If 1{( ,0.2, 0.7)}iS v= −  and 
1{( ,0.2, 0.7),jS v= −  

2( ,0.3, 0.6)}v − , then 
1{( ,0.2,i jS S v =  0.7)}−  and thus 

( , ) 1i j i jN S S S S=  = . 

Theorem 1. If 1G  and 2G  are two BFGs corresponding 

to two parallel classes 1C  and 2C , then 1 2G G . 

Unfortunately, the converse of Theorem 1 may not 

establish in general since each BFG can express many classes, 

and we use the following example to illustrate it. 

Example 5. Consider the classes of bipolar fuzzy sets  

1 1 1 2 2{ {( ,0.2, 0.7)}, {( ,0.3, 0.6)},C S v S v= = − = −

1 2{( ,0.2, 0.7), ( ,0.3, 0.6)}}v v− − , 

2 4 1 2 3{ {( ,0.2, 0.7), ( ,0.3, 0.6), ( ,0.8, 0.1)},C S v v v= = − − −  

5 4 5 6 3{( ,0.4, 0.6), ( ,0.9, 0.3)}, {( ,0.8, 0.1),S v v S v= − − = −

4( ,0.4, 0.6)}}v − . 

Hence, bipolar fuzzy graphs corresponding to 1C  and 

2C  are isomorphic to each other as depicted in Fig 2, but 1C  

and 2C  are not parallel. 

 

Fig  2. A bipolar fuzzy graph represents 1C  and 2C . 

B. Parallel classes in neutrosophic setting 

Definition 4. Let V be a US, ( )NF V  be the class of all 

NSs of V, and 
1 2, ( )C C NF V . We say 1C  is parallel to 

2C  (denoted by X Y , where ,X Y  are neutrosophic 

sets in ( )NF V , each element in 1C  is a neutrosophic partial 

subset of X, and each element in 2C  is a neutrosophic partial 

subset of Y), if there exists a bijective neutrosophic mapping 

:F X Y→  such that for any 1 1c C , we have 

1 2( )F c c=  and 2 2c C . Let X Y= . Then 1C  is parallel 

to 2C  if there exists a bijective neutrosophic mapping 

:F X X→  satisfying 1 2( )F C C= . 

Example 6. Let 1 2 3{ , , }V v v v=  be a US, 
1{( ,0.3,X v=  

2 30.4,0.2), ( ,0.4,0.8,0.3), ( ,0.1,0.6,0.8)}v v be a NS on V . 

Set 

1 3 1 2{{( ,0.1,0.6,0.8)},{( ,0.3,0.4,0.2), ( ,0.4, 0.8,0.3)},C v v v=

3 1{( ,0.1,0.6,0.8), ( ,0.3,0.4,0.2)}}v v , 

2 1 2 3{{( ,0.3,0.4,0.2)},{( ,0.4,0.8,0.3), ( ,0.1,0.6,0.8)},C v v v=

1 2{( ,0.3,0.4,0.2), ( ,0.4,0.8,0.3)}}v v . 

Obviously, all the elements in 
1C  and 

2C  are the 

neutrosophic partial subsets of X . There is a bijective 

neutrosophic mapping :F X X→  satisfying 

3 1({( ,0.1,0.6,0.8)}) {( ,0.3,0.4,0.2)}F v v= , 

1 2({( ,0.3,0.4,0.2), ( ,0.4,0.8,0.3)})F v v =

2 3{( ,0.4,0.8,0.3), ( ,0.1,0.6,0.8)}v v , 

3 1 1({( ,0.1,0.6,0.8), ( ,0.3,0.4,0.2)}) {( ,0.3,0.4,0.2),F v v v=

2( ,0.4,0.8,0.3)}v . 

Therefore, 1C  and 2C  are parallel.  

In view of Example 6, it is clear that the essence of 

parallelism is the one-to-one correspondence between the 

elements in the neutrosophic set. In this instance, we can see 

the correspondence between the following elements in X: 

1 2( ,0.3,0.4,0.2) ( ,0.4,0.8,0.3)Fv v⎯⎯→ , 

2 3( ,0.4,0.8,0.3) ( ,0.1,0.6,0.8)Fv v⎯⎯→ , 

3 1( ,0.1,0.6,0.8) ( ,0.3,0.4,0.2)Fv v⎯⎯→ . 

Next, it is presented that any class of NSs can be denoted 

by a general NG in view of operation   between 

neutrosophic set classes. Let 1, , nS S  be neutrosophic sets, 

1{ , , }nC S S=  be a class of these neutrosophic sets and G 

be a NG corresponding to C. Neutrosophic graph G is 

constructed as follows: each vertex in G corresponds to a 

neutrosophic set among 1, , nS S , and there are 
i jS S  

edges between vertices iS  and 
jS . The below insance is 

applied to illustrate such a kind of neutrosophic graph. 

Example 7. Consider the classes of neutrosophic sets  

1 1 1 2 2{ {( ,0.4,0.5,0.2)}, {( ,0.5,0.2,0.9)},C S v S v= = =  

3 1 2{( ,0.4,0.5,0.2), ( ,0.5,0.2,0.9)}}S v v= , 

2 4 1 2 3{ {( ,0.4,0.5,0.2), ( ,0.5,0.2,0.9), ( ,0.8,0.7,0.3)},C S v v v= =

5 4 5 6{( ,0.1,0.6,0.9), ( ,0.9,0.3,0.2)},S v v S= =

3 4{( ,0.8,0.7,0.3), ( ,0.1,0.6,0.9)}}v v , 

3 7 3 6 8{ {( ,0.8,0.7,0.3), ( ,0.3,0.6,0.9)},C S v v S= = =  

7 8 9{( ,0.7,0.4,0.1), ( ,0.2,0.5,0.6), ( ,0.3,0.7,0.7)},v v v

9 3 9 10{( ,0.8,0.7,0.3), ( ,0.3,0.7,0.7), ( ,0.6,0.5,0.5)}}S v v v= . 

to represent the same NGs as determined in Fig 3. 

 
Fig 3. A neutrosophic graph represents 

1C , 
2C  and 

3C . 

 

Definition 5. Let { : }iC C i I=   be a collection of all 

classes of a NS X, and thus 
iC  can be represented by the 

same neutrosophic graph G ( { : }iC i I   which is 

formulated as the graph number of a NG G).  

Example 8. Discuss 
1C , 

2C  and 
3C  as given in 

Example 7, we yield  
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1 1 2{( ,0.4,0.5,0.2), ( ,0.5,0.2,0.9)}C v v = , 

2 1 2{( ,0.4,0.5,0.2), ( ,0.5,0.2,0.9),C v v =

3 4 5( ,0.8,0.7,0.3), ( ,0.1,0.6,0.9), ( ,0.9,0.3,0.2)}v v v , 

3 3 6 7{( ,0.8,0.7,0.3), ( ,0.3,0.6,0.9), ( ,0.7,0.4,0.1),C v v v =

8 9 10( ,0.2,0.5,0.6), ( ,0.3,0.7,0.7), ( ,0.6,0.5, 0.5)}v v v . 

The numbers of a neutrosophic graph 
1C , 

2C  and 

3C  are 2, 5 and 6 respectively. 

Next, we show that any NG G can be expressed by a class 

of NSs. Similarly,   is denoted by an operator N for vertices 

of neutrosophic graphs.  

Definition 6. Let G be a NG and ,i jv v  be two vertices of 

G. Suppose that iv  and 
jv  correspond to neutrosophic sets 

iS  and 
jS  respectively, then ( , )i jN v v  

i jS S=  . Note 

that ( , )i iN v X S=  (resp. ( , )jN v X  
jS= ) if 

iS  (resp. 

jS ) is a neutrosophic subset of X. 

Example 9. If 
1{( ,0.4,0.5,0.2)}iS v=  and 

1{( ,0.4,0.5,0.2),jS v=  

2( ,0.5,0.2,0.9)}v , then 
i jS S = 1{( ,0.4,0.5,0.2)}v  

 and ( , ) 1i j i jN S S S S=  = . 

Theorem 2. If 1G  and 2G  are two NGs corresponding to 

two parallel classes 1C  and 2C , then 1 2G G . 

Similar to Theorem 1, the converse of the above theorem 

may not true in general since each neutrosophic graph can 

express many classes, and the Example 10 is used to explain 

it. 

Example 10. Consider the classes of neutrosophic sets  

1 1 1 2 2{ {( ,0.4,0.5,0.2)}, {( ,0.5,0.2,0.9)},C S v S v= = =

3 1 2{( ,0.4,0.5,0.2), ( ,0.5,0.2,0.9)}}S v v= , 

2 4 1 2 3{ {( ,0.4,0.5,0.2), ( ,0.5,0.2,0.9), ( ,0.8,0.7,0.3)},C S v v v= =  

5 4 5 6{( ,0.1,0.6,0.9), ( ,0.9,0.3,0.2)},S v v S= =

3 4{( ,0.8,0.7,0.3), ( ,0.1,0.6,0.9)}}v v . 

Therefore, neutrosophic graphs corresponding to 1C  

and 2C  are isomorphic to each other as manifested in Fig 4, 

but 1C  and 2C  are not parallel. 

 

Fig 4. A neutrosophic graph represents 1C  and 2C . 

C. Parallel classes in bipolar neutrosophic setting 

Definition 7. Let V be a US, ( )BNF V  be the class of all 

bipolar neutrosophic sets of V, and 
1 2, ( )C C BNF V . 

We say 1C  is parallel to 2C  (denoted by X Y , where 

,X Y  are bipolar neutrosophic sets in ( )BNF V , each 

element in 1C  is a bipolar neutrosophic partial subset (BNPS) 

of X, and each element in 2C  is a bipolar neutrosophic 

partial subset of Y), if there exists a bijective bipolar 

neutrosophic mapping :F X Y→  such that for any 1 1c C , 

we have 1 2( )F c c=  and 2 2c C . Let X Y= . Then 1C  

is parallel to 2C  if there exists a bijective bipolar 

neutrosophic mapping :F X X→  such that 

1 2( )F C C= . 

Example 11. Let 1 2 3{ , , }V v v v=  be a universal set, 

1 2{( ,0.3,0.4,0.2, 0.8, 0,5, 0.3), ( ,0.4,0.8,0.3,X v v= − − −

30.7, 0.4, 0.9), ( ,0.1,0.6,0.8, 0.8, 0.4, 0.3)}v− − − − − − be a bipolar 

neutrosophic set on V , 1 3{{( ,0.1,0.6,0.8,C v=  

1 20.8, 0.4, 0.3)},{( ,0.3,0.4,0.2, 0.8, 0,5, 0.3), ( ,0.4,0.8,0.3,v v− − − − − −  

30.7, 0.4, 0.9)},{( ,0.1,0.6,0.8,v− − − 10.8, 0.4, 0.3), ( ,0.3,v− − −

0.4,0.2, 0.8, 0,5, 0.3)}}− − − and 2 1{{( ,0.3,0.4,0.2,C v=  

2 30.8, 0,5, 0.3)},{( ,0.4,0.8,0.3, 0.7, 0.4, 0.9), ( ,v v− − − − − −   

10.1,0.6,0.8, 0.8, 0.4, 0.3)},{( ,0.3,0.4,0.2, 0.8, 0,5, 0.3),v− − − − − −

2( ,0.4,0.8,0.3, 0.7,v − 0.4, 0.9)}}− − . Obviously, all the elements 

in 1C  and 2C  are the BNPS of X. There is a bijective bipolar 

neutrosophic mapping :F X X→  such that 

3 1({( ,0.1,0.6,0.8, 0.8, 0.4, 0.3)}) {( ,0.3,0.4,0.2,F v v− − − =

0.8, 0,5, 0.3)}− − − , 

1 2({( ,0.3,0.4,0.2, 0.8, 0,5, 0.3), ( ,0.4,0.8,0.3, 0.7,F v v− − − −  

0.4, 0.9)})− −  

2 3{( ,0.4,0.8,0.3, 0.7, 0.4, 0.9), ( ,0.1,0.6,0.8,v v= − − −

0.8, 0.4, 0.3)}− − − , 

3 1({( ,0.1,0.6,0.8, 0.8, 0.4, 0.3), ( ,0.3,0.4,0.2,F v v− − −

0.8, 0,5, 0.3)})− − −

1 2{( ,0.3,0.4,0.2, 0.8, 0,5, 0.3), ( ,0.4,0.8,0.3,v v= − − −

0.7, 0.4, 0.9)}− − − . 

Consequently, 1C  and 2C  are parallel.  

In view of Example 11, it is clear that the essence of 

parallelism is the one-to-one correspondence between the 

elements in the bipolar neutrosophic set. In this instance, we 

can see the correspondence between the following elements 

in X: 

1 2( ,0.3,0.4,0.2, 0.8, 0,5, 0.3) ( ,0.4,0.8,0.3,Fv v− − − ⎯⎯→

0.7, 0.4, 0.9)− − − , 

2 3( ,0.4,0.8,0.3, 0.7, 0.4, 0.9) ( ,0.1,0.6,0.8,Fv v− − − ⎯⎯→

0.8, 0.4, 0.3)− − − , 

3 1( ,0.1,0.6,0.8, 0.8, 0.4, 0.3) ( ,0.3,0.4,0.2,Fv v− − − ⎯⎯→

0.8, 0,5, 0.3)− − − . 

Next, it is presented that any class of bipolar neutrosophic 

sets can be denoted by a general BNG in view of operation 
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  between bipolar neutrosophic set classes. Let 1, , nS S  

be bipolar neutrosophic sets, 
1{ , , }nC S S=  be the class of 

these BNSs and G be a BNG corresponding to C. BNG G is 

constructed as follows: each vertex in G corresponds to a 

bipolar neutrosophic set among 1, , nS S , and there are 

i jS S edges between vertices iS  and 
jS . Example 12 is 

presented to illustrate such kind of bipolar neutrosophic 

graph. 

Example 12. Consider the classes of BNSs  

1 1 1 2 2{ {( ,0.4,0.5,0.2, 0.7, 0.3, 0.9)}, {( ,C S v S v= = − − − =  

0.5,0.2,0.9, 0.4, 0.7, 0.2)},− − −  

3 1 2{( ,0.4,0.5,0.2, 0.7, 0.3, 0.9), ( ,0.5,0.2,0.9,S v v= − − −

0.4, 0.7, 0.2)}}− − − , 

2 4 1 2{ {( ,0.4,0.5,0.2, 0.7, 0.3, 0.9), ( ,0.5,0.2,0.9,C S v v= = − − −  

0.4, 0.7, 0.2),− − − 3( ,0.8,0.7,0.3, 0.3, 0.5, 0.8)},v − − −  

5 4{( ,0.1,0.6,0.9, 0.8, 0.3. 0.2),S v= − − − 5( ,0.9,v  

6 30.3,0.2, 0.1, 0.8, 0.9)}, {( ,0.8,0.7,0.3, 0.3,S v− − − = −  

0.5, 0.8),− − 4( ,0.1,0.6,0.9, 0.8, 0.3. 0.2)}}v − − − , 

3 7 3 6{ {( ,0.8,0.7,0.3, 0.3, 0.5, 0.8), ( ,0.3,0.6,0.9,C S v v= = − − −  

0.4, 0.3, 0.1)},− − −
8 7{( ,0.7,0.4,0.1, 0.5,S v= −  

80.7, 0.9), ( ,0.2,0.5,0.6, 0.7, 0.5, 0.3),v− − − − −  

9 9 3( ,0.3,0.7,0.7, 0.5. 0.4, 0.3)}, {( ,0.8,0.7,v S v− − − =  

0.3, 0.3, 0.5, 0.8),− − − 9( ,0.3,0.7,0.7, 0.5.v −

100.4, 0.3), ( ,0.6,0.5,0.5, 0.5, 0.6, 0.7)}}v− − − − − . 

to represent the several bipolar neutrosophic graphs as 

determined in Fig 5. 

 

Fig 5. A bipolar neutrosophic graph represents 1C , 2C  and 3C . 

 

Definition 8. Let { : }iC C i I=   be a collection of all 

classes of a BNS X, and thus iC  can be represented by the 

BNG G ({ : }iC i I   which is stated as the graph number 

of a BNG G).  

Example 13. Discuss 1C , 2C  and 3C  as given in 

Example 12, we yield  

1 1 2{( ,0.4,0.5,0.2, 0.7, 0.3, 0.9), ( ,0.5,0.2,0.9,C v v = − − −  

0.4, 0.7, 0.2)}− − − , 

2 1 2{( ,0.4,0.5,0.2, 0.7, 0.3, 0.9), ( ,0.5,0.2,0.9,C v v = − − −  

30.4, 0.7, 0.2), ( ,0.8,0.7,0.3,v− − − 0.3, 0.5, 0.8),− − −  

4 5( ,0.1,0.6,0.9, 0.8, 0.3. 0.2), ( ,0.9,0.3,0.2,v v− − −  

0.1, 0.8, 0.9)}− − − ,  

3 3 6{( ,0.8,0.7,0.3, 0.3, 0.5, 0.8), ( ,0.3,0.6,0.9,C v v = − − −  

0.4, 0.3, 0.1),− − − 7( ,0.7,0.4,0.1, 0.5, 0.7, 0.9),v − − −  

8( ,0.2,0.5,0.6, 0.7, 0.5, 0.3),v − − − 9( ,0.3,0.7,0.7,v

100.5. 0.4, 0.3), ( ,0.6,0.5,0.5, 0.5, 0.6, 0.7)}v− − − − − − . 

The numbers of a bipolar neutrosophic graph 1C , 

2C  and 3C  are 2, 5 and 6 respectively. 

Next, we show that any BNG G can be expressed by a class 

of BNSs, and   is re-formulated to an operator N for 

vertices of BNGs.  

Definition 9. Let G be a BNG and ,i jv v  be two vertices 

of G. Suppose that iv  and 
jv  correspond to bipolar 

neutrosphic sets 
iS  and 

jS  respectively, then 

( , )i j i jN v v S S=  . Note that ( , )i iN v X S=  (resp. 

( , )j jN v X S= ) if iS  (resp. 
jS ) is a bipolar 

neutrosophic subset of X. 

Example 14. If 
1{( ,0.4,0.5,0.2, 0.7, 0.3, 0.9)}iS v= − − −  

and
1 2{( ,0.4,0.5,0.2, 0.7, 0.3, 0.9),( ,0.5,0.2,0.9,jS v v= − − −

0.4, 0.7, 0.2)}− − − , then 
i jS S =

1{( ,0.4,0.5,0.2,v  

0.7, 0.3, 0.9)}− − −  and ( , )i jN S S 1i jS S=  = . 

Theorem 3. If 1G  and 2G  are two bipolar neutrosophic 

graphs corresponding to two parallel classes 1C  and 2C , 

then 1 2G G . 

 Similar to Theorem 1 and Theorem 2, the converse of the 

above theorem may not hold in general since each BNG can 

express many classes, and the Example 15 is used to explain 

it. 

Example 15. Consider the classes of BNSs  

1 1 1{ {( ,0.4,0.5,0.2, 0.7, 0.3, 0.9)},C S v= = − − −  

2 2{( ,0.5,0.2,0.9, 0.4, 0.7, 0.2)},S v= − − −

3 1{( ,0.4,0.5,0.2, 0.7, 0.3, 0.9),S v= − − −      

2( ,0.5,0.2,0.9, 0.4, 0.7, 0.2)}}v − − − , 

2 4 1{ {( ,0.4,0.5,0.2, 0.7, 0.3, 0.9),C S v= = − − −  

2( ,0.5,0.2,0.9, 0.4, 0.7, 0.2),v − − −

3( ,0.8,0.7,0.3, 0.3, 0.5, 0.8)},v − − −  

5 4{( ,0.1,0.6,0.9, 0.8, 0.3. 0.2),S v= − − −

5( ,0.9,0.3,0.2, 0.1, 0.8, 0.9)},v − − −
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6 3{( ,0.8,0.7,0.3, 0.3, 0.5, 0.8),S v= − − −

4( ,0.1,0.6,0.9, 0.8, 0.3. 0.2)}}v − − − . 

Therefore, bipolar neutrosophic graphs corresponding to 

1C  and 2C  are isomorphic to each other as manifested in 

Fig 6, but 1C  and 2C  are not parallel. 

 

Fig 6. A bipolar neutrosophic graph represents 1C  and 2C . 

D. Parallel classes in interval-valued fuzzy setting 

Definition 10. Let V be a US, ( )IVF V  be the class of all 

IVFSs of V, and 
1 2, ( )C C IVF V . We say 1C  is parallel 

to 2C  (denoted by X Y , where ,X Y  are IVFSs in 

( )IVF V , each element in 1C  is an interval-valued partial 

fuzzy subset (IVPFS) of X, and each element in 2C  is an 

interval-valued partial fuzzy subset of Y), if there exists a 

bijective interval-valued mapping (BIVM) :F X Y→  such 

that for any 1 1c C , we have 1 2( )F c c=  and 2 2c C . 

Let X Y= . Then 1C  is parallel to 2C  if there exists a 

BIVM :F X X→  such that 
1 2( )F C C= . 

Example 16. Let 1 2 3{ , , }V v v v=  be a US, 
1{( ,[0.3,X v=  

2 30.7]), ( ,[0.4,0.8]), ( ,[0.1,0.5])}v v be an IVFS on V . 

Set 

1 3 1 2{{( ,[0.1,0.5])},{( ,[0.3,0.7]), ( ,[0.4,0.8])},C v v v=

3 1{( ,[0.1,0.5]), ( ,[0.3,0.7])}}v v , 

2 1 2 3{{( ,[0.3,0.7])},{( ,[0.4,0.8]), ( ,[0.1,0.5])},C v v v=

1 2{( ,[0.3,0.7]), ( ,[0.4,0.8])}}v v . 

Obviously, all the elements in 1C  and 2C  are the IVPFS 

of X. There is a BIVM :F X X→  such that 

3 1({( ,[0.1,0.5])}) {( ,[0.3,0.7])}F v v= , 

1 2({( ,[0.3,0.7]), ( ,[0.4,0.8])})F v v =

2 3{( ,[0.4,0.8]), ( ,[0.1,0.5])}v v , 

3 1({( ,[0.1,0.5]), ( ,[0.3,0.7])})F v v =

1 2{( ,[0.3,0.7]), ( ,[0.4,0.8])}v v . 

Hence, 1C  and 2C  are parallel.  

By means of Example 16, it is obvious that the essence of 

parallelism is the one-to-one correspondence between the 

elements in the IVFS. In this instance, we can see the 

correspondence between the following elements in X: 

1 2( ,[0.3,0.7]) ( ,[0.4,0.8])Fv v⎯⎯→ , 

2 3( ,[0.4,0.8]) ( ,[0.1,0.5])Fv v⎯⎯→ , 

3 1( ,[0.1,0.5]) ( ,[0.3,0.7])Fv v⎯⎯→ . 

Next, it is presented that any class of IVFSs can be denoted 

by a general IVFG in view of operation   between IVFS 

classes. Let 1, , nS S   be IVFSs, 1{ , , }nC S S=  be a 

class of these IVFSs and G be an IVFG corresponding to C. 

IVFG G is constructed as follows: each vertex in G 

corresponds to an interval-valued fuzzy set among 

1, , nS S , and there are 
i jS S   edges between vertices 

iS  and 
jS . The following instance is applied to illustrate 

such a kind of IVFG. 

Example 17. Consider the classes of IVFSs  

1 1 1 2 2{ {( ,[0.6,0.8])}, {( ,[0.3,0.7])},C S v S v= = =

3 1 2{( ,[0.6,0.8]), ( ,[0.3,0.7])}}S v v= , 

2 4 1 2 3{ {( ,[0.6,0.8]), ( ,[0.3,0.7]), ( ,[0.4,0.5])},C S v v v= =  

5 4 5 6 3{( ,[0.2,0.6]), ( ,[0.6,0.8])}, {( ,[0.4,0.5]),S v v S v= =

4( ,[0.2,0.6])}}v , 

3 7 3 6 8{ {( ,[0.4,0.5]), ( ,[0.3,0.6])},C S v v S= = =  

7 8 9 9{( ,[0.1,0.7]), ( ,[0.2,0.9]), ( ,[0.6,0.7])},v v v S =

3 9{( ,[0.4,0.5]), ( ,[0.6,0.7]),v v
10( ,[0.6,0.8])}}v . 

to represent the same IVFGs as determined in Fig 7. 

 

Fig 7. An IVFG represents 1C , 2C  and 3C . 

 

Definition 11. Let { : }iC C i I=   be a collection of all 

classes of an interval-valued fuzzy set X , and thus iC  can 

be represented by the same interval-valued fuzzy graph G 

({ : }iC i I   which is labeled as the graph number of an 

interval-valued fuzzy graph G).  

Example 18. Focusing on 1C , 2C  and 3C  as given in 

Example 17, we yield  

1 1 2{( ,[0.6,0.8]), ( ,[0.3,0.7])}C v v = , 

2 1 2 3{( ,[0.6,0.8]), ( ,[0.3,0.7]), ( ,[0.4,0.5]),C v v v =

       
4 5( ,[0.2,0.6]), ( ,[0.6,0.8])}v v , 

3 3 6 7{( ,[0.4,0.5]), ( ,[0.3,0.6]), ( ,[0.1,0.7]),C v v v =

8 9( ,[0.2,0.9]), ( ,[0.6,0.7]),v v 10( ,[0.6,0.8])}v . 

The number of an interval-valued fuzzy graph 
1C , 

2C  and 3C  are 2, 5 and 6 respectively. 

Next, we show that any interval-valued fuzzy graph G can 

be expressed by a class of interval-valued fuzzy sets, and   

is formualted as an operator N for vertices of interval-valued 

fuzzy graphs.  

Definition 12. Let G be an interval-valued fuzzy graph and 

,i jv v  be two vertices of G. Suppose that iv  and 
jv  
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correspond to interval-valued fuzzy sets iS  and 
jS  

respectively, then ( , )i j i jN v v S S=  . Note that 

( , )i iN v X S=  (resp. ( , )j jN v X S= ) if iS  (resp. 
jS ) 

is an interval-valued fuzzy subset of X. 

Example 19. If 
1{( ,[0.6,0.8])}iS v=  and 

1{( ,[0.6,0.8]),jS v=  

2( ,[0.3,0.7])}v , then 
1{( ,[0.6,0.8])}i jS S v =  and ( , )i jN S S =  

1i jS S = . 

Theorem 4. If 
1G  and 

2G  are two interval-valued fuzzy 

graphs corresponding to two parallel classes 
1C  and 

2C , 

then 
1 2G G . 

The converse of Theorem 4 may not hold in general since 

each interval-valued fuzzy graph can express many classes, 

and the Example 20 is used to explain it. 

Example 20. Consider the classes of interval-valued fuzzy 

sets  

1 1 1 2 2{ {( ,[0.6,0.8])}, {( ,[0.3,0.7])},C S v S v= = =

3 1 2{( ,[0.6,0.8]), ( ,[0.3,0.7])}}S v v= , 

2 4 1 2 3{ {( ,[0.6,0.8]), ( ,[0.3,0.7]), ( ,[0.4,0.5])},C S v v v= =

5 4 5{( ,[0.2,0.6]), ( ,[0.6,0.8])},S v v=  

6 3 4{( ,[0.4,0.5]), ( ,[0.2,0.6])}}S v v= . 

Therefore, interval-valued fuzzy graphs corresponding 

to 1C  and 2C  are isomorphic to each other as manifested in 

Fig 8, but 1C  and 2C  are not parallel. 

 
Fig 8. An IVFG represents 

1C  and 
2C . 

E. Parallel classes in bipolar interval-valued fuzzy setting 

Definition 13. Let V be a US, ( )BIVF V  be the class of 

all BIVFSs of V, and 
1 2, ( )C C IVF V . We say 1C  is 

parallel to 2C  (denoted by X Y , where ,X Y  are 

bipolar interval-valued fuzzy sets in ( )IVF V , each element 

in 1C  is a bipolar interval-valued partial fuzzy subset 

(BIVPFS) of X, and each element in 2C  is an IVPFS of Y), if 

there exists a bijective bipolar interval-valued mapping 

(BBIVM) :F X Y→  such that for any 1 1c C , we have 

1 2( )F c c=  and 2 2c C . Let X Y= . Then 1C  is parallel 

to 2C  if there exists a BBIVM :F X X→  such that 

1 2( )F C C= . 

Example 21. Let 1 2 3{ , , }V v v v=  be a US, and 

1 2{( ,[0.3,0.7],[ 0.9, 0.4]), ( ,[0.4,0.8],[ 0.8, 0.6]),X v v= − − − −  

3( ,[0.1,0.5],[ 0.5, 0.2])}v − − be a bipolar interval-valued 

fuzzy set on V . Set 

1 3 1{{( ,[0.1,0.5],[ 0.5, 0.2])},{( ,[0.3,0.7],C v v= − −  

2[ 0.9, 0.4]), ( ,[0.4,0.8],[ 0.8, 0.6])},v− − − −

3 1{( ,[0.1,0.5],[ 0.5, 0.2]), ( ,[0.3,0.7],[ 0.9, 0.4])}}v v− − − − , 

2 1 2{{( ,[0.3,0.7],[ 0.9, 0.4])},{( ,[0.4,0.8],C v v= − −  

3[ 0.8, 0.6]), ( ,[0.1,0.5],[ 0.5, 0.2])},v− − − −

1 2{( ,[0.3,0.7],[ 0.9, 0.4]), ( ,[0.4,0.8],[ 0.8, 0.6])}}v v− − − − .  

Obviously, all the elements in 1C  and 2C  are the IVPFSs 

of X . There is a BVM :F X X→  such that 

3 1({( ,[0.1,0.5],[ 0.5, 0.2])}) {( ,[0.3,0.7],[ 0.9, 0.4])}F v v− − = − − , 

1 2({( ,[0.3,0.7],[ 0.9, 0.4]), ( ,[0.4,0.8],[ 0.8, 0.6])})F v v− − − −

2 3{( ,[0.4,0.8],[ 0.8, 0.6]), ( ,[0.1,0.5],[ 0.5, 0.2])}v v= − − − − , 

3 1({( ,[0.1,0.5],[ 0.5, 0.2]), ( ,[0.3,0.7],[ 0.9, 0.4])})F v v− − − −  

1 2{( ,[0.3,0.7],[ 0.9, 0.4]), ( ,[0.4,0.8],[ 0.8, 0.6])}v v= − − − − . 

Thus, 1C  and 2C  are parallel.  

In light of Example 21, it is clear that the essence of 

parallelism is the one-to-one correspondence between the 

elements in the BIVFS. In this instance, we can see the 

correspondence between the following elements in X: 

1 2( ,[0.3,0.7],[ 0.9, 0.4]) ( ,[0.4,0.8],[ 0.8, 0.6])Fv v− − ⎯⎯→ − − , 

2 3( ,[0.4,0.8],[ 0.8, 0.6]) ( ,[0.1,0.5],[ 0.5, 0.2])Fv v− − ⎯⎯→ − − , 

3 1( ,[0.1,0.5],[ 0.5, 0.2]) ( ,[0.3,0.7],[ 0.9, 0.4])Fv v− − ⎯⎯→ − − . 

Next, it is presented that any class of bipolar 

interval-valued fuzzy sets can be denoted by a general bipolar 

interval-valued fuzzy graph in view of operation   between 

bipolar interval-valued fuzzy set classes. Let 1, , nS S  be 

bipolar interval-valued fuzzy sets, 1{ , , }nC S S=  be a 

class of these bipolar interval-valued fuzzy sets and G be a 

BIVFG corresponding to C. BIVFG G is constructed as 

follows: each vertex in G corresponds to a BIVFS among 

1, , nS S , and there are 
i jS S  edges between vertices 

iS  and 
jS . The following instance is applied to illustrate 

such a kind of bipolar interval-valued fuzzy graph. 

Example 22. Consider the classes of bipolar 

interval-valued fuzzy sets  

1 1 1 2 2{ {( ,[0.6,0.8],[ 0.6, 0.4])}, {( ,[0.3,0.7],C S v S v= = − − =  

[ 0.4, 0.1])},− −

3 1 2{( ,[0.6,0.8],[ 0.6, 0.4]), ( ,[0.3,0.7],[ 0.4, 0.1])}}S v v= − − − − , 

2 4 1 2{ {( ,[0.6,0.8],[ 0.6, 0.4]), ( ,[0.3,0.7],[ 0.4, 0.1]),C S v v= = − − − −  

3( ,[0.4,0.5],[ 0.5, 0.3])},v − −

5 4 5{( ,[0.2,0.6],[ 0.9, 0.7]), ( ,[0.6,0.8],[ 0.6, 0.2])},S v v= − − − −  

6 3 4{( ,[0.4,0.5],[ 0.5, 0.3]), ( ,[0.2,0.6],[ 0.9, 0.7])}}S v v= − − − −   ,                                                 

3 7 3 6{ {( ,[0.4,0.5],[ 0.5, 0.3]), ( ,[0.3,0.6],C S v v= = − −  

8 7[ 0.5, 0.4])}, {( ,[0.1,0.7],[ 0.9, 0.8]),S v− − = − −

8 9( ,[0.2,0.9],[ 0.8, 0.4]), ( ,[0.6,0.7],[ 0.6, 0.3])},v v− − − −  

9 3 9{( ,[0.4,0.5],[ 0.5, 0.3]), ( ,[0.6,0.7],S v v= − −

10[ 0.6, 0.3]), ( ,[0.6,0.8],[ 0.7, 0.6])}}v− − − − . 
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to represent the same bipolar interval-valued fuzzy graphs 

as determined in Fig 9. 

 
Fig 9. A bipolar interval-valued fuzzy graph represents 

1C , 
2C  and 

3C . 

 

Definition 14. Let { : }iC C i I=   be a collection of all 

classes of a BIVFS X, and thus iC  can be formulated by the 

same BIVFG G ({ : }iC i I   is formulated as the graph 

number of a BIVFG G).  

Example 23. Focusing on 1C , 2C  and 3C  as given in 

Example 22, we yield  

1 1 2{( ,[0.6,0.8],[ 0.6, 0.4]), ( ,[0.3,0.7],C v v = − −

[ 0.4, 0.1])}− − , 

2 1 2{( ,[0.6,0.8],[ 0.6, 0.4]), ( ,[0.3,0.7],C v v = − −  

3[ 0.4, 0.1]), ( ,[0.4,0.5],[ 0.5, 0.3]),v− − − −

4 5( ,[0.2,0.6],[ 0.9, 0.7]), ( ,[0.6,0.8],[ 0.6, 0.2])}v v− − − − , 

3 3 6{( ,[0.4,0.5],[ 0.5, 0.3]), ( ,[0.3,0.6],C v v = − −  

7[ 0.5, 0.4]), ( ,[0.1,0.7],[ 0.9, 0.8]),v− − − −

8 9( ,[0.2,0.9],[ 0.8, 0.4]), ( ,[0.6,0.7],[ 0.6, 0.3]),v v− − − −

10( ,[0.6,0.8],[ 0.7, 0.6])}v − − . 

The numbers of a BIVFG 1C , 2C  and 3C  are 2, 

5 and 6 respectively. 

Next, we show that any BIVFG G can be expressed by a 

class of BIVFSs. Again,   is re-formulated to an operator N 

for vertices of BIVFGs.  

Definition 15. Let G be a BIVFG and ,i jv v  be two 

vertices of G. Suppose that iv  and 
jv  correspond to bipolar 

interval-valued fuzzy sets iS  and 
jS  respectively, then 

( , )i j i jN v v S S=  . Note that ( , )i iN v X S=  (resp. 

( , )j jN v X S= ) if iS  (resp. 
jS ) is a BIVFS of X. 

Example 24. If 
1{( ,[0.6,0.8],[ 0.6, 0.4])}iS v= − −  and 

1{( ,[0.6,0.8],[ 0.6, 0.4]),jS v= − − 2( ,[0.3,0.7],v [ 0.4, 0.1])}− − , 

th
1{( ,[0.6,0.8],[ 0.6, 0.4])}i jS S v = − −  and ( , )i jN S S =  

1i jS S = . 

Theorem 5. If 1G  and 2G  are BIVFGs corresponding to 

two parallel classes 1C  and 2C , then 1 2G G . 

The converse of Theorem5 may not hold in general since 

each bipolar interval-valued fuzzy graph can express many 

classes, and the Example 25 is used to explain it. 

Example 25. Consider the classes of bipolar 

interval-valued fuzzy sets  

1 1 1{ {( ,[0.6,0.8],[ 0.6, 0.4])},C S v= = − −  

2 2{( ,[0.3,0.7],[ 0.4, 0.1])},S v= − −  

3 1{( ,[0.6,0.8],[ 0.6, 0.4]),S v= − −

2( ,[0.3,0.7],[ 0.4, 0.1])}}v − − , 

2 4 1 2{ {( ,[0.6,0.8],[ 0.6, 0.4]), ( ,[0.3,0.7],C S v v= = − −  

3[ 0.4, 0.1]), ( ,[0.4,0.5],[ 0.5, 0.3])},v− − − −

5 4 5{( ,[0.2,0.6],[ 0.9, 0.7]), ( ,[0.6,0.8],[ 0.6, 0.2])},S v v= − − − −

6 3 4{( ,[0.4,0.5],[ 0.5, 0.3]), ( ,[0.2,0.6],[ 0.9, 0.7])}}S v v= − − − − . 

Therefore, bipolar interval-valued fuzzy graphs 

corresponding to 
1C  and 

2C  are isomorphic to each other as 

manifested in Fig 10, but 
1C  and 

2C  are not parallel. 

 
 

Fig 10. A bipolar interval-valued fuzzy graph represents 1C and 
2C . 

IV. FUZZY TOPOLOGICAL GRAPHS AND ALGEBRAIC 

OPERATIONS IN DISTINCT SETTINGS 

We generate fuzzy topological spaces (FTSs) in view of 

FS graphs in three kinds of settings respectively. Several 

algebraic operations on BFTGs (resp. NTGs, BNTGs, 

IVFTGs and BIVFTGs) such as , ,    are defined on 

vertices by 
1 2 1 2S S S Sv v v   = , 

1 2 1 2S S S Sv v v  =  and 

1 2S Sv v  if 
1 2S S . The following results and examples 

are divided into five settings respectively.  

A. Algebraic operations in bipolar fuzzy setting 

Definition 16. A bipolar fuzzy topology on a bipolar fuzzy 

set 
1 1 1{( , , ), , ( , , )}n n nBS v a b v a b=  (

10 , , 1na a   and 

11 , , 0nb b−   ) can be established in terms of a bipolar 

fuzzy graph G such that each vertex in G is a class in BS and 

the edge number between two vertices is the cardinality of the 

intersection of corresponding two classes of BS and the 

positive degree (resp. negative degree) of edges is the 

positive degree (negative degree) of each vertex in its 
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intersection. The subscripts of bipolar fuzzy pseudograph 

(with loops), discrete bipolar topological graph (no loop) and 

simple bipolar fuzzy graph (one edge between two adjacent 

vertices) are marked by p, d and s respectively.   

Theorem 4. Let ( )pE G , ( )dE G  and ( )sE G  be the 

edge number of a bipolar fuzzy pseudograph, discrete bipolar 

topological graph and simple BFG on the bipolar fuzzy set 

1 1 1{( , , ), , ( , , )}n n nBS v a b v a b= , respectively. Then, 

2 1 1( ) 2 (2 1) 2n n n

pE G n n− − −= − + , 
2 1( ) 2 (2 1)n n

dE G n − −= −  

and 
22 2 3 1

( )
2

n n n

sE G
− − +

= . 

Example 26. Let
1 2 3{( ,0.6, 0.5), ( ,0.3, 0.6), ( ,BS v v v= − −  

0.1, 0.2)}− , then ( ) 30pE G = , ( ) 18dE G =  and ( ) 15sE G = . 

A BFTG deduced in terms of a bipolar fuzzy graph can be 

stated by the following result. 

Theorem 6. Let G be a BFG that meets the conditions: 

•  G has a unique isolated vertex which is represented by 

 ; 

•  There is a vertex v adjacent to other vertices in 

{ }G −  , and ( , ) ( , )R i R iv v v BS + +  ( , )R v BS+  

and ( , ) ( , ) ( , )R i R i Rv v v BS v BS  − − −   for any 

( ) { }iv V G −  ; 

•  Let 1v  and 2v  be any two distinct vertices. We have 

1 2 1 2, ( )v v v v V G   . 

Then, the class   of vertices is a BFTG.  

The next theorem is used to compute the size of G by 

means of fuzzy topological graph  .  

Theorem 7. The edge number of a BFTG is expressed by a 

bipolar fuzzy topology 
1 1 1 1 1 1{ ,{( , , )},{( , , ),v a b v a b =     

2 2 2 1 1 1( , , )}, , {( , , ), , ( , , )}}n n nv a b X v a b v a b= . 

The tricks of proof Theorem 6 and Theorem 7 are similar 

to what’s described in Atef et al. [30] and we skip it here. 

Example 27. Let 
1 2{( ,0.6, 0.5), ( ,0.3, 0.6),BS v v= − −  

3( ,0.1, 0.2)}v − with a bipolar fuzzy topological space 

1 1 2 1 2{ , {( ,0.6, 0.5)}, {( ,0.6, 0.5), ( ,0.3, 0.6)},S v S v v =  = − = − −

X =
1 2 3{( ,0.6, 0.5), ( ,0.3, 0.6), ( ,0.1, 0.2)}}v v v− − − . See Fig 

11 for the BFTG, and the positive and negative degrees of 

edges are 2.1 and -2.1 respectively.  

 
Fig 11. A bipolar topological graph in Example 27. 

 

Each BFTG can be expressed by a BFG, but the reverse 

may not be true. We present the following two examples to 

explain it in detail. 

Example 28. Let G be a BFG drawn in Fig 12, and a BFTG 

be constructed in terms of the following schemes: the only 

isolated vertex is formulated by  ; the vertex has maximum 

degree four represented by 
1 2 3{( ,0.6, 0.5), ( ,0.3, 0.6), ( ,0.1, 0.2)}X v v v= − − − . 

Since 
2 2S X = , the vertex represents 2S  is 

1{( ,0.6, 0.5),v −  

2( ,0.3, 0.6)}v − . Similarly, 
3 2S X =  and the corresponding 

vertex is denoted by 
3 1{( ,0.6, 0.5),S v= − 3( ,0.1, 0.2)}v − . 

2 3 1S S = , and the MF value of edge connect 2S  and 

3S  is (0.6, 0.5)− . 
1 1 2 1 3 1S X S S S S =  =  =  and 

hence 1S  is denoted by 1{( ,0.6, 0.5)}v − . Therefore, 1{ , S =  =  

1{( ,0.6, 0.5)},v −
2 1 2 3 1{( ,0.6, 0.5), ( ,0.3, 0.6)}, {( ,0.6, 0.5),S v v S v= − − = −

3( ,0.1, 0.2)},v − 1 2 3{( ,0.6, 0.5), ( ,0.3, 0.6), ( ,0.1, 0.2)}X v v v= − − −

is a bipolar fuzzy topology and this graph is called a BFTG. 

 
Fig 12. A bipolar fuzzy graph which is a bipolar fuzzy topological graph. 

 

Example 29. The graph G in Fig 13 is not a BFTG, where 

1 2 3 4{( ,0.6, 0.5), ( ,0.3, 0.6), ( ,0.1, 0.2), ( ,0.5, 0.5)}X v v v v= − − − − , 

1 1 2{( ,0.6, 0.5), ( ,0.3, 0.6)}S v v= − − ,

2 1 3{( ,0.6, 0.5), ( ,0.1, 0.2)}S v v= − − , 

1 2 2S X S X =  = , 
1 2 1S S = , 

1 1 2{( ,0.6, 0.5), ( ,0.3, 0.6)}S X v v = − − , 

2 1 3{( ,0.6, 0.5), ( ,0.1, 0.2)}S X v v = − − , 

1 2 1{( ,0.6, 0.5)}S S v = − . 

However, 

1 1 2{ , {( ,0.6, 0.5), ( ,0.3, 0.6)},S v v =  = − −

2 1 3{( ,0.6, 0.5), ( ,0.1, 0.2)},S v v= − − 1{( ,0.6, 0.5),X v= −  

2 3 4( ,0.3, 0.6), ( ,0.1, 0.2), ( ,0.5, 0.5)}}v v v− − − is not a 

bipolar fuzzy topology because 

1 2 1 2 3{( ,0.6, 0.5), ( ,0.3, 0.6), ( ,0.1, 0.2)}S S v v v  = − − −  . 

 
Fig 13. A BFG which is not a BFTG. 

B. Algebraic operations in neutrosophic setting 

Definition 17. A neutrosophic topology on a neutrosophic 

set 
1 1 1 1{( , , , ), ,NS v a b c= ( , , , )}n n n nv a b c  (here 10 , , 1na a   

are membership values of truthness, 10 , , 1nb b   are 

membership values of indeterminacy, and 10 , , 1nc c   

are membership values of falsity) can be established in terms 

of a NG G such that each vertex in G is a class in NS and edge 

number between two vertices is the cardinality of intersection 
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of corresponding to two classes of NS and the truthness 

degree (resp. indeterminacy degree and falsity degree) of 

edges is the truthness degree (resp. indeterminacy degree and 

falsity degree) of each vertex in its intersection. The 

neutrosophic pseudograph (with loops), discrete 

neutrosophic topological graph (no loop) and simple 

neutrosophic graph (one edge between two adjacent vertices) 

mark their subscripts by NP, ND and NS respectively.   

Theorem 8. Let ( )NPE G , ( )NDE G  and ( )NSE G  be the 

edge number of a neutrosophic pseudograph, discrete 

neutrosophic topological graph and simple neutrosophic 

graph on the bipolar fuzzy set 
1 1 1{( , , ,NS v a b=  

1), , ( , , , )}n n n nc v a b c , respectively. Then, ( )NPE G =
2 12 (2 1)n nn − − −  

12nn −+ , 2 1( ) 2 (2 1)n n

NDE G n − −= − and 
22 2 3 1

( )
2

n n n

NSE G
− − +

= . 

Example 30. Let 
1 2{( ,0.6,0.5,0.4), ( ,0.3,NS v v=  

30.6,0.5), ( ,0.1,0.2,0.8)}v . Then ( ) 30NPE G = , ( ) 18NDE G =  

and ( ) 15NSE G = . 

A NTG deduced in terms of a neutrosophic graph can be 

stated by the following result. 

Theorem 9. Let G be a NG that meets the conditions: 

•  G has a unique isolated vertex which is represented by 

 ; 

•  There is a vertex v adjacent to other vertices in 

{ }G −  , and 
T T( , ) ( , )i iv v v NS 

T ( , )v NS , 

N N N( , ) ( , ) ( , )i iv v v NS v NS     and F ( , )iv v   

F F( , ) ( , )iv NS v NS   for any ( ) { }iv V G −  ; 

•  Let 1v  and 2v  be any two distinct vertices. We have 

1 2 1 2, ( )v v v v V G   . 

Then, the class   of vertices is a NTG.  

The next theorem is used to compute the size of G by 

means of neutrosophic topological graph  .  

Theorem 9. The edge number of a NTG is expressed by a 

neutrosophic topology 
1 1 1 1 1 1 1{ ,{( , , , )},{( , , ,v a b c v a b =   

1 2 2 2 2 1 1 1 1), ( , , , )}, , {( , , , ), , ( , , , )}}n n n nc v a b c X v a b c v a b c= . 

Example 31. Let 
1 2{( ,0.6,0.5,0.4), ( ,0.3,0.6,0.5),NS v v=  

3( ,0.1,0.2,0.8)}v with a neutrosophic topological space 

1 1{ , {( ,0.6,0.5,0.4)}S v =  = 2 1 2, {( ,0.6,0.5,0.4), ( ,0.3,S v v=

10.6,0.5)}, {( ,0.6X v= , 2 30.5,0.4), ( ,0.3,0.6,0.5), ( ,0.1,v v

0.2,0.8)}} . See Fig 14 for the neutrosophic topological 

graph, and the truthness degree, indeterminacy degree and 

falsity degree of edges are 2.1, 2.1 and 1.7 respectively. 

 
Fig 14. A neutrosophic topological graph in Example 31. 

 

Each neutrosophic topological graph can be expressed by a 

neutrosophic graph, but the reverse may not be true. We 

present the following two examples to explain it in detail. 

Example 32. Let G be a neutrosophic graph drawn in Fig 

15, and a neutrosophic topological graph be constructed in 

terms of the following schemes: the only isolated vertex is 

formulated by  ; the vertex has the maximum degree four 

represented by 
1{( ,0.6,0.5,0.4),X v=

2 3( ,0.3,0.6,0.5), ( ,0.1,0.2,0.8)}v v . 

Since 2 2S X = , the vertex represents 2S  is 

1 2{( ,0.6,0.5,0.4), ( ,0.3,0.6,0.5)}v v . Similarly, 3 2S X =  and 

the corresponding vertex is denoted by 
3 1{( ,0.6,0.5,0.4),S v= . 

2 3 1S S = , and the MF value of the edge connecting 2S  and 

3S  is (0.6, 0.5, 0.4). 1 1 2 1 3 1S X S S S S =  =  =  and 

hence 1S  is denoted by 1{( ,0.6,0.5,0.4)}v . Therefore, 

1 1 2 1{ , {( ,0.6,0.5,0.4)}, {( ,0.6,0.5,0.4),S v S v =  = =

2 3 1 3( ,0.3,0.6,0.5)}, {( ,0.6,0.5,0.4), ( ,0.1,0.2,0.8)},v S v v=

1 2 3{( ,0.6,0.5,0.4), ( ,0.3,0.6,0.5), ( ,0.1,0.2,0.8)}}X v v v=

is a neutrosophic topology and this graph is called a 

neutrosophic topological graph. 

 
Fig 15. A NG which is a NTG. 

 

Example 33. The graph G in Fig 16 is not a neutrosophic 

topological graph, where 

1 2 3{( ,0.6,0.5,0.4), ( ,0.3,0.6,0.5), ( ,0.1,0.2,0.8),X v v v=

4( ,0.5,0.5,0.5)}v , 

1 1 2{( ,0.6,0.5,0.4), ( ,0.3,0.6,0.5)}S v v= , 

2 1 3{( ,0.6,0.5,0.4), ( ,0.1,0.2,0.8)}S v v= , 

1 2 2S X S X =  = , 1 2 1S S = , 

1 1 2{( ,0.6,0.5,0.4), ( ,0.3,0.6,0.5)}S X v v = , 

2 1 3{( ,0.6,0.5,0.4), ( ,0.1,0.2,0.8)}S X v v = , 

1 2 1{( ,0.6,0.5,0.4)}S S v = . 

However, 

1 1 2{ , {( ,0.6,0.5,0.4), ( ,0.3,0.6,0.5)},S v v =  =

2 1 3{( ,0.6,0.5,0.4), ( ,0.1,0.2,0.8)},S v v=

1 2 3{( ,0.6,0.5,0.4), ( ,0.3,0.6,0.5), ( ,0.1,0.2,X v v v=  

40.8), ( ,0.5,0.5,0.5)}}v is not a neutrosophic topology 

because 1 2 1 2{( ,0.6,0.5,0.4), ( ,0.3,0.6,0.5),S S v v =

3( ,0.1,0.2,0.8)}v  . 
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Fig 16. A neutrosophic graph which is not a neutrosophic topological graph. 

C. Algebraic operations in bipolar neutrosophic setting 

Definition 18. A bipolar neutrosophic topology on a 

bipolar neutrosophic set
' ' '

1 1 1 1 1 1 1{( , , , , , , ), ,BNS v a b c a b c=  

' ' '( , , , , , , )}n n n n n n nv a b c a b c  (here 10 , , 1na a   are 

positive membership values of truthness, 10 , , 1nb b   

are positive membership values of indeterminacy, 

10 , , 1nc c   are positive membership values of falsity, 

' '

11 , , 0na a−    are negative membership values of 

truthness, 
' '

11 , , 0nb b−    are negative membership 

values of indeterminacy, 
' '

11 , , 0nc c−    are negative 

membership values of falsity) can be established in terms of a 

BNG G such that each vertex in G is a class in BNS and edge 

number between two vertices is the cardinality of intersection 

of corresponding two classes of BNS, the positive truthness 

degree (resp. positive indeterminacy degree and positive 

falsity degree) of edges is the positive truthness degree (resp. 

positive indeterminacy degree and positive falsity degree) of 

each vertex in its intersection, and the negative truthness 

degree (resp. negative indeterminacy degree and negative 

falsity degree) of edges is the negative truthness degree (resp. 

negative indeterminacy degree and negative falsity degree) of 

each vertex in its intersection. The bipolar neutrosophic 

pseudograph (with loops), bipolar discrete neutrosophic 

topological graph (no loops) and bipolar simple neutrosophic 

graph (one edge between two adjacent vertices) mark their 

subscripts by BNP, BND and BNS respectively.   

Theorem 10. Let ( )BNPE G , ( )BNDE G  and ( )BNSE G  be 

the edge number of a bipolar neutrosophic pseudograph, 

bipolar discrete neutrosophic topological graph and bipolar 

simple neutrosophic graph on the bipolar fuzzy 

set
' ' '

1 1 1 1 1 1 1{( , , , , , , )BNS v a b c a b c=
' ' ', , ( , , , , , , )}n n n n n n nv a b c a b c , 

respectively. Then, 
2 1 1( ) 2 (2 1) 2n n n

BNPE G n n− − −= − + , 

2 1( ) 2 (2 1)n n

BNDE G n − −= −  and 

22 2 3 1
( )

2

n n n

BNSE G
− − +

= . 

Example 34. Let 1{( ,0.6,0.5,0.4, 0.5, 0.6,BNS v= − −  

2 30.8), ( ,0.3,0.6,0.5, 0.6, 0.2, 0.4), ( ,0.1,0.2,0.8,v v− − − −

0.9, 0.7, 0.2)}− − − . Then ( ) 30BNPE G = , ( ) 18BNDE G =  and 

( ) 15BNSE G = . 

A bipolar neutrosophic topological graph deduced in terms 

of a bipolar neutrosophic graph can be stated by the following 

result. 

Theorem 11. Let G be a BNG that meets the conditions: 

•  G has a unique isolated vertex which is represented by 

 ; 

•  There is a vertex v adjacent to other vertices in 

{ }G −  , and 
T T( , ) ( , )P P

i iv v v BNS   T ( , )P v BNS , 

N N N( , ) ( , ) ( , )P P P

i iv v v BNS v BNS    ,

F F F( , ) ( , ) ( , )P P P

i iv v v BNS v BNS    , 

T T T( , ) ( , ) ( , )N N N

i iv v v BNS v BNS    , 

N N N( , ) ( , ) ( , )N N N

i iv v v BNS v BNS    , 

F F F( , ) ( , ) ( , )N N N

i iv v v BNS v BNS     

for any ( ) { }iv V G −  ; 

•  Let 1v  and 2v  be any two distinct vertices. We have 

1 2 1 2, ( )v v v v V G   . 

Then, the class   of vertices is a BNTG.  

The next theorem is used to compute the size of G by 

means of bipolar neutrosophic topological graph  .  

Theorem 12. The edge number of a BNTG is expressed by 

a bipolar neutrosophic topology 
'

1 1 1 1 1{ ,{( , , , , ,v a b c a =   

' ' ' ' ' ' ' '

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2, )},{( , , , , , , ), ( , , , , , , )},b c v a b c a b c v a b c a b c
' ' ' ' ' '

1 1 1 1 1 1 1, {( , , , , , , ), , ( , , , , , , )}}n n n n n n nX v a b c a b c v a b c a b c= . 

Example 35. Let 1{( ,0.6,0.5,0.4, 0.5, 0.6,BNS v= − −  

20.8), ( ,0.3,0.6,0.5,v− 0.6, 0.2, 0.4),− − − 3( ,0.1,0.2,v

0.8, 0.9, 0.7, 0.2)}− − −  with a bipolar neutrosophic 

topological space { , =  1 1{( ,0.6,0.5,0.4,S v=  

2 10.5, 0.6, 0.8)}, {( ,0.6,0.5,S v− − − = 20.6, 0.8), ( ,0.3,v− −

0.6,0.5, 0.6, 0.2, 0.4)}, X− − − = 1{( ,0.6,0.5,0.4, 0.5,v −

20.6, 0.8), ( ,0.3,0.6,0.5, 0.6,v− − − 30.2, 0.4), ( ,0.1,v− −  

0.2,0.8, 0.9, 0.7, 0.2)}}− − − . See Fig 17 for the bipolar 

neutrosophic topological graph, and the positive truthness 

degree, positive indeterminacy degree, positive falsity degree, 

negative truthness degree, negative indeterminacy degree, 

and negative falsity degree of edges are 2.1, 2.1, 1.7, -2.1, -2, 

-2.8 respectively. 

 
Fig 17. A bipolar neutrosophic topological graph in Example 35. 

 

Each BNTG can be expressed by a BFG, but the reverse 

may not be true. We present the following two examples to 

explain it in detail. 

Example 36. Let G be a BNG drawn in Fig 15, and a 

bipolar neutrosophic topological graph be constructed in 

terms of the following schemes: the only isolated vertex is 

formulated by  ; the vertex has the maximum degree four 

represented by 1{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8),X v= − − −  
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2( ,0.3,0.6,0.5, 0.6, 0.2, 0.4),v − − − 3( ,0.1,0.2,0.8, 0.9,v −

0.7, 0.2)}− − . Since 2 2S X = , the vertex representing 2S  

is 1 2{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8), ( ,0.3,0.6,0.5, 0.6,v v− − − −  

0.2, 0.4)}− − . Similarly, 3 2S X =  and the corresponding 

vertex are denoted by 3 1{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8),S v= − − −  

3( ,0.1,0.2,0.8, 0.9, 0.7, 0.2)}v − − − . 2 3 1S S = , and the MF 

value of edge connect 2S  and 3S  is (0.6,0.5,0.4, 0.5, 0.6, 0.8)− − − . 

1 1 2S X S S =  1 3 1S S=  = and hence 1S is denoted by 

1{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8)}v − − − . Therefore, 1{ , S =  =  

1 2 1{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8)}, {( ,0.6,0.5,0.4, 0.5, 0.6,v S v− − − = − −  

2 3 10.8), ( ,0.3,0.6,0.5, 0.6, 0.2, 0.4)}, {( ,0.6, 0.5,0.4,v S v− − − − =

30.5, 0.6, 0.8), ( ,0.1,0.2,0.8, 0.9, 0.7, 0.2)},v X− − − − − − =

1 2{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8), ( ,0.3,0.6,0.5, 0.6, 0.2, 0.4),v v− − − − − −

3( ,0.1,0.2,0.8, 0.9, 0.7, 0.2)}}v − − − is a bipolar neutrosophic 

topology and this graph is called a BNGT. 

 
Fig 18. A BNG which is a BNTG. 

 

Example 37. The graph G in Fig 19 is not a bipolar 

neutrosophic topological graph where 

1{( ,0.6,0.5,0.4,X v=  

2 30.5, 0.6, 0.8), ( ,0.3,0.6,0.5, 0.6, 0.2, 0.4), ( ,0.1,v v− − − − − −

40.2,0.8, 0.9, 0.7, 0.2), ( ,0.5,0.5,0.5, 0.5, 0.5, 0.5)}v− − − − − − ,  

1 1 2{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8), ( ,0.3,0.6,S v v= − − −  

0.5, 0.6, 0.2, 0.4)}− − − , 

2 1 3{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8), ( ,0.1,0.2,S v v= − − −  

0.8, 0.9, 0.7, 0.2)}− − − , 

1 2 2S X S X =  = , 1 2 1S S = , 

1 1 2{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8), ( ,0.3,S X v v = − − −  

0.6,0.5, 0.6, 0.2, 0.4)}− − − , 

2 1 3{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8), ( ,0.1,S X v v = − − −  

0.2,0.8, 0.9, 0.7, 0.2)}− − − , 

1 2 1{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8)}S S v = − − − . 

However,

1 1 2{ , {( ,0.6,0.5,0.4, 0.5, 0.6, 0.8), ( ,0.3,S v v =  = − − −  

0.6,0.5, 0.6, 0.2, 0.4)},− − − 2 1{( ,0.6,0.5,0.4,S v=

3 10.5, 0.6, 0.8), ( ,0.1,0.2,0.8, 0.9, 0.7, 0.2)}, {( ,0.6,v X v− − − − − − =

20.5,0.4, 0.5, 0.6, 0.8), ( ,0.3,0.6,0.5, 0.6, 0.2, 0.4),v− − − − − −

3( ,0.1,0.2,0.8, 0.9, 0.7,v − − 40.2), ( ,0.5,0.5,0.5, 0.5,v− −  

0.5, 0.5)}}− − is not a bipolar neutrosophic topology 

because 

1 2 1{( ,0.6,0.5,0.4, 0.5, 0.6, 0.8),S S v = − − −

2 3( ,0.3,0.6,0.5, 0.6, 0.2, 0.4), ( ,0.1,0.2,v v− − −

0.8, 0.9, 0.7, 0.2)} − − −  . 

 
Fig 19.. ABNG which is not a BNTG 

D. Algebraic operations in interval-valued fuzzy setting 

Definition 19. An IVFT on an IVFS 

1 1 1{( ,[ , ]),IVFS v a b=  , ( ,[ , ])}n n nv a b  (here 

0 1i ia b    for {1, , }i n ) can be established in terms of 

an IVFG G such that each vertex in G is a class in IVFS and 

edge number between two vertices is the cardinality of 

intersection of corresponding two classes of IVFS. The 

interval-valued fuzzy pseudograph (with loops), discrete 

IVFTG (no loops) and simple IVFG (one edge between two 

adjacent vertices) mark their subscripts by IVFP, IVFD and 

IVFS respectively.   

Theorem 13. Let ( )IVFPE G , ( )IVFDE G  and ( )IVFSE G  be 

the edge number of an interval-valued fuzzy pseudograph, 

discrete IVFTG and simple IVFG on the BFS 

1 1 1{( ,[ , ]),IVFS v a b= , ( ,[ , ])}n n nv a b , respectively. 

Then, ( )IVFPE G =
2 1 12 (2 1) 2n n nn n− − −− + , ( )IVFDE G =  

2 12 (2 1)n nn − − −  and ( )IVFSE G =
22 2 3 1

2

n n n− − +
. 

Example 38. Let 
1 2{( ,[0.3,0.6]), ( ,[0.5,0.7]),IVFS v v=  

3( ,[0.1,0.4])}v . Then ( ) 30IVFPE G = , ( ) 18IVFDE G =  

and ( ) 15IVFSE G = . 

An IVFTG deduced in terms of an interval-valued fuzzy 

graph can be stated by the following result. 

Theorem 15. Let G be an interval-valued fuzzy graph that 

meets the conditions: 

•  G has a unique isolated vertex which is represented by 

 ; 

•  There is a vertex v adjacent to other vertices in { }G −  , 

and ( , ) ( , ) ( , )l l l

i iv v v IVFS v IVFS  + + +  , and 
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( , ) ( , ) ( , )u u u

i iv v v IVS v IVS  + + +   for any 

( ) { }iv V G −  ; 

•  Let 1v  and 2v  be any two distinct vertices. We have 

1 2 1 2, ( )v v v v V G   . 

Then, the class   of vertices is an IVFTG.  

The next theorem is used to compute the edge number of G 

by means of IVFTG  .  

Theorem 16. The edge number of an IVFTG is expressed 

by an interval-valued fuzzy topology 
1 1 1{ ,{( ,[ , ])},v a b =   

1 1 1 2 2 2 1 1 1{( ,[ , ]), ( ,[ , ])}, , {( ,[ , ]), , ( ,[ , ])}}n n nv a b v a b X v a b v a b= . 

Example 39. Let 
1 2{( ,[0.3,0.6]), ( ,[0.5,0.7]),IVFS v v=  

3( ,[0.1,0.4])}v with an interval-valued fuzzy topological 

space
1 1 2 1{ , {( ,[0.3,0.6])}, {( ,[0.3,0.6]),S v S v =  = =

2 1 2( ,[0.5,0.7])}, {( ,[0.3,0.6]), ( ,[0.5,0.7]),v X v v=

3( ,[0.1,0.4])}}v . See Fig 20 for the interval-valued fuzzy 

topological graph. 

 
Fig 20. An IVFTG in Example 39. 

 

Each IVFTG can be expressed by an IVFG, but the reverse 

may not be true. We present the following two examples to 

explain it in detail. 

Example 40. Let G be an IVFG drawn in Fig 21, and an 

IVFTG be constructed in terms of the following schemes: the 

only isolated vertex is formulated by  ; the vertex has 

maximum degree four represented by 1{( ,[0.3,0.6]),X v=  

2 3( ,[0.5,0.7]), ( ,[0.1,0.4])}v v .Since 2 2S X = , the 

vertex representing 2S  is 1 2{( ,[0.3,0.6]), ( ,[0.5,0.7])}v v . 

Similarly, 3 2S X =  and the correspond vertex is 

denoted by 3 1 3{( ,[0.3,0.6]), ( ,[0.1,0.4])}S v v= . 

2 3 1S S = , and the MF value of the edge connecting 2S  

and 3S  is ([0.3,0.6]) . 1 1 2 1 3 1S X S S S S =  =  =  and 

hence 1S  is denoted by 1{( ,[0.3,0.6])}v . Therefore, 

1 1 2 1 1{ , {( ,[0.3,0.6])}, {( ,[0.3,{( ,[0.3,0.6])S v S v v =  = =

2 3 1 3, ( ,[0.5,0.7])}, {( ,[0.3,0.6]), ( ,[0.1,0.4])},v S v v=

1{( ,[0.3,0.6]),X v= 2 3( ,[0.5,0.7]), ( ,[0.1,0.4])}}v v is 

an IVFT and this graph is called an IVFTG. 

 
Fig 21. An IVFG which is an IVFTG. 

 

Example 41. The graph G in Fig 22 is not an IVFTG, 

where 

1 2 3{( ,[0.3,0.6]), ( ,[0.5,0.7]), ( ,[0.1,0.4]),X v v v=

4( ,[0.6,0.8])}v , 

1 1 2{( ,[0.3,0.6]), ( ,[0.5,0.7])}S v v= , 

2 1 3{( ,[0.3,0.6]), ( ,[0.1,0.4])}S v v= , 

1 2 2S X S X =  = , 1 2 1S S = , 

1 1 2{( ,[0.3,0.6]), ( ,[0.5,0.7])}S X v v = , 

2 1 3{( ,[0.3,0.6]), ( ,[0.1,0.4])}S X v v = , 

1 2 1{( ,[0.3,0.6])}S S v = . 

 However, 

1 1 2{ , {( ,[0.3,0.6]), ( ,[0.5,0.7])},S v v =  =

2 1 3{( ,[0.3,0.6]), ( ,[0.1,0.4])},S v v=

1 2 3 4{( ,[0.3,0.6]), ( ,[0.5,0.7]), ( ,[0.1,0.4]), ( ,[0.6,0.8])}}X v v v v=  

is not an IVFT because 1 2 1 2{( ,[0.3,0.6]), ( ,[0.5,0.7]),S S v v =  

3( ,[0.1,0.4])}v   

 
Fig 22. An IVFG which is not an IVFTG. 

E. Algebraic operations in bipolar interval-valued fuzzy 

setting 

Definition 20. A bipolar interval-valued fuzzy topology on 

a bipolar interval-valued fuzzy set 1 1 1{( ,[ , ],BIVFS v a b=  

1 1[ , ]), , ( ,[ , ],[ , ])}n n n n nc d v a b c d  (here 0 1i ia b    and 

1 0i ic d−     for {1, , }i n ) can be established in terms 

of a BIVFG G such that each vertex in G is a class in BIVFS 

and edge number between two vertices is the cardinality of 

intersection of corresponding to two classes of BIVFS. The 

bipolar interval-valued fuzzy pseudograph (BIVFP) (with 

loops), bipolar discrete interval-valued fuzzy topology graph 

(BDIVFTG) (no loops) and bipolar simple interval-valued 

fuzzy graph (BSIVFG) (one edge between two adjacent 

vertices) mark their subscripts by BIVFP, BIVFD and BIVFS 

respectively.   

Theorem 17. Let ( )BIVFPE G , ( )BIVFDE G  and ( )BIVFSE G  be 

the edge number of a BIVFP, BDIVFTG and BSIVFG on the 
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BFS 1 1 1 1 1{( ,[ , ],[ , ]), , ( ,[ , ],[ , ])}n n n n nBIVFS v a b c d v a b c d= , 

respectively. Then, 
2 1 1( ) 2 (2 1) 2n n n

BIVFPE G n n− − −= − + , 

( )BIVFDE G =  
2 12 (2 1)n nn − − −  and 

22 2 3 1
( )

2

n n n

BIVFSE G
− − +

=  

Example 42. Let 
1{( ,[0.3,0.6],[ 0.9, 0.3]),BIVFS v= − −  

2 3( ,[0.5,0.7],[ 0.6, 0.5]), ( ,[0.1,0.4],[ 0.4, 0.2])}v v− − − −

.Then ( ) 30BIVFPE G = , ( ) 18BIVFDE G =  and ( ) 15BIVFSE G = . 

A BIVFTG deduced in terms of a bipolar interval-valued 

fuzzy graph can be stated by the following result. 

Theorem 18. Let G be a BIVFG that meets the conditions: 

•  G has a unique isolated vertex which is represented by 

 ; 

•  There is a vertex v adjacent to other vertices in { }G −  , 

and ( , ) ( ,l l

i iv v v + +  ) ( , )lBIVFS v BIVFS + , ( , )u

iv v+   

( , ) ( , )u u

iv BIVS v BIVS + + , ( , ) ( ,l l

i iv v v − −  

) ( , )lBIVFS v BIVFS −  , ( , ) ( , ) ( , )u u u

i iv v v BIVS v BIVS  − − −    

for any ( )iv V G { }−  ; 

•  Let 1v  and 2v  be any two distinct vertices. We have 

1 2 1 2, ( )v v v v V G   . 

Then, the class   of vertices is a bipolar interval-valued 

fuzzy topological graph.  

The next theorem is used to compute the edge number of G 

by means of a bipolar interval-valued fuzzy topological graph 

 .  

Theorem 19. The edge number of a bipolar 

interval-valued fuzzy topological graph is expressed by a 

bipolar interval-valued fuzzy topology 

1 1 1 1 1 1 1 1 1 1{ ,{( ,[ , ],[ , ])},{( ,[ , ],[ , ]),v a b c d v a b c d =   

2 2 2 2 2( ,[ , ],[ , ])},v a b c d 1 1 1 1 1, {( ,[ , ],[ , ]), ,X v a b c d=

( ,[ , ],[ , ])}}n n n n nv a b c d . 

Example 43. Let 1{( ,[0.3,0.6],[ 0.9, 0.3]),NS v= − −  

2( ,[0.5,0.7],[ 0.6, 0.5]),v − − 3( ,[0.1,0.4],v [ 0.4, 0.2])}− − wit

h a bipolar interval-valued fuzzy topological space 

1 1 2 1{ , {( ,[0.3,0.6],[ 0.9, 0.3])}, {( ,[0.3,0.6],S v S v =  = − − =

2[ 0.9, 0.3]), ( ,[0.5,0.7],[ 0.6, 0.5])},v− − − − 1{( ,[0.3,0.6],X v=

2 3[ 0.9, 0.3]), ( ,[0.5,0.7],[ 0.6, 0.5]), ( ,[0.1,0.4],v v− − − −

[ 0.4, 0.2])}}− −  See Fig 23 for the IVFTG. 

 
Fig 23. A bipolar interval-valued fuzzy topological graph in Example 43. 

 

Each bipolar interval-valued fuzzy topological graph can 

be expressed by a bipolar interval-valued fuzzy graph, but the 

reverse may not be true. We present the following two 

examples to explain it in detail. 

Example 40. Let G be a BIVFG drawn in Fig 24, and a 

BIVFTG be constructed in terms of the following schemes: 

the only isolated vertex is formulated by  ; the vertex has 

maximum degree four represented by 1{( ,[0.3,0.6],X v=  

2[ 0.9, 0.3]), ( ,[0.5,0.7],[ 0.6, 0.5]),v− − − − 3( ,[0.1,0.4],[ 0.4, 0.2])}v − − . 

Since 2 2S X = , the vertex representing 2S  is 

1{( ,[0.3,0.6],[ 0.9, 0.3]),v − − 2( ,[0.5,0.7],v [ 0.6, 0.5])}− − . 

Similarly, 3 2S X =  and the corresponding vertex is 

denoted by 3 1 3{( ,[0.3,0.6],[ 0.9, 0.3]), ( ,[0.1,0.4],S v v= − −  

[ 0.4, 0.2])}− − . 2 3 1S S = , and the membership value of edge 

connect 2S  and 3S  is ([0.3,0.6],[ 0.9, 0.3])− − . 

1 1 2 1 3 1S X S S S S =  =  = and hence 1S  denoted by 

1{( ,[0.3,0.6],[ 0.9, 0.3])}v − − . Therefore, 1 1{ , {( ,S v =  =  

[0.3,0.6], [ 0.9, 0.3])},− − 2 1{( ,[0.3,0.6],[ 0.9, 0.3])S v= − −

2 3 1( ,[0.5,0.7],[ 0.6, 0.5])}, {( ,[0.3,0.6],[ 0.9, 0.3]),v S v− − = − −

3 1( ,[0.1,0.4],[ 0.4, 0.2])}, {( ,[0.3,0.6],[ 0.9, 0.3]),v X v− − = − −

2 3( ,[0.5,0.7],[ 0.6, 0.5]), ( ,[0.1,0.4],[ 0.4, 0.2])}}v v− − − −

is a bipolar interval-valued fuzzy topology and this graph is 

called a bipolar interval-valued fuzzy topological graph. 

 
Fig 24. A BIVFG which is a BIVFTG. 

 

Example 41. The graph G in Fig 25 is not a BIVFTG 

where 

1 2{( ,[0.3,0.6],[ 0.9, 0.3]), ( ,[0.5,0.7],[ 0.6,X v v= − − −

3 40.5]), ( ,[0.1,0.4],[ 0.4, 0.2]), ( ,[0.6,0.8],v v− − −

[ 0.7, 0.1])}− − , 

1 1 2{( ,[0.3,0.6],[ 0.9, 0.3]), ( ,[0.5,0.7],[ 0.6,S v v= − − −

0.5])}− , 

2 1 3{( ,[0.3,0.6],[ 0.9, 0.3]), ( ,[0.1,0.4],[ 0.4,S v v= − − −

0.2])}− , 1 2 2S X S X =  = , 1 2 1S S = , 

1 1 2{( ,[0.3,0.6],[ 0.9, 0.3]), ( ,[0.5,0.7],S X v v = − −

[ 0.6, 0.5])}− − , 

2 1 3{( ,[0.3,0.6],[ 0.9, 0.3]), ( ,[0.1,0.4],S X v v = − −

[ 0.4, 0.2])}− − , 
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1 2 1{( ,[0.3,0.6],[ 0.9, 0.3])}S S v = − − . 

However, 

1 1{ , {( ,[0.3,0.6],[ 0.9, 0.3]),S v =  = − −

2 2 1( ,[0.5,0.7],[ 0.6, 0.5])}, {( ,v S v− − = [0.3,0.6],

3 1[ 0.9, 0.3]), ( ,[0.1,0.4],[ 0.4, 0.2])}, {( ,[0.3,v X v− − − − =

20.6],[ 0.9, 0.3]), ( ,v− − 3[0.5,0.7],[ 0.6, 0.5]), ( ,v− −

[0.1,0.4],[ 0.4, 0.2]),− − 4( ,[0.6,0.8],[ 0.7, 0.1])}}v − − is 

not a bipolar interval-valued fuzzy topology because 

1 2 1 2{( ,[0.3,0.6],[ 0.9, 0.3]), ( ,[0.5,0.7],S S v v = − −

3[ 0.6, 0.5]), ( ,[0.1,0.4],[ 0.4, 0.2])}v− − − −  . 

 
Fig 25. A BIVFG which is not a BIVFTG. 

V. CONCLUSION 

Graphs are a common model functioned to reveal the 

relationship between things, and the relationship between 

fuzzy sets can also be presented by graph structures. In this 

article, we characterize the fuzzy topology from the 

perspective of the fuzzy graph. Five settings are discussed 

respectively: BIF setting, NS setting, BNS setting, IVFS 

setting and BIVFS setting. Parallel classes and topological 

spaces in these settings are presented, and several examples 

are depicted to show the expression of theorems and concepts. 

Due to the wide applications of BFS, NS and IVFS, the 

results derived in this paper have potential application 

prospects, especially in the circumstances that there are two 

different angles, positive and negative, to describe the 

uncertain features of issues. 
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