
 

 
Abstract—This paper extends the paper of feeder bus systems. 

In their systems, the condition to guarantee the existence of the 
optimal solution is not discussed. We investigate the Hessian 
matrix to find criterion to locate the maximum solution and 
derive the closed form solution for the profit function. 
Moreover, we derive a formulated estimation for the route 
spacing in order to provide readers with a detailed look into 
existing methods, and their characteristics and applicability to 
analyze the closed form profit function. In our note, we have 
found: (a) To find the criterion to insure the profit function has 
critical points and show the condition to guarantee that the 
small one is uniquely maximum point; (b) To solve the 
maximum profit in a closed form and find the condition to 
insure the maximum profit is positive such that operation of the 
bus system is profitable; (c) To construct a better formulated 
approximation and compare numerical examples from their 
paper. 
 

Index Terms—Analytical approach, Headway of bus, Public 
transportation, Bus service area 
 

I. INTRODUCTION 

PTIMIZING various decision variables, such as service 
headway, route length, and route spacing, is crucial in 

the design of transit systems. Over the past decades, 
analytical optimization models have been developed to 
simultaneously address these factors when optimizing bus 
systems. However, it is important to acknowledge that certain 
decision variables, like stop spacing, route spacing, and the 
length of local service zones, may exhibit spatial variation 
while remaining practically unchangeable over time in real 
transit systems. This dynamic nature necessitates a 
comprehensive understanding of the interplay between these 
variables to achieve efficient and effective transit system 
design. In this paper, we delve into the complexities 
associated with jointly optimizing these factors and explore 
potential solutions to improve the design and functionality of 
transit systems. In the realm of optimizing public 
transportation systems, various decision variables play a 
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crucial role. While some factors, such as service headways, 
exhibit variation across different periods, they typically 
remain consistent along specific routes. Extensive literature 
exists on the analytical approaches used to optimize these 
systems, with many studies assuming a fixed demand and 
minimizing a total cost function comprising operator and user 
costs (e.g., Vuchic and Newell [1], Tsao and Schonfeld [2], 
Kuah and Perl [3]). However, these approaches may have 
limited applicability due to their assumption of zero demand 
elasticity. To address this limitation and incorporate 
additional factors, such as demand elasticity, financial 
constraints, and the impact of fleet size on congestion, for an 
urban bus service, Oldfield and Bly [4] developed an analytic 
model to determine the optimal vehicle size. Notably, those 
papers discussed above did not account for time-dependent 
demand.  
By minimizing user wait time, with a fixed fleet size, in 
contrast, Newell [5] treated demand as a smooth function of 
time, optimizing the schedule for a transit route, and 
incorporated one or more demand peaks. This paper aims to 
expand on existing research by considering the influence of 
fleet size, financial constraints, and demand elasticity on 
congestion in the optimization of public transportation 
systems. Furthermore, we take into account the 
time-dependent nature of demand to refine the scheduling 
process and enhance user experience. By addressing these 
important factors, we strive to develop a comprehensive and 
effective model for optimizing transit systems that better 
aligns with real-world scenarios. Without demand elasticity 
to obtain analytic solutions, in analyzing a commuter bus 
system, Clarens and Hurdle [6] have considered 
time-dependent demand. In the realm of optimizing public 
transportation systems, the development of multiple period 
models has been instrumental. Chang and Schonfeld [7] have 
introduced these models, which enable certain system 
characteristics, such as route structure, to be fixed based on 
the best compromise over different time periods. 
Simultaneously, other characteristics, within each specific 
period, to optimize service headways. These models have 
been formulated and compared under four distinct conditions: 
equilibrium demand scenarios, steady equilibrium demand, 
cyclical fixed demand, and steady fixed demand. When 
considering fixed demand, the primary optimization 
objective is to minimize the total system cost, encompassing 
both user and operator costs. Conversely, for equilibrium 
demand scenarios, the objective functions aim to maximize 
operator profit and social welfare. The outcomes of these 
models yield closed-form solutions for optimized bus 
services, including route spacing, headway, fare, and cost, 
accounting for different demand conditions. This paper 
builds upon the pioneering work of Chang and Schonfeld [7] 
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by examining and analyzing the implications of their multiple 
period models. By considering various demand scenarios and 
incorporating different optimization objectives, we aim to 
deepen our understanding of the optimal design and 
operation of public transportation systems. The insights 
gained from this research will contribute to the development 
of more effective and efficient bus services, providing 
valuable guidance for transit planners and policymakers. 
This paper adopts a proof of Hessian Matrix in order to 
provide readers with a detailed look into existing methods, 
and their characteristics and applicability to analysis of the 
close form profit function. Also, we believe it comprehensive 
result furnishes decision makers and researchers much 
information and more confidence for both comparisons and 
applications of analytic approaches. In our note, we have 
found that the following improvements: (a) To find the 
criterion to insure the profit function has critical points for 
fare and show the condition to guarantee that small one is 
uniquely maximum point between the bigger and small one; 
(b) To solve the maximum profit in a closed form and find the 
condition to insure the maximum profit is positive such that 
to run the bus system is profitable; (c) To construct a better 
formulated approximation for routing space and compare 
numerical example results from Chang and Schonfeld [7] by 
our solving procedure. 

II. ASSUMPTIONS AND NOTATION 

To be compatible with Chang and Schonfeld [7], we will 
adopt the same assumptions and notation as theirs. 
z: ratio of wait time/headway. 
y: express ratio = express speed/local speed.  
W: width of bus service area.  
V: local bus speed.  
T:  duration time (service hours).  
r: route spacing.  
q: potential or fixed demand density.  
P: total system profit.  

M: passenger average trip time, M ൌ L

ଶV
൅

W

ଶୠV
൅

J

୷V
. 

L: length of bus service area.  
k: invariant component of the demand function, k ൌ 1 െ

ୢ

ସ୥
e୶ െ Me୴.  

J: express distance.  
h: headway. g: access speed.  
f: fare.  
e୵: demand elasticity parameter for waiting time.  
e୶: demand elasticity parameter for access time.  
e୴: demand elasticity parameter for in-vehicle time.  
e୮: demand elasticity parameter for fare.  

D: bus average round trip time, D ൌ
ଶL

V
൅

W

ୠV
൅

ଶJ

୷V
.  

d: bus stop spacing.  
B: bus operating cost.   
b: non-stop ratio = non-stop speed / local speed. 

III. REVIEW OF CHANG AND SCHONFELD [7] 

According to the Chang and Schonfeld [7], it states that 
profit is total revenue minus operator cost. Firstly, we study 

the profit,  rhfPP ,, , of bus transit system under 

steady equilibrium demand, Based on Chang and Schonfeld 

[7], since they have derived that 

 
hr

BDTW
rhfPP  ,,  









 hze

g

re
fekfqTLW w

x
p 4

.     (3.1) 

Secondly, we review the results of Chang and Schonfeld 
[7]. Owing to analyze the relation between  (a) number of 
zones and (b) headway, they derived the system of first 
partial derivative equations 

24 hr

BDTW
fqTLW

g

e

r

P x 



,            (3.2) 

rh

BDTW
fqzTLWe

h

P
w 2




,             (3.3) 

and 

fqTLWe
f

P
p




, 









 hze

g

re
fekqTLW w

x
p 4

.          (3.4) 

Chang and Schonfeld [7] tried to solve the zeros of the first 
partial derivative system such that they will solve 

24 hr

BDTW
fqTLW

g

ex  ,                 (3.5) 

rh

BDTW
fqzTLWew 2

 ,                 (3.6) 

and 

fqTLWehze
g

re
fekqTLW pw

x
p 










4
.    (3.7) 

From Equations (3.5) and (3.6), they implied 

r
gze

e
h

w

x

4
 .                           (3.8) 

Plugging Equation (3.8) into Equation (3.7), they got 









 r

g

e
k

e
f x

p 22

1
.                   (3.9) 

Substituting Equations (3.8) and (3.9) into Equation (3.6), 
they had 

0
32

2 2

2
34 

x

wpx

kqLe

ezBDeg
rr

gk

e
.     (3.10) 

They claimed that if route spacing is less than two miles, 
then the first term in Equation (3.10) is relatively small to be 
neglected. Therefore, the remaining equation implies the next 
approximated solution for route spacing: 

3

1

2

232












x

wp

kqLe

ezBDeg
r .                (3.11) 

IV. OUR IMPROVED RESULTS 

To derive the condition for the existence and uniqueness of 
positive solutions for route spacing. 

First, we will show that Equation (3.10) in general does not 
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have only one solution. Motivated by Equation (3.10) and for 
later use, first we consider the following function 

  0
34

4 arrarf  ,                (4.1) 

with 04 a  and 00 a , where  

4
4 2

r
gk

e
a x ,                           (4.2) 

and 

2

2

0

32

x

wp

kqLe

ezBDeg
a  .                   (4.3) 

Based on Equation (4.1), we derive that 

   rarrf 4
2 43 ,                   (4.4) 

and 

   rarrf 4216  .                  (4.5) 

According to Equations (4.4) and (4.5), we solve the zeros 

for them such that we know that  rf  increases for 











44

3
,

a
r  and decreases for 








 ,

4

3

4a
r ; 

moreover,  rf  is concave up for 









42

1
,0

a
r  and 

concave down for  0,r , and 







 ,

2

1

4a
r . 

Therefore,  rf  has its maximum value at 
44

3

a
r  , and 

03
44 256

27

4

3
a

aa
f 








.               (4.6) 

Now from our earlier discussion, we derive the Lemma 1 
and Lemma 2 which are described as follows: 

 

Lemma 1.   0rf  has positive solution if and only if 

0
4

3

4









a

f  if and only if 3
4025627 aa .  

 

Lemma 2. The profit  rhfP ,,  has critical points if and 

only if 
qLgk

eezBDe xwp

41024

27
 . 

 
In the numerical example, we will show the condition that 

from the practical point of view  
qLgk

eezBDe xwp

41024

27
  is 

hold. Therefore, Equation (3.10) has two positive roots, say 

1r  and 2r  with 2
4

1 4

3
r

a
r  . 

From this point onward, we shall also prove that 2r  is not a 

local maximum point and find the condition to insure that 1r  

is a local maximum point, then to prove that 1r  is the global 

maximum point. Hence, we consider the Hessian Matrix of 

 rhfP ,, , then 

  33   jihH , 

























pw
x

w

x

qLeqzLe
g

qLe

qzLe
rh

BD

rh

BD
g

qLe

rh

BD

hr

BD

wT

2
4

2
4

2

322

223

.             (4.7) 

By Equations (3.8) and (3.10),we have the three principal 
determinants as 

  0
2

det
311  

 hr

BD
wTh ji ,          (4.8) 

  0
rh

DB3
)wT(hdet

44

22
2

22 j i 


,      (4.9) 

and 

  33  det jih
44

33

rh

Tw
 , 

w

x

zeg

keBDLq
2

222

4
 










 3

2

256
r

kqLe

ezBDeg

x

wp
.    (4.10) 

We know the followings are equivalent: (i) 2r  is a local 

maximum point; (ii) The three principal determinants are 
alternative between positive and negative each other; (iii) 

  0 det 33 jih ; (iv) 3
204

7
ra  . 

By 0
4

3

4









a

f  then 3
4025627 aa  and 

3
2

3

4
0 4

3

4

7
r

a
a 








 .                   (4.11) 

Hence 2r  is not a local maximum point. Here, we begin to 

obtain the criterion to insure that 1r  is a local maximum point. 

The followings are equivalent: (a) 1r  is a local maximum 

point; (b) The three principal determinants are alternative 
between positive and negative each other; (c) 

  0 det 33 jih ; (d) 
3

104

7
ra  . 

By Equation (4.11), it shows 


















4

3

1

0 4

3

4

7

a
a .                    (4.12) 

We imply that 
















4

3

1

01 4

3

4

7

a
ar  if and only if 

0
4

7 3

1

0 



















 af  that is 3

402401108 aa . 
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We summarize the results in Lemmas 3 and 4 as follows. 
 

Lemma 3. If 
qLgk

eezBDe xwp

41024

27
 , then 2r  is not a 

local maximum point. 
 

Lemma 4. If 
qLgk

eezBDe xwp

42401

27
 , then 1r  is the 

global maximum point. 

V. CRITERIA TO DERIVE A POSITIVE OPTIMAL PROFIT  

In this Section, we will obtain a formulated solution for 
maximum profit and show the condition for the maximum 
value is positive 

When P has critical solutions ( 3
4025627 aa ), at the 

critical point, we have 

hze
g

re
w

x 
4

,                           (5.1) 

fehze
g

re
fek pw

x
p 

4
,             (5.2) 

fe
g

re
k p

x 2
2

 ,                      (5.3) 

and Equation (3.10), then the profit function is 


















 k

g

re
k

g

re

e

qTLW
P xx

p

2
8

.        (5.4) 

 
We recall our findings that 

xe

gk

a 2

3

4

3

4

 ,                          (5.5) 

such that we imply that 

21 2

3
r

g

ek
r

g

e xx  .                     (5.6) 

From Equation (3.10), we know that 

2

23 32
2

2 x

wpx

kqLe

ezBDeg
kr

g

e

k

r












,       (5.7) 

then we derive that 

021  kr
g

ex ,                          (5.8) 

and 

022  kr
g

ex .                          (5.9) 

We will find the condition for 01  kr
g

ex . We know 

that 01  kr
g

ex  if and only if 0








xe

gk
f . 

We compute that 

2

2

3

33 32

2 x

wp

xx kqLe

ezBDeg

e

kg

e

gk
f 








, 

03
416

1
a

a
 ,                           (5.10) 

so we derive the following Lemma 5. 
 
Lemma 5. The condition to guarantee the maximum value 

of P being positive is 3
40161 aa . 

VI. OUR NEW APPROXIMATED ROUTE SPACING 

In this Section, we will construct an improved formulated 
approximation for route spacing. 

Chang and Schonfeld [7] used 31
0a  as the formulated 

approximation for 1r , whereas we will locate a better 

formulated approximated solution, say 31
0a , for 1r . 

Thus, we would have 

    40
32

04
34

0
31

0 43 aaaaaaf  , 

    4
4

3
4

31
0

2
4

32
0

31
0 4163  aaaaaa  .   (6.1) 

In other words, when we compute   031
0  af  by 

neglecting the 2  and the higher terms, we can obtain that 
 

4
3

1

0

4
3

2

0

43 aa

aa


  ,                         (6.2) 

By the way in which   was defined, we recall that if 

0
4

3

4









a

f  then 

3
4025627 aa .                         (6.3) 

Based on Equation (6.3), we know that 

043 4
3

1

0  aa ,                       (6.4) 

and 
0 .                               (6.5) 

VII. NUMERICAL COMPARISON OF Rଵ AND Rଶ 

We consider the same numerical example as Chang and 
Schonfeld [7]. They had the following parameters: 2b , 

25.0d , 5.2g , 8.67q , 2y , 5.0z , 

5.32B , 4J , 3L , 15V , 2W , 

07.0pe , 35.0ve , 7.0we , 7.0xe , 

bV

W

yV

J

V

L
D 

22
, 

bV

W

yV

J

V

L
M

22
 , and 

v
x Me

g

de
k 

4
1 . 

Since 005144.03
40 aa , 105.025627   and 

045.02401108  , we obtain that Equation (3.10) has 

IAENG International Journal of Applied Mathematics, 53:4, IJAM_53_4_47

Volume 53, Issue 4: December 2023

 
______________________________________________________________________________________ 



 

 
Table 1. Comparison among solutions. 

 
 exact solution 31

01 ar    31
01 ar  Chang and Schonfeld [7]

route spacing 174.1r  096.1r  178.1r  17.1r  
headway 235.0h  219.0h  236.0h  234.0h  

fare 178.5f  255.5f  173.5f  98.4f  

total profit 295.5903P  124.5880P  219.5903P  5034P  
 

 two solutions. From the help of a computer capability, we 

know that 174.11 r , and 318.62 r . Since the 

restriction in Lemma 4 is satisfied, we claim that the derived 
1r  is the global maximum point.  

Moreover, we compute the profit and list them in the Table 
1. For easy comparison with the results of Chang and 
Schonfeld [7], we quote their results from Page 474, Table 3, 
column 4, then list them in Table 1. 

It is shown that our formulated approximation, 

 31
01 ar ,                          (7.1) 

is comparatively accurate and can represent the exact 
maximum solution. 

 
Based on Table 1, our formulated approximated route 

spacing provides a very accurate estimation for the exact 
route spacing. 

VIII. A RELATED INVENTORY MODEL 

    In this section, we study inventory systems with a 
temporary purchasing discount. We recall the inventory 
model proposed by Aucamp and Kuzdrall [8] with the 
following objective function, 

 






 


D

QQr
BQCSZ D

00exp  

 






















 


D

QQr

r

D
QQ

r

Cr 00

0
0

0

1 exp1 ,   (8.1) 

where 

 
H

ACQS
B E 
 ,                         (8.2) 

with 









 H

r

D
Q

r

r
CA E

00

1 ,                       (8.3) 

and 

 DQrH E /exp1 0 ,                     (8.4) 

are three abbreviations to simplify the expressions in 
Equation (8.1). 
 
Aucamp and Kuzdrall [8] derived that the solution for 

0
dQ

dZ
 to obtain that 

 
0

01

1

0

* /
ln Q

DCrCDr

HGCDr

r

D
Q

D





 .         (8.5) 

with 

 ACQSrG E  2
0 ,                   (8.6) 

to simplify the expressions in Equation (8.5). 
 
Aucamp and Kuzdrall [8] mentioned that it must check that 

whether 0* Q  or not. Moreover,  *QZ  needs to 

compare with   SZ 0  to decide whether to accept the 

special reduction or not. They only used a numerical example 
to check those considerations. They did not consider the 
convexity property from the second derivative. We will 
provide more detailed explanation. 

IX. OUR IMPROVEMENTS 

    We rewrite the objective function as  









 0

0

Qx
r

D
CSZ D  

  xx Bexe
r

CDr   1
2

0

1 ,                 (9.1) 

where x  is a new variable with 

 QQ
D

r
x  0

0                         (9.2) 

under the restriction 

D

Qr
x 00 .                             (9.3) 

We know that 

  xxD Bee
r

DCr

r

DC

dx

dZ   1
2

0

1

0

,      (9.4) 

and 

0
2

0

1
2

2









 xeB

r

DCr

dx

Zd
.         (9.5) 

The solution for 0
dx

dZ
 is denoted by #x , where 














10

1
2

0# ln
CDrDrC

CDrBr
x

D

.         (9.6) 

 
Hence, we prove the main contribution of our study that  the 

result, 












10

1
2

0# ln
CDrDrC

CDrBr
x

D

 of Equation (9.6) is the 

best solution without considering the restriction of Equation 
(9.3). 
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If 
D

Qr
x 00#  , then #x  is the minimum solution under the 

restriction of Equation (9.3). If 
D

Qr
x 00#  , form the 

convexity property in Equation (9.5), then 
D

Qr 00  is the 

minimum solution. 

X. DIRECTION FOR FUTURE RESEARCH 

    The direction for the future research is twofold. First, we 

will find the condition to show that 
D

Qr
x 00#   is satisfied. 

Second, we will find the criterion to insure that 

   #0 xZSxZ  .   

 
On the other hand, we had published several papers with 
respect to pattern recognition to find some interesting 
problems that deserve to be investigated further: (i) How to 
apply our discrete results to continuous setting? (ii) Testing 
my theoretical derivations to an application situation. For the 
past many years, we had published several articles related to 
bus service model with a rectangular service area. There are 
some interesting problems that deserve further investigation: 
(a) How to avoid using the route width as a continuous 
variable that will result in unreasonable partition for the area 
width? (b) If we adopt the partition number of the area width 
as a discrete variable, then how can we find the optimal 
solution? (c) Comparison between continuous results with 
discrete results to check whether or not previous theoretical 
findings based on continuous variable acceptable? 
 
Based on our another research project with similarity 
measures, we had published two papers to point out that this 
research direction is a hot spot for practitioners. We found a 
related field to partition a network into communities. Zhang 
et al. [9] aroused our attention. We may apply our previous 
results to show that within a community, the similarity 
measure value is greater than that of outside the community. 
We find several unsolved problems: (1) How to find clicks 
for a network? (2) Based on clicks, how to generate a group? 
(3) How to compute modularity values? (4) How to convert a 
graph data of adjacency matrix to an intuitionistic fuzzy set 
environment? 
 
There are several recently published papers that are important 
to shed the light for the hot spot in the further study such that 
we list them in the following. Tang et al. [10] study a 
supermarket during the Chinese new year period by customer 
analysis. Yang et al. [11] developed a new information 
system according to reciprocal accumulation generation 
operation and vector continued fractions. Assis and Coelho 
[12] studied a distant learning and teaching project by 
temperature control as an education implement. According to 
machine learning procedure, Zhang et al. [13] developed for 
super-resolution image for morphological sparse areas. Wan 
et al. [14] found the optimal solution for a retailer warehouse 

by allocation arrangement. Tobar et al. [15] studied 
segmentation problem with label enhancement and base 
representation. Adhitya et al. [16] considered loads and 
concrete structures under earthquake. Zhu et al. [17] 
examined the optimal solution for train schedule with carbon 
emission consideration. With the breaking wave effect, 
Unyapoti and Pochai [18] constructed a binary arrangement 
of a wave crest model and a shoreline evolution model. 
Purwani et al. [19] applied the Newton-Raphson algorithm 
with Aitken extrapolation method to approximate stock 
volatility. Alomari and Massoun [20] used the Caputo 
fractional derivative to locate a numerical solution. Mane and 
Lodhi [21] considered singularly perturbed equations with 
numerical solution by cubic approach. Based on above 
discussion, we provide several possible directions for 
researchers for future studies. 

XI. A RELATED PROBLEM OF CAR SENSOR 

    We study a related problem in the paper of Hua et al. [22] 
to examine their arrangement of locations for car sensor 
under a network consideration.  

It is supposed that there are 1D , tDD ,...,2  column vectors, 

where the weight of jD  is denoted as jw  for tj ,...,1 . 

We predict that the assumption should be added as non-zero 
column vectors. In Hua et al. [22], they assumed that let   
be the collection of all independent subsets of 

 tjDj ,...,2,1:  , and then their goal is to find 












Gw
Gw

i

i

:max .                  (11.1) 

The proposed method in Hua et al. [22] is to rearrange the 

order of  tjDj ,...,2,1:   depending on their weights 

such that 

     nggg www  21 .                (11.2) 

Hua et al. [22] considered that (i)   1: jD jg , (ii) 

  2,1: jD jg , ..., (t)   tjD jg ,...2,1:   in this order 

to select independent subset to derive a subset as 

  mkD kp ,...,1:   then the total weight for this 

independent sub-family is derived as 

 


m

k
kpw

1

.                              (11.3) 

The goal in Hua et al. [22] is to prove that 

  


m

k
kpw

1 










Gw
Gw

i

i

:max .      (11.4) 

 
To save the precious space of this journal, we will not cite the 
detailed proof of Hua et al. [22] in our paper. Those interested 
readers please directly refer to Hua et al. [22] for their 
solution procedure. 
 
The inherent problem of Equation (11.2) proposed by Hua et 
al. [22] is the expression of Equation (11.2) is not unique.  
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Consequently, the proof in Hua et al. [22] is questionable, 
because they did not prove that for two different expressions 
of Equation (11.2), then they will derive the same maximum 
value. 

XII. OUR SOLUTION PROCEDURE 

    We can rearrange  tjwj ,...,1:   in a finite 

communities such that in each community, jw  has the same 

value that is, if there are s communities to partition 

 tjwj ,...,1:   as  

 tjwj ,...,1:  
s

k
k

1

 ,                    (12.1) 

such that if aw  and bw  in the same community, then aw

bw , if icw   and jdw   then dc ww   if and 

only if ji   such that we express  tjwj ,...,1:    as 

 )( 1 ww  

    2 ww  

 sww   .                 (12.2) 

Hence, we define the corresponding jD  as follows, 

 tjDj ,...,2,1:  
s

k
k

1

 ,                (12.3) 

where for k ൌ 1,2, … , s, 
M୩ ൌ ሼD୧: w୧ א Θ୩ሽ.                      (12.4) 

We will prove by the Principle of Finite Induction on the rank 

of  tjDj ,...,2,1:  .   

We assume the rank of  tjDj ,...,2,1:    is z . 

We assume that 1z  then any jD  is a base for 

 tjDj ,...,2,1:  .  By the approach of Hua et al. [22], 

  11 MDg   and then 

  max1 gw  tkwk ,...,1:  jw ,       (12.5) 

for any jD  being a base for  tjDj ,...,2,1:   to prove 

that the approach proposed by Hua et al. [22] can attain the 
maximum. 
However, Hua et al. [22] did not consider that Equation (11.2) 
can have different ordering such that their solution procedure 
is incomplete. 
 

We assume that our approach is valid for uz ,...,2,1  and 

then we assume that the rank of  tjDj ,...,2,1:   is 

1u . 

For the subspace generated by   1,, MDD  , we 

assume that the rank of 1M  is 1z  with 11  uz . 

By our approach, there is a subset consisting of 1z  

independent vector that is a base for the subspace generated 

by 1M . This base will be denoted as 2M . 

For any other selection of base for  tjDj ,...,2,1:  , we 

denote this base as Mଷ. 

We define 2M   as follows, 

Mଶ ൌ ൛D୨: D୨ א Mଷ,w୨ א Θଵൟ.                 (12.6) 

We denote the rank of Mଷ as  3# M . Owing to  3# M  

must less than or equal to the rank of 1M  to imply the 

  13# zM  . We will divide into two cases: Case (a) 

  13# zM  , and Case (b)   13# zM  . 

To simplify the expression, we will define that 

 tiwi ,...,1:  .                       (12.7) 

For Case (a)   13# zM  , the subspace generates by 2  

cannot contain all elements in 1 , because the dimension 

relation. Hence, we can select an element, denoted as C஑ 

where  C஑ is in the subspace generates by 1 , we denoted it 

as 
C஑ א  (12.8)                              .ۄΦଵതതതതۃ

On the other hand, C஑ is not in the subspace generates by 

2M , and then we can apply the replacement theorem of 

bases in linear algebra to replace one element in the base Mଷ, 
we denote it as Dஒ. 
 
Owing to the independent relation, we know that Dஒ is not in 

2M . Hence, we imply that wஒ is not in Θଵ, and then 

wஒ ൏ w஑.                               (12.9) 
Based on Equation (12.9), we obtain that 

∑ w୧ ൏ ∑ w୨DౠאMరD౟אMయ ,                 (12.10) 

where 
Mସ ൌ ሼD஑ሽڂMଷ െ ൛Dஒൟ,               (12.11) 

is a new base that add D஑ and delete D from Mଷ. 
Base on our above discussion, we know that the base Mଷ will 
not attain the maximum value. Consequently, we know that 
Case (b) is valid. We conclude our derivations in the 
following theorem. 
 
Theorem 1. We prove that for any base which attains the 
maximum value of the optimal problem, then all of them have 
the cardinal number of selected sub-base form ሼD୧:w୧ א Θଵሽ. 
 
After we verify our theorem 1, we consider the remaining 
subspace ൛D୨:w୨ א Θ୩, k ൌ 2,3, … , sൟ. Owing to the rank of  

൛D୨:w୨ א Θ୩, k ൌ 2,3, … , sൟ is small or equal to u. We apply 
the Principle of Finite Induction to show that our approach 
can derive a base that attain the maximum value problem. 
 
Based on our above discussion, we present a simplified 
version to locate a base to attain the maximum value of car 
sensor allocation problem in a traffic design network. 

XIII. CONCLUSION 

This study attempts to provide a better solving procedure 
for route spacing and profit function from the point of view of 
Chang and Schonfeld [7]. The above results show the 
condition for existence of route spacing and demonstrate the 
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uniqueness maximum point of profit function. Moreover, 
results obtained show that the formulated approximation 

31
01 ar   of Chang and Schonfeld [7] is not good enough in 

their own paper because of their lack of consideration for this 
approximation. On the other hand, our formulated 

approximation  31
01 ar  is very accurate and can 

represent the exact maximum solution. Moreover, we discuss 
Aucamp and Kuzdrall [8] to point out their questionable 
findings and then provide our improvements. We studied a 
car sensor problem proposed by Hus et al. [22] to present a 
proof to show that their algorithm can derive the optimal 
solution. We also provide several possible directions for 
practitioners to help them to locate future research trend. 
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