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Analytical Solutions of Time-Caputo-type and

Space Riesz-type Distributed Order Diffusion

Equation In Three Dimensional Space

Dayi Zheng, Jiangbin Chen

Abstract The difficulty in solving distributed or-
der differential equations lies in the fact that the order
of the derivative is distributed within a finite interval.
This paper discusses the initial boundary value prob-
lem of three-dimensional diffusion equations of time Ca-
puto type distribution order and the initial boundary
value problem of three-dimensional diffusion equation-
s of time Caputo type space Riesz type distribution
order. The analytical solution of the initial boundary
value problem of three-dimensional diffusion equation-
s of time Caputo type distribution order is obtained
using the separation of variables method, and the an-
alytical solution of the initial boundary value problem
of three-dimensional diffusion equations of time Caputo
type space Riesz type distribution order is obtained us-
ing spectral method and Laplace transform.

Index Terms— Distributed order derivative, Caputo-
type derivative, Riesz-type derivative, Spectral method

[. Introduction

FTER the concept of variable order integral and variable
A order derivative was proposed by Samko in 1993, the vari-
able order derivative model was applied to the modeling of vis-
coelastic materials and viscous fluids [2] and the distributed
order derivative of the order distribution of derivatives in a fi-
nite interval was also more and more widely used. For example,
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ultra-low speed diffusion or strong abnormal diffusion phenom-
ena in polymer physics are usually described by the distributed
order diffusion equation. The distribution order diffusion equa-
tion can also be used to describe the sub diffusion stochastic
process that belongs to the Wiener process. Its diffusion index
decreases with time. Many complex diffusion processes whose
diffusion index changes with time, such as decelerated hyper-
diffusion and accelerated slow diffusion, decelerated slow dif-
fusion and accelerated hyperdiffusion, can be described by the
distribution order diffusion equation. At present, distributed
order differential equations have been widely used to describe
the rheological properties of composite materials, signal control
and processing, dielectric induction and diffusion, and stress-
strain behavior of viscoelastic materials [3]. The research on
distributed order differential equations has received attention
in the past decade or two. Authors of [5, 6, 1] obtained a fun-
damental solution for the one-dimensional time-fractional dif-
fusion equation and multi-dimensional diffusion-wave equation
of distributed order. Authors of [8] studied the distributed or-
der time-fractional diffusion equations characterized by multi-
fractal memory kernels, in contrast to the simple power-law ker-
nel of common time-fractional diffusion equations. An explicit
strong solution and stochastic analogues for distributed order
time-fractional diffusion equations are proposed in [7]. An im-
proved meshless method for solving two-dimensional distribut-
ed order time-fractional diffusion-wave equation with error esti-
mate are proposed in [4]. This paper discusses the initial bound-
ary value problem of three-dimensional diffusion equations of
time Caputo type distribution order and the initial boundary
value problem of three-dimensional diffusion equations of time
Caputo type space Riesz type distribution order. The analyt-
ical solution of the initial boundary value problem of three-
dimensional diffusion equations of time Caputo type distribu-
tion order is obtained by the separation of variables method, and
the analytical solution of the initial boundary value problem of
three-dimensional diffusion equations of time Caputo type space
Riesz type distribution order is obtained byspectral method and
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Laplace transform.

II. Preliminaries
Definition 2.1. (Caputo type derivative fractional deriva-
tive)

1 ARG
F(nfa)/a =)o

(n—1<a<n,t>a).

SDYf(t) =

Definition 2.2. (Riesz fractional derivative on bounded
intervals [10])

"

WU(%U = —ca(0Dg + 2 D7)u(z, 1),

n—-1l<a<n0<z<L),

where
ca = ﬁ(%&) a#1,
oDEuet) = ot s | e,
2Dfu(z,t) = %% /: (g_ug%dg.

Lemma 2.1. ([10]) For the function u(z) defined on infinite
intervals, whenn —1 < o < n, we have

a

(A Fu(a)

— e Dfu(@) + e Dou(@)] = 2 —u(x)
= Zcos(%2) —ooDyu(x) + o Dacu(x)] = 8|x|“um'
After defining u*(z) as follow

u(z), x € (0,L)

0, x ¢ (0,L)

we get the following Corollary by Lemma 2.1
Corollary 2.1. ([10])

—(=A)zu*(z) = _W[ oDgu(x) + » Diu(z))

2
a()é
= Blap )

Lemma 2.2. ([10]) Let {¢n} be a sequence of orthogonal eigen-
functions of Laplace operator —A defined on closed and bounded
region D and satisfy

(=A)pn = Nogpn and B(¢) =0 on 9D
where B(¢) represents any one of three Boundary Conditions.
Denote

Ry ={f =D cabn, cn = (fidn), Y leal*|AI7 < 00}

n=1 n=1

where v = max(«, 0). Then

(=A)Ff =D caAh)Egn, [ER,

n=1

Proposition 2.1. ([9]) Laplace transform for Caputo type frac-
tional order derivative

n—1

L{ ngf(t); s} =s"F(s) — Z sﬂ—k—lf(k)(o)

k=0
wheren — 1 < p < n.

III. The analytical solutions of the ini-
tial value problem (IBVP) of three-
dimensional diffusion equations of
time Caputo type distribution order

Consider the following IBVP of 3D diffusion equation of
time Caputo type distribution order

1 m _ 8%u(z,y,z,t) 82 u(x,y,z,t)
fo oDy u(x,y,z,t)d,u = 922 + By2

+82u(z,y,z,t) (1)

922 ’

O<I<L1,0<y<L2,0<Z<L3,

subject to
u(07 y7 Z7 t) = u(L17 y’ Z? t) = 07
u(x,0,z,t) = u(z, La, z,t) = 0,
(2)
u(x, Y, 07 t) = ’LL(J], Y, L33 t) = 07
u(w, y7 Z7 0) = g(xv 317 Z)
We set
u(z,y,z,t) = T()Y (x)H(y)P(2), (3)

substitute (3) to (1), then it follows

Y (2)H(y)P(2) / o DT (t)du

1w PH D 1)y @)pe) T
+ 1Y @ H ) D

Divided on both sides of above equation by T'(t)Y (z)H (y) P(z),
the equation is changed into

2y (x d*H 2p(z
fol oDy T (t)dp — dd);g : dyéw ddié : (4)
T(t) Y(z)  H(y) P(z)

Substitute (3) to (2), then we have
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By observing equation (4), obviously we can see that the left
side is a function only with respect to variable ¢ while there are
three functions about z, y and z respectively on the right side.
Therefore (4) holds on whole domain only if three functions on
right side are all constants as follows

42y (z) d?H(y) d2P(z)
dx?2 — _)\1 dy? — _)\2 dz? — _)\3'
Y(x) T H(y) T P(2)
Thus
d*Y (z)
e + MY (z) =0, (6)
d*H(y)
dy2 + >‘2H(y) =0, (7)
d*P(2)
T+ xape) =0, (8)
1
/ o DET(t)dn + (M + Az + As)T(E) = 0. ©)
0

We discuss the general solutions of eqation (6) in there
different cases:

Case 1: when A\; < 0, the general solutions to (6) are
Y(z) = creV M 4 ggemVMT,

Formula (5) imply

and T'(t), P(z) and H(y) are all not zero functions, which indi-
cate

Y(0) = Y(L;) = 0.
Namely
Y(0)=c1+c2=0,
Y (L) = creV ™Mb 4 pem VMl —

by the fact

1 1

_ e—v—A1L1 . e\/—>\1L1 7& 0,

V=RIL1 —V=AiL
we get ¢1 = ¢ = 0, and the solution to (6) is trivial.

Case 2: when A\; = 0, the general solution to (6) are
Y(z) = c1 + cox.

Thus
Y0)=c14+0=0,

Y(L1) =c1+c2ly1 =0,

hence ¢; = c2 = 0. So the general solution is trivial too in this
case.

Case 3: when A1 > 0, the general solution (6) are

Y (x) = c1 cos(vAiz) + c2 sin(v/ Miz).

Boundary conditions indicate
Y(O) =C1 = 0,

Y (L1) = c1 cos(v/ M L1) + casin(v/A1L1) = 0.

In order to get nontrivial solutions, it is necessary to set
sin(v/A1L1) = 0, which imply

vV )\1L1 = nm,

and further more

therefore
Yo (z) :cnsinnLﬂ7 n=12,---.

1

As to equation (7) and (8), in the same way, there are trivial
solutions on case 1 and case 2, and in case 3, we obtain

2 2 2 2
moT ke
Ay = —— =1,2,--+), A3 = k=1,2,---
2 L%7(m ) 4y )73 L§7( ) 4y )7
thus
H’m(y)zcmsjnmﬂy7m:1727"'
Lo
. kmz
Py(z) =cpsin——,k=1,2,--- .
Lj

Then we consider equation (9), assume A1 + A2 + Az = A,
we have
1
/ o DPT(8)dp + NT(t) = 0, (10)
0
Taking Laplace transform with respect to ¢t on both sides in
(10), we get

/0 [s"T(s) — s~ 'T(0)]dp + AT'(s) = 0.

By initial condition u(z,y, z,0) = g(z,y, z), we have T'(0) = d
is a constant.
Furthermore, we get

T\(S) _ - d(S—l)

(s—1+Xlns)’ (11)

Taking inverse Laplace transform with respect to s on both sides
of (11), we get

d Y+joo s—1 .
T(t) = — ———¢"d
®) 27rj/7 s(s—l—l—)\lns)e *

—joo

(12)
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2 2.2

substituting A = A1 + X2 + A3 = ni;lr + mL;T n

ICZ 2
L% = /\nmk

into (12), we have

d y+joo s—1
ﬁj //_joo s(s =14 ApmiIns)

Tnmk (t) - SStdS.

According to

nwT
Ly
mmy
2
krmz

P = in —
% (2) = ¢k sin T

Yo (z) = cnsin

Hy, (y) = ¢m sin

we get

Unmk (za Y, z, t)
=Tk (t)Yn (2) Hm (y) Pe(2)

_f nmwe mmy . knz
= frmk sin —— sin sin ——
Ly Lo L

1 y+joo s—1 o

s(s =14 Amk lns)e

— d
X o) s

Y—joo

where f,mr = dcpcpmcr is any constant.

Superposition of upmk(z,y, z,t) and satisfy the initial con-

dition:
u(m7 y7 Z7 t)
oo oo o0
. nmx . mmny . kwz
= Z Z Z frmk sin T sin i sin Ta
n=1m=1k=1 1 2 3
1 Y+joo s—1 .
X —— ds. 13
275 )y joo s(s =14 Ak In s)e s (13)

From the initial condition u(z,y, z,0) = g(z,y, z) and T'(0) = d
as a constant, we obtain

(e o] (oo} oo
Z Z Zf sin " ) Y kmz
= nmk SiN sin in —
L Ly Ls

furthermore, we get

Lz rLy L1
fame = I LQLJ/ / / (2, y,2)

kmz
sin L—ldaz] L dy} anZ (14)
Therefore, the solution of equation (1) and (2) is (13), where

Fumi i given by (14).
IV. The analytical solution of IBVP
of 3-dimensional diffusion equations
of time Caputo type space Riesz type
distribution order

Consider the following IBVP of 3D diffusion equations of

time Caputo type space Riesz type distribution order

2 [e7
fol ODfU(CE, Y, %, t)dlu’ = fl aicﬁu(‘rvyy th)da

2
+ 7 sy, 2 )dB + [} 5Esule,y, z,0dy,  (15)
t>0,0<x<Li,0<y<Ls 0<z<Ls,
subject to
u(07 y7 Z7 t) = u(L17y’ Z7 t) = 07
u(z,0, z,t) = u(z, La, z,t) = 0,
(16)

u(x,y,O,t) = u(m,y,Lg,t) = Oa

u(z,y,2,0) = g(z,y, 2),

where u(z,y,z,t), g(z,y,z) are real value functions and

sufficiently smooth.

By separation of variables method used in sections 3, we
set

oo oo
T . mny . knz
E ETnmk sm sin sin —,
Lo L3

1m=1k=1 Ly
(17)

WK

u(z,y,2,t) =

n

from Corollary 2.1 and Lemma 2.2, we get

@

Wu(‘rvyv'Z?t) = _(_A )2 (:E Y, 2, t)

oo oo oo
mmy kmz

= Z Z ZTnmk )% sin nLTl'lw sin I sin .

n=1m=1k=1

(18)
P 8
W (I Y,z t) (—Ay)zu(x,y,z,t)
R = m2n? 8 nwT
= — Tk (t ( 2 s
2 2 2 e
 si Y kmz 19
sin " sin S5 (19)
a7 x
8‘2‘7 (mvyvzﬂt)_*(*A )2 (:E yaZt)
a | N nwT
= — T (t)( )2 si
. Y krmz
X sin T I, (20)
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substituting (17), (18), (19) and (20) into (15), we have

(oo} [eo] [e o] k
PSPPI ’”f

2
1 Ll

[e's}

-3 Z ZTnmk(t) smi mTTsm%z

n=1m=1k=1

(21) lead to

1 2
n o
/ onTnmk(t)d,LL + [/ ( LZ ) 2 do
0 1 1

2 m27r2 8 2 k27_r2 5
[ tas s [ e 0. @2)
1 2 1 3

combining (16) and (17) indicates

u(x’ y7 Z’ 0)
S nrxr . mmny . kmz
= Z Z Z Tnmk s1n sin i sin T
n=1m=1k=1 L 2 3
=9(z,y, 2)

and the Fourier coefficients is
Tnmk(o)
8 L3 Lz rla . nwx
~Iiis / {/ [/ g(z,y, z) sin T dx]
X sin —dy} in —dz

Let

2 2 2 2 2 2 2 12 2
n mT . a mem k*m a
= [t [TERas s [t
/1 L3 L3 v L3
and take Laplace transform with respect to ¢t on both side, we
get

1
/ [SHTnmk(S) - SH_ITnmk (O)}d,u/ + Cnkanmk(S) = 07
0

and further more

-~ s—1
Tnm =
k() s(s =14 cpmr Ins)

Trmi(0). (23)

Taking inverse Laplace transform with respect to s on both
sides of (23), we get

1 YFjoo s—1 .
=Trmir(0) =— e®'ds
( )2ﬂ'j /Y,joo s(s =14 cpmr Ins)

NN S S
T 27 oo s(s =14 cpmiIns) L1LoL3

Ls Ly Ly
X / {/ [/ g(z,y, z) sin mdav] sin wdy} sin @dz.
0 0 0 Ly Lo L3

Substituting above formula to (17), we obtain solution to (15),
(16)

u(z,y, z,t)

et 7TL]_L2L3_] w S(s—1+cpmrlns)
X /OL?’{/OL2 [/OL1 g(z,y, z) sin nL—ﬂ-lxdx] sin mL—Zydy} sin kLL:dz
X sin nLl sin szy sin kLLj (24)

V. The analytical solution to IBVP of
3-dimensional nonhomogeneous diffu-
sion equations of time Caputo type s-

pace Riesz type distribution order

Consider the following IBVP of 3D nonhomogeneous diffu-
sion equations of time Caputo type space Riesz type distribution
order

Iy oD u(z,y, z,t)dp

2 o
:fl 8\8\

u(z,y, z,t) da+f1 3y IB u(z,y, z,t)ds

(25)
+f1 =7 "v (m7y327t)d7+f($7y7z7t)7
t>0,0<x<Li,0<y<Ls 0<z<Ls,
subject to
u(0,y, z,t) = u(L1,y, z,t) =0,
u(z,0,2,t) = u(zx, La, 2,t) =0,
(26)

u(3?7y707t) = U(I,y,Lg,t) = 07

u(x’y7z70) :g(m7yﬂz)7

where both w(z,y,z,t) and g(z,y,z) are real value functions
which are sufficiently smooth.

By principle of superposition, the above problem can be
equivalently transformed into following two problems:
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1 2 a
fo ODéLu(wvyath)d:U’ = fl aﬁ:ﬁu(xayvzat)da

u(ozywzvt) = u(Lhyath) = 07
u(w,O,z,t) = U(I, L27Z,t) = 07
u(x7y707t) = U(.’L’,y,Lg,t) = 07

u(z,y,z,0) = g(z,y, 2),

Jy oDt u(,y, 2, )dp = [} sEmu(x, y, z,t)da
+f(a:7 y, Z7 t)7
u(07 y? Z7 t) = u(L17 y? 27 t) = 07

u(z,0, z,t) = u(x, La, z,t) = 0,

u(x7 y7 07 t) = u(:r7 y? Lg’t) = 07

u(z,y,2,0) =0.

B
+f12@‘87‘5 (QL‘ Y, z, t d6+f 8| |"/ (a:,y,z,t)d’y,

0<t<T,0<zx<L1,0<y<Lls 0<z<Ls,

+f1 a‘y‘/iu(x y,Z t d5+f 8|z|’Y x y,Z t)dfy

0<t<T,0<zx<L1,0<y<Lls 0<z<Ls,

Suppose u(z,vy, z,t) is solution to (25), (26), and u'(x,y, 2, t),

u?(z,y,2,t) are solutions to (A),
u(z,y,z,t) =
tion IV, we know u'(z,y, 2, t) is expressed as (24).
Assume the solution to (B) is the form

o0

1m=

nmwr .
sm — Sin

ank Ll L2

u(2,y,2,t) =

Mg
gk

,_.
El
Il

n 1

Expanding f(z,y, z,t) in Fourier series as follow

>

1m=1

. nwxT . mny .
Dnmik(t) sin sin
Ly Lo

NgE
NgE

f(z,y,2,t) =

£
Il

n 1

where

Ls L2 Ly
nm. t ) t
Drmik( L L2L3/ / f(z,y,2,t)

X smL—dw]snL—d y}si nL—dz

(B) respectively,
u'(x,y, 2,t) + u*(x,y, 2,t), by the result of sec-

mny .

then

k=
L~
(27)

kmz

nTg

(28)

Substituting (27) and (28) to (25
ma 2.2, we have

), and by Lemma 2.1 and Lem-

1 2 Tl27T o
/ ODf‘WnnLk (t)dﬂ + [/ ( L2 )5da
0 1 1

2 m27T2 B 2 k2ﬂ_2 ~
[k [T R W
1 2 1 3

— P (t) = 0. (29)
Let
Cnmk
7L27T2 2 m27r2 2 k2ﬂ'2 5
= 2d, d 2d
[t [t [ e,

(

taking Laplace transform w.r.t ¢ on both sides of (29), then by

condition u(x,y, z,0) = 0 of (B), we get

1
/ (5" Woamie ()]t + Crmpc Womi (5) — P (5) = 0,
0

thus

= Ins

ank (S) - ﬁnmk(s),

s— 14 cumrIns

taking inverse Laplace transform w.r.t s on both sides of above
equation, we have

1 YFjoo
5

—joo

Ins st
———————¢€""ds
s—14+cpmrIns

where *" represent convolution. Therefore

1 vHiee nwx

t
x e*'ds} sin ——

*% s— 14 cumrIns

y—joo
mmy . knz
sin ——

Lo L3’

X sin
combining above several results, we obtain

u(z,y,2,t)

oo 0o o0

n Z Z Z 7rL1L2L3 /

n=1m=1k=1 y—joo

Ly Ly L my
></ {/ / (z,y, )blHTldQZ] Tzdy}

k oo oo oo
X sin L—ddz sin ngrlcc sin mL:y sin ;Tj + Z Z Z

Yy+joo

_ st
(s—1e ds
s— 1+ comrIns

1 vHjeo Ins ¢ T

{prmi(t) 27y /wfjoo s — 14 comk lnse s} sin L1
X sin mry sin @
Lo L3’

VI. Conclusion

The difficulty in solving distributed order differential equa-
tions lies in the fact that the order of the derivative is distributed
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within a finite interval. We overcome this difficulty by separat-

ing variables and using Laplace transform as well as Lemma 2.1

and spectral methods, and then obtain their analytical solution-

S.

(1

2l

(4]

(5]
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