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Abstract—The financial mathematical model, comprised of 

multiple elements, represents a complex non-linear 

system.  Within this non-linear system, deterministic instability 

during operation gives rise to financial chaos phenomena such as 

turbulent fluctuations in the financial market and financial 

crises. Economic growth and social stability have been 

profoundly negatively affected by these events. To suppress or 

eliminate the disorderly condition in the fractional-order 

nonlinear system, and effectively stabilize and control the 

chaotic cyclic or erratic recurring state in the chaotic attractor, 

a novel sliding mode controller has been proposed in this 

research article. This controller aims to modify the behavior of 

the original economic system and achieve a new spatiotemporal 

order structure. By utilizing this controller, it is possible to 

facilitate the evolution process of the financial system from a 

chaotic to a regular state. Firstly, the dynamic characteristics of 

the fractional financial system are examined, followed by the 

determination of the theoretical order and coefficient range of 

the system. Next, a novel sliding mode control method is 

introduced, whose stability is examined. Finally, a numerical 

simulation is carried out to evaluate the effectiveness of the 

proposed controller. The consequences of the experiment 

demonstrate that the controller holds practical significance in 

the macro-control of financial crises. 

Index Terms—Fractional order, Financial mathematical 

model, Chaos, 0-1 test, Sliding mode control. 

 

I. INTRODUCTION 

HAOS is a highly complex and random-like behavior 

exhibited by a system, particularly a nonlinear system, 

that cannot determine the future state of the system based on 

given initial conditions. However, chaos does not imply 

disorder and actually contains elements of order. Chaos can 

also manifest within an orderly process, resulting in a 

seemingly random and erratic motion generated by a 

deterministic nonlinear dynamical system. In recent years, 

chaos theory has garnered significant attention and research, 

yielding fruitful results in various applications, including 

mathematics, control systems, secure communication, and 

economics [1-4]. 
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Although the theory of fractional calculus has a long 

history, similar to that of integer calculus, it has received less 

attention and research because of the lack of application 

background. It was related theory developed more slowly than 

integer calculus, and was first introduced by Mandelbort in 

1983. It is noted that fractal dimensions exist in nature and 

across numerous scientific and technological domains [5], 

which has contributed to the advancement of fractional 

calculus. In recent years, researchers have uncovered the 

presence of fractional-order dynamical behavior in numerous 

physical systems, including areas such as oscillation, 

turbulence, and control. As a result, fractional-order calculus, 

along with its associated models, has gained broader 

application across various scientific and engineering domains. 

It has become a prominent research focus in nonlinear 

disciplines, offering significant advancements over traditional 

integer-order calculus in theory and practical applications. In 

[6], Hegazi A S carried out a study that focused on the 

management and synchronization of chaotic fractional Liu 

systems. In [7], Gao F, et al. introduced a novel method using 

computational intelligence methods such as genetic 

programming to automatically drive the self-evolution of 

optimal superfractional chaos. In [8], Khennaoui A A et al. 

introduced three systems: Fractional Lozi Graph, Fractional 

Lorenz Graph and Fractional Flow Graph. They also 

proposed a control law with the objective of stabilizing and 

synchronizing these three mapping combinations. Fractional 

hyperchaotic economic systems were introduced by 

Yousefpour A et al. in [9], they suggest using a combination 

of adaptive terminal sliding mode control and a neural 

network estimator to effectively stabilize and synchronize 

fractional-order systems within a finite time. In [10], Chen L 

and Hao Y introduced a novel three-dimensional 

fractional-order discrete Hopfield neural network, where they 

utilized the left Caputo discrete delta method as a way to 

measure the system's responsiveness. In [11], the authors 

developed an efficient and reliable optimization algorithm. 

By utilizing this algorithm, researchers were able to 

successfully identify the parameters linked to chaotic dynamic 

behavior in various systems, including fractional-order chaos, 

noisy chaos, and hyperchaotic financial systems. In [12], a 

system of fractional differential equations is presented. This 

system involves new generalized Caputo fractional 

derivatives. 

The application of fractional differential theory to system 

control has garnered mounting focus in the last few years. One 

of the key areas of focus is the stability analysis of fractional 
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differential systems. This topic has captured the interest of 

scholars in the field, and significant research efforts have been 

dedicated to understanding and ensuring the stability of such 

systems. Drawing upon the principles of variable structure 

systems, sliding mode control (SMC) is a control strategy that 

is utilized. SMC has gained wide popularity across various 

fields due to its robustness to nonlinear systems, quick 

response, excellent temporary performance, and insensitivity 

to parameter changes and outside interferences. These 

features make it an ideal choice for applications that require 

stability and robustness. By effectively handling uncertainties, 

sliding mode control has found extensive use in diverse areas 

such as robotics, power systems, aerospace, and more. In [13], 

Yan J.J. proposed a novel approach to establish stability in 

continuous unified chaotic systems using discrete sliding 

mode control. With this new approach, only one controller is 

required for chaos suppression, simplifying the system design. 

In [14], a novel arrival rule is proposed for SMC, and the 

SMC signal is generated using Lyapunov stability theory for 

chaos control and synchronization. In [15], a global and a 

terminal method of SMC are presented. These approaches are 

specifically crafted to enable real-time tracking of 

variable-order fractional-order systems as well as 

constant-order fractional-order systems, despite the presence 

of uncertainties and external disturbances. 

Traditionally, unstable fluctuations have been considered 

unfavorable in economics. Chaos has been associated with 

unpredictable events, which can pose challenges for 

decision-makers in the area of economics. Due to the inherent 

sensitivity and uncertainty of chaotic behavior's long-term 

evolution, controlling chaos has become a crucial aspect in 

employing chaos theory to the discipline of economics. The 

rise of nonlinear economics, particularly the exploration of 

chaotic economics, has brought about significant revolutions 

in economic research. It has sparked a paradigm shift in how 

economists analyze and interpret economic phenomena. By 

embracing the principles of nonlinearity and chaos, 

economists have gained a deeper understanding of the 

intricate dynamics and interconnectedness within economic 

systems. This has paved the way for groundbreaking insights 

into the emergence of complex patterns, fluctuations, and 

even unexpected behaviors observed in real-world economies. 

Chaos theory is a valuable analytical tool in economics. By 

employing techniques such as dynamic imbalance analysis, it 

becomes feasible to explore crucial dynamic features of 

complex economic systems, including attraction, bifurcation, 

mutation, and chaos. This analysis can help in controlling 

chaotic phenomena within the economic area or uncovering 

hidden laws underlying intricate economic phenomena. 

Chaos theory has the potential to provide valuable insights 

and a deeper understanding of the dynamics of economic 

systems. Since the 20th century, global financial crises have 

occurred repeatedly. In an effort to understand the underlying 

dynamics of financial markets, mathematical models have 

been devised to examine the internal structure of the financial 

system. These models have revealed the availability of chaos 

in the financial system, prompting researchers to explore 

various methods for controlling and restoring normalcy in 

financial markets. Chaos control involves intentionally 

influencing a chaotic system to achieve a desired state, 

thereby attempting to bring about the necessary order in the 

financial market [16-19]. 

In summary, research on chaos theory holds significant 

scientific importance and vast application prospects. Chaos 

theory spans across numerous disciplines in the natural and 

social sciences, providing an effective tool for addressing 

nonlinear complex problems. It is also challenging and 

reshaping traditional perspectives on the real world. The 

wide-ranging applicability of chaos theory highlights its 

potential to revolutionize our understanding and approach to 

complex systems in various domains. For the steady state 

analysis of the system, it is advisable to use a sliding mode 

control approach based on the dynamic characteristics of 

fractional chaos in financial markets. The subsequent sections 

of this paper are structured as follows: Section 2 provides a 

mathematical description of the fractional financial system. In 

Section 3, the 0-1 test is employed for dynamic analysis of the 

system. In Section 4, a novel sliding mode reaching law is 

presented with the aim of controlling the system. 

II. MATHEMATICAL DESCRIPTION OF FRACTIONAL 

FINANCIAL SYSTEM 

Based on an analysis of the laws governing macroeconomic 

operations [20], a chaotic financial system can be constructed. 

This system consists of securities sub-blocks, production 

sub-blocks, currency and labor sub-blocks. A chaotic 

financial system with only three variables can be obtained by 

utilizing appropriate coordinate transformations and 

dimension reduction techniques. Chen [21] introduces the 

fractional chaotic financial mathematical model: 

                           2
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（1） 

In equation (1), x represents interest rate, y represents 

investment demand, z represents price index, 0a  is the 

amount of savings, 0b   is the investment cost, 0c   is the 

flexibility of commodity demand, and 0 , , 1    . 

 

 
Fig. 1. Chaotic system phase diagram :x-y 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 1, January 2024, Pages 58-67

 
______________________________________________________________________________________ 



 

 
Fig. 2. Chaotic system phase diagram: x-z 

 
Fig. 3. Chaotic system phase diagram: z-y 

 
Fig. 4. Chaotic system phase diagram: x-y-z 

 
Fig. 5. Timing diagram of chaotic system: x-t 

 
Fig. 6. Timing diagram of chaotic system: y-t 

 

When 11,  0.2,  0.9,  0.92 0.92,a b c       ,

0.95  , the system is in a chaotic state. The phase graph of 

its chaotic system is displayed in Figs. 1-4. Figs. 5-7 

demonstrate the time series graph depicting the system's state 

variables.These diagrams show that the fractional order 

system is in a state of chaotic dynamics with no apparent order 

or pattern, which can pose a considerable risk to the financial 

system. This chaotic behavior can potentially have a 

destructive impact. It is crucial to implement macro regulation 

and control measures to stabilize the system's long-term 

violent fluctuations. Therefore, effective control methods 

should be devised to suppress this chaotic behavior. 

 

 
Fig. 7. Timing diagram of chaotic system: z-t 

 

III. FINANCIAL SYSTEM DYNAMICS ANALYSIS 

After developing the fractional financial system, it is 

important to analyze and describe its dynamic characteristics 

through mathematical analysis and numerical simulation 

techniques. It is also important to prove that the map used in 

the system exhibits chaotic behavior. This proof would 

indicate the presence of both periodic and chaotic motion 

within the financial system. The financial system exhibits a 

combination of regular, predictable patterns as well as 

unpredictable, unstable behavior. Gottwald and Melbourne 

[22-23] put forward a robust and productive binary approach 

for assessing system chaos, known as the "0-1 test". 

In this approach, a positive number  5,4 5c    is 

selected, and numerical simulation data is used to construct a 

discrete set    1,2, ,j j N  . In general, n is not more 
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than 0.1 times the span of the discrete set N. The conversion 

variable is defined as described below: 

1 1
( ) ( )cos  , ( ) ( )sin

n n

i i
p n i ic q n i ic 

 
     

To assess the growth characteristics of the functions ( )p n  

and ( )q n  (e.g., their diffusion behavior), the average distance 

squared from ( )p n  and ( )q n  [MSD, M(n)] is characterized 

as follows: 
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The convergence and divergence of functions  p n  and 

 q n  can be evaluated using  M n . The asymptotic growth 

rate of  M n , which is the defining characteristic of the 

dynamic system, can be obtained by fitting linear regression 

to the functions  log M n  and log n , or alternatively, by 

calculating the correlation coefficient between them. 

The algorithm steps are as presented: 

Step1: Take the first N data points from various fractional 

chaotic systems and treat them as a discrete set  N ; 

Step2: Replace the discrete set  N  by selecting one data 

point every 8 points; 

Step3: Incorporate  N  into the transformation to obtain 

variables ( )p n  and ( )q n . Represent them as the trajectory 

plot of variable ( )p n - ( )q n ; 

Step4: Obtain the graph of the mean square displacement 

 M n  as it varies with n, and the progressive growth rate K  

of variable  M n  from variables ( )p n  and ( )q n . 

Step5: Compute the median of all K  as the median value 

of K . When K  converges to 1, the discrete set  N  

displays chaotic characteristics. K  converges to 0, and the 

discrete set  N  displays non-chaotic characteristics. 

Judgment rules:  

If the ( )- ( )p n q n diagram displays a random Brownian 

motion pattern,  M n  evolves linearly with time, and K is 

close to 1, it will be classified as a chaotic time series. If 

the ( )- ( )p n q n diagram displays a bounded periodic ring, 

 M n  is confined, and K  is close to 0, it will be classified 

as something else. It is a non-chaotic time series, either 

periodic or exhibiting period-doubling. To avoid potential 

resonance between c  and the Fourier decomposition of the 

time series during the calculation process, only 100 random 

numbers between  5,4 5c    are selected for 

analysis.The end result value is the median of K . 

A. Determine the range of differential order , ,    

When 4, 0.2, 0.9a b c    , apply the 0-1 test to 

generate 40 corresponding iterative sequences for , ,    in 

the interval [0.8,1]. At the same time, taking the 

order , ,   as the abscissa, the interval is 0.005.For each 

, ,    generated discrete sequence   x i  with a data span 

of 3000, bring in the noise-free 0-1 test to calculate the 

corresponding K value as the ordinate, complete the 

K diagram of the model iteration sequence, as shown in the 

Figs. 8-9. 

 
Fig. 8. The order K  value diagram in relation to the 

fractional-order chaotic system:    -q K 
 

 
Fig. 9. The order K  value diagram in accordance with the 

fractional-order chaotic system :    -q K   

 
Fig. 10. The order K  value diagram matching with the 

fractional-order chaotic system :    q K   

When the orders , ,    are in the range of [0.9,1)  and 

the K  value is near 1, the system presents a chaotic state, with 

violent fluctuations, which needs to be properly adjusted to 

hinder long-term violent fluctuations. In the range of 

[0.8,0.9) , the value of  K  reaches 1, as a whole, whose part 

is still transitioning from a stable state to chaos. 

B. Determination of the coefficient variation range 
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When 0.92 0.92 0.95    ， ， , use the coefficient 

a of the system as the test parameter. Generate 200 

corresponding iterative sequences for  15,5a  .At the 

same time, use the change parameter a as the abscissa, and 

the interval is 0.1. A discrete sequence with a data span of 

3000 is created for parameter a , the noise-free 0-1 test is 

used to calculate the K value corresponding to the three 

dimensions of , ,x y z  as the ordinate. The K  diagram of the 

iterative sequence of which is shown in Figure 11-13. 

They can be seen from Figs. 11-13 that when the K value is 

near 0 at [ 15, 13.1)a   , the system presents a transitioning 

from a stable state to chaos. When [ 13.1, 6.5]a   , the K  

value rapidly tends to 1, indicating that the fractional-order 

system may enter a chaotic state. When ( 6.5, 0.9)a   , the 

fractional-order chaotic system undergoes a transition from 

chaotic to non-chaotic or periodic behavior. As a result, some 

parts of the system's K  value start to decrease from 1 to 0. 

When the [ 0.9,5]a  , the sequence is a non-chaotic or 

periodic state, the corresponding 3-dimensional K  values 

tend to 0. 

 

 
Fig. 11. The K diagram corresponding to the coefficients of 

the fractional chaotic system:  x K x  

 

Fig. 12. The K diagram in relation to the coefficients of the 

fractional chaotic system:  y K y  

 

Fig. 13. The K diagram in relation to the coefficients of the 

fractional chaotic system: z-K(z) 

 

C. Dynamics analysis within the specified range 

This paper is primarily aimed at on examining the 

dynamics of the financial system by exploring variations in 

savings values a  within a given range. The analysis of 

changes in investment costs b and commodity demand 

elasticity c , which similarly impact the financial system, is 

not included in this discussion.  

(1) When 14a   , the financial system (2.1) performs on 

0-1 test, the average of the three-dimensional K value of the 

financial system is 0-0.0595 (judged as "0"), 0.0429 (judged 

as "0"), 0.1647 (judged as "0"), respectively. As shown in Fig. 

5 is the -s p  trajectory diagram in accordance with the phase 

diagram of the financial system. The scatter plots of  -M n n  

and  -K c c  provide evidence for this. 

The graph for x dimensional data is only given in this paper. 

From Figs. 14-16 the trajectory of ( )p t  is a periodic bounded 

motion.  M n  generally decreases as n  grows. The values 

of K  is mostly concentrated near 0, indicating that the 

system is in an asymptotically stable equilibrium state. The 

entire financial system can operate stably and orderly. The 

long-term behavior of the system can be predicted. 

 

 
Fig. 14. The x-th dimension data of the system when 

a=-14 (a) p-s(x) trajectory graph 
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Fig. 15. The x-th dimension data of the system when a=-14 : 

x-M(x) graph 

 
Fig. 16. The x-th dimension data of the system when 

a=-14:c(x)-K(x) scatter plot 

 

 

 
Fig. 17. The x-th dimension data of the system when a=-11 : 

p-s(x) trajectory graph 

 

Fig. 18. The x-th dimension data of the system when 

a=-11 :  x M x  diagram 

 
Fig. 19. The x-th dimension data of the system when a=-11 : 

c(x)-K(x) scatter plot 

 
Fig. 20. The x-th dimension is data of the system when 

a=4:p-s(x) trajectory graph 

 

 

 

Fig. 21. The x-th dimension is data of the system when 

a=4:  x M x  diagram 
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Fig. 22. The x-th dimension is data of the system when a=4 : 

c(x)-K(x) scatter plot 

 

(2) When 11a   , perform 0-1 test on the financial system 

(2.1), the median of the three-dimensional K of the financial 

system is 0.9932 (judged as "1") and 0.9093 (judged as "1"), 

0.9684 (decided as "1"). Figs. 17-19 show the -s p  trajectory 

diagram. The scatter plots of  -M n n  and    c x K x  is 

corresponded to the phase diagram of the financial system. It 

is clear that the movement of ( )p t exhibits unbounded 

motion, similar to Brownian motion.  M n  generally 

increases as n  grows. The values of K  are mostly 

concentrated around 1. It can be observed that the economic 

and financial systems have experienced significant and 

turbulent changes, indicating a state of chaos. Hence, making 

long-term predictions about the forthcoming state the 

economic and financial system becomes an arduous task due 

to its inherent chaotic nature. The system is in a state of 

disarray, posing a substantial threat to economic development. 

Given the detrimental effects it can have, it becomes 

imperative to implement timely macro-control measures in 

order to mitigate the long-term violent fluctuations and 

restore stability to the system. 

(3) When 4a  , Figs. 20-22 is similar to Figs. 14-16. The 

trajectory of ( )p t  is a periodic and bounded motion.  M n  

shows irregular and bounded oscillation as n increased. 

 K x  is mostly concentrated around 0, indicating that the 

system is non-chaotic at this time. 

The above analysis highlights that the financial system can 

achieve stable operation and development when there is an 

appropriate balance among savings, investment costs, and 

elasticity of commodity demand. By maintaining the right 

combination of these key factors, the financial system can 

function smoothly. When excessive economic behavior 

occurs, it can lead to improper combination of key financial 

indicators. The emergence of chaotic phenomena is caused 

financial crises. 

IV. NEW SLIDING MODE CONTROLLER 

The above research shows that the financial market is a 

complex dynamic system with significant chaotic effects. The 

objective of employing chaos control techniques in the 

financial market is to attenuate or eliminate chaotic behavior, 

thereby promoting stability and exerting successful regulation 

over the inconsistent periodic state within the chaotic 

attractor. By actively guiding the transformation of market 

chaos towards a desired direction, it is possible to reshape the 

dynamics of the underlying economic system and establish a 

new spatiotemporal order structure that aligns with 

predefined expectations. Therefore, a newly proposed sliding 

mode controller designed specifically for fractional-order 

financial chaotic system models can effectively control 

stability and produce positive outcomes in curtailing or 

preventing financial crises. 

A. New sliding mode controller 

Combined Eq (1) with sliding mode control theory, Eq (2) 

can be obtained 
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Where 
0u  represents the rate of sliding mode control,  

 0 1 2 3

T
u u u u  and 

1 2 3, ,u u u  represent the rates of 

control corresponding to each dimension, respectively. The 

fundamental operation of fractional calculus used in this 

paper is 
tD , which is defined as: 
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Given that the sliding mode switched function of this system 

is represented as: 

1 ts c e D e                                 (3) 

Where
1c is the sliding mode parameter,

tD e represents 

the  derivative of e , 

31 2=
T

t t t tD e D e D e D e
     

 
,  1 2 3

T
s s s s

   1 2 3 =
T

e e ee e e e x x y y z z    ,and , ,e e ex y z  are 

the reference values of state variables. 

Eq (3) can be derived from Eq (4). 
1

1 ts c e D e  
                                 

(4) 

When the parameters
1 2 3=0.08 =0.08 =0.05  ， ， , the 

sliding mode approach rate is set to  sgns hs s   , the 

control rate can be obtained by combining Eq (3): 

   
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2 1 2
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According to the structure of the observation system and 

the unique characteristics in the system, this paper sets a new 

sliding mode approach rate, as shown in Eq (5): 
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The new sliding mode approach rate design obviates the 

need for explicit parameter design, leading to a substantially 

simplified structure. The replacement of parameter design 

with the system error enables more variability in system 

control, leading to better realization of variable system 

control. 

B. Stability analysis 

The paper demonstrates the stability of the proposed 

approach rate using the Lyapunov stability theorem. 

According to this theorem, the system's state variable motion 

trajectory is guaranteed to converge to the sliding mode 

surface within a finite time. The stability of the system can be 

achieved. Hence, the aim is to demonstrate the stability of a 

new approach, which is a crucial aspect of our research. 

Theorem 1: The switched function for sliding mode 

variable structure control systems is represented by Eq (3) in 

the paper. The Lyapunov function is defined as follows: 
TV s s   

if  

0T TV s s s s    
then the control system is gradually stable. 
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Based on the analysis and the evidence provided, we can 

indeed conclude that this system exhibits gradual stability. 

V. EXPERIMENTAL SIMULATION 

The paper only conducts theoretical research on financial 

chaos. Set the control time at 1000s, keep 

0.92 0.92 0.95, 4,  0.2 0.9a b c        ， ， ， , set 

parameters  sin 0.1ex t  , 0.0001h  , 0.0001  ,

1 100c  .  0.8sin 0.1ey t  ,  0.5sin 0.1 2ez t    are 

reference values, respectively, to display the effectiveness of 

the proposed method, 

From Fig. 23, it is evident that the system experiences 

high-amplitude oscillations before 1000s. The new approach 

rate comparison is tracking response diagram after added 

sliding mode control. The system exhibits instability and 

chaotic motion in its current state. When the sliding mode 

control is introduced with a time span of 1000s, the system 

begins to track the desired reference value ex . As a result, the 

system exhibits periodic motion state and achieves stability. 

In the paper, the traditional approach rate and the new 

approach rate are simulated and compared simultaneously, as 

shown in the enlarged diagram at 1000s. The new approach 

rate x-dimensional curve completely is overlaped with the 

reference value
ex . The results show that the new approach 

rate can achieve a better tracking effect compared to the 

traditional approach rate. The error response diagram in Fig. 

24 illustrates the difference between the x-dimensional 

traditional approach rate and the new approach rate after 

applying sliding mode control. This diagram showcases the 

effectiveness of the new approach in reducing errors and 

improving performance. Indeed, it is evident from the figure 

that at around 1000s, the addition of sliding mode control 

significantly reduces the error in the new approach rate 

compared to the traditional approach rate. Both the traditional 

approach rate and the new approach rate exhibit stable 

behavior after the incorporation of sliding mode control. 

Definitely, it is notable that the error value of the new 

approach rate is considerably smaller compared to the 

traditional approach rate. The result indeed demonstrates that 

the tracking performance of the new approach rate is superior 

to that of the traditional approach rate. Notably, this 

improvement is achieved without the need for additional 

redundant parameters. This finding highlights the 

effectiveness and efficiency of the new approach, suggesting 

its potential for enhancing system performance and reducing 

errors. 

 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 1, January 2024, Pages 58-67

 
______________________________________________________________________________________ 



 

 

Fig. 23 Contrast track in gresponsesgraph about x 

 

Fig. 24 Error responses graph about x 

 

Fig. 25 Contrast tracking responses graph about y 

 

Fig. 26 Error responses graph about y 

 

Fig. 27 Contrast tracking responses graph about z 

 

 
Fig.28 Error responses graph about z 

 

The tracking response diagrams for the y and z dimensions 

are illustrated in Figure 25 and Figure 27, respectively. These 

figures depict a comparison between the traditional approach 

rate and the new approach rate after incorporating sliding 

mode control. The tracking response diagrams comparing the 

traditional approach rate and the new approach rate after 

adding sliding mode control for the y and z dimensions are 

actually presented in Figures 26 and 28, respectively. The rate 

error response graphs demonstrate that the introduction of the 

sliding mode control system at 1000s results in a transition 

from chaotic motions to a periodic state. This indicates that 

the new method effectively stabilizes the system and brings it 

into a more controlled and regular behavior. This conversion 

indicates that the system has achieved stability. Once it is 

established that the sliding mode controller achieves a 

desirable control effect, it can be observed that a new type of 

sliding mode controller exhibits superior tracking 

performance compared to the traditional sliding mode 

controller. The advantage in tracking performance can be 

attributed to advancements in control algorithms, system 

modeling, or the incorporation of innovative control 

techniques.   

The above numerical results show that when chaos occurs 

in the financial system, the paper highlights the potential of a 

new sliding mode controller in achieving financial system 

stabilization.  So, the numerical results are fully congruent 

with the theoretical derivation. 

VI. CONCLUSION 

Merging our understanding of financial chaos dynamics 
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with the fundamental theories and methods of dynamic 

systems, a novel sliding mode control approach for chaos in 

fractional financial systems is presented. This study deeply 

explores the intrinsic characteristics of financial systems by 

establishing a fractional-order financial mathematical model. 

Through this analysis, the chaotic states hidden within the 

financial system and discern underlying patterns amidst the 

complexity of economic phenomena are uncovered. 

Constructed a sliding mode controller to govern and dictate 

chaotic states, with the ultimate objective of restoring 

normalcy to the financial system, holds immense practical 

significance. By employing this control mechanism, the aim is 

to bring order to a chaotic financial system, thereby ensuring 

stable and predictable functioning. Overall, this research 

endeavors to unravel the dynamics of financial chaos and 

provides avenues to mitigate its impact through the 

application of the sliding mode control approach. By 

providing an in-depth analysis of the intricacies of the 

financial system, the order and stability can be navigated 

towards being restored, therefore promoted the sustainable 

development of financial markets. 
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