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Abstract—Adaptive Output-feedback prescribed perfor-
mance control (PPC) scheme is investigated for a class of
uncertain switched nonlinear systems. Compared with the
existing methods, this paper designs a new type of error
transformation function. Its advantage is that based solely
on the properties of the function, the output error can be
constrained within the preset band without any additional
conditions. Neural networks are used to approach unknown
nonlinearities in switched systems, and state observers are used
to estimate unknown states. The stability analysis shows that
the proposed method ensures that all closed-loop signals are
bounded and the tracking error can converge to the adjustable
constraint function under the switching condition of average
dwell time. Finally, the effectiveness of the proposed algorithm
is verified by simulation experiments.

Index Terms—Adaptive neural control, average dwell time,
prescribed performance control (PPC), switched nonlinear sys-
tem, Output-Feedback

I. INTRODUCTION

IN recent years, the study of nonlinear systems has re-
ceived widespread attention due to many practical engi-

neering situations, and some excellent control algorithms,
such as backstepping technology [1]–[6], neural network
technology [7]–[11] and fuzzy technology [12]–[18], are
widely used. But the practical controlled system often re-
quires the proposed control scheme, which can not only make
the system stable, but also consider the transient performance
of the system. So, the PPC was addressed for the first time
to solve this problem in [19], [20]. Due to the unknown
uncertainties and external disturbances in the system, PPC
issues are very challenging and difficult to achieve. To
solve it, the traditional prescribed performance function was
applied to the tracking control problem of nonlinear systems
in [21]–[24]. On this basis, Wang et al. [25] constructed
an improved predetermined performance function to avoid
high-frequency chattering in the control input. More recently,
Liu et al. [26] introduced a new constraint variable for
system transformation, and studied the constrained control
problem of strict feedback nonlinear systems. Different from
the idea of the literatures [21]–[26], for a class of uncertain
nonlinear systems with unknown control direction, another
new error transformation function and a new update law were
introduced into the controller, which can make the control
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structure simpler than the existing control technology, so
that a fault-tolerant control scheme to guarantee the given
tracking performance was proposed in the work [27]. Further-
more, for nonlinear systems with unknown control direction,
Zhang et al. [28] proposed a low complexity PPC scheme
without using the traditional Nussbaum gain techniques and
any approximation technique. And Zhao et al. [29] designed
and implemented event triggered control (ETC) and PPC
simultaneously for a class of uncertain nonlinear systems
with unknown control directions.

Meanwhile, from the point of view of engineering practice,
system state variables are usually not observable. As a solu-
tion to this problem, observer-based output-feedback control
scheme has be applied and many novel researches have been
carried out. For example, by using backstepping technique,
the authors in the result [30] addressed the problem of output-
feedback adaptive fuzzy tracking control for a class of un-
certain strict-feedback nonlinear systems, in which the input
driven filter is designed to estimate the unknown state. By
introducing fuzzy state observer, an adaptive fuzzy tracking
controller for a class of single-input and single-output (SISO)
uncertain nonstrict feedback nonlinear systems was proposed
in [31]. For the nonlinear system with unknown control
direction, Zhang and Yang [32] used a fuzzy adaptive state
observer to estimate the unmeasured state, and proposed
a low complexity adaptive fuzzy output feedback control
scheme.

In addition, the actual nonlinear system model sometimes
needs to be modeled by a hybrid system composed of multi-
ple subsystems. Only one of these subsystems is active at a
certain instant, and which subsystem is selected is determined
by the switching rules. As an example of switched system,
the control input of mass-spring-damper system needs to be
switched between two specific candidate controllers. How-
ever, these mechanical systems switching rule are usually
studied on the assumption that the system has unknown
nonlinearity, because it is difficult to satisfy the assumption
that the precise knowledge about the nonlinearity of the
system is known. Therefore, it is meaningful to study the
adaptive control of uncertain switching systems. Many robust
adaptive control schemes have been successfully applied to
switched systems [33]–[36]. Specifically, an adaptive output
feedback neural tracking controller was designed for a class
of strictly feedback nonlinear switched systems in [34], in
which the proposed controller guaranteed the boundedness
of all closed-loop signals under the switching condition of
average dwell time. Long [35] proposed small-gain theorems
based on multiple Lyapunov functions (MLFs) for switched
nonlinear systems, which extended the small-gain technique
from the original non-switched nonlinearity to the switched
nonlinearity. A neural adaptive tracking control method is
proposed for nonlinear nonlower-triangular switched systems
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[37], in which a backstepping-like recursive design process
was established by using MLFs, and the radial basis function
neural network was used to avoid the limitation of monotone
increasing bounded function of non lower triangular system
function.

Inspired by the aforementioned literatures, this paper in-
tends to solve the PPC problem of SISO nonlinear switched
systems. On the one hand, different from the conventional
PPC introduced in [21]–[25], a more direct error transfor-
mation function (ETF) is given. Although the authors in
[26] also provided an ETF, only by selecting design param-
eters reasonably can output error constraints be achieved.
In addition, the proposed ETF is the summary of the al-
gorithms in the literature [27]–[29], and the effectiveness
of the proposed PPC scheme is proved in the subsequent
stability analysis. From this point of view, this paper is an
extension of the work of the literature [29]. On the other
hand, the considered system is the form of a strict-feedback
switched system with parameter uncertainties, unmeasurable
states and unknown disturbances. The stability analysis of
the proposed PPC scheme on the considered system needs
to be reconstructed. Therefore, an adaptive output-feedback
prescribed performance controller is proposed based on the
above discussion.

II. SYSTEM DESCRIPTIONS AND BASIC KNOWLEDGE

A. System descriptions

Consider a class of SISO uncertain switched nonlinear
systems as follows

ẋi = fiη(t)(x̄i) + xi+1 + λiη(t)(t)

i = 1, 2, · · · , n− 1

ẋn = fnη(t)(x̄n) + uη(t) + λnη(t)(t)

y = x1

(1)

where x̄i = [x1, x2, · · · , xi]T ∈ Ri (i = 1, 2, · · · , n) are
the system state vectors, and y ∈ R is the system output.
The function η(t) : R+ → M = {1, 2, · · · m}, which is
assumed to be a piecewise right continuous function of time,
represents a switching signal, where m is the number of
subsystems. When t ∈ [tk, tk+1), η(t) = jk, (jk ∈ M, k ∈
N ). That is, the jkth subsystem is active. Accordingly, for
each subsystem j, j ∈M , fij(·) : Ri → R (i = 1, 2, · · · , n)
are unknown smooth functions, λij(t) are unknown external
disturbances satisfying |λij(t)| ≤ λ̄∗ij with λ̄∗ij being positive
constants, and uj is the control input of the jth subsystem.
It is assumed that only output signal y(t) can be measured
in system (1), while other state variables are continuous and
not measurable.

In order to simplify writing, the symbols in some functions
have to be omitted. For example, denote η(t), fij(x̄i), λij(t)
and uj(t) as η, fij , λij and uj , respectively. Next, let’s
introduce the definition of average dwell time, which has
recently played a key role in the switched system research.

Definition 1: [34] If there exist positive constants C0 and
τ0 such that

Cη(t)(T, t) ≤ C0 +
T − t
τ0

, ∀ T ≥ t ≥ 0, (2)

where Cη(t)(T, t) is the number of times the system has been
switched in the time interval [t, T ). Then, the positive number

τ0 is called the average dwell time of the switching signal
η(t).

Remark 1: That is, for an initial time t0 := 0 and an
arbitrary time T > 0, t1, · · · , tCη(T,0) are represented as the
switching moment on the time interval [0, T ). In addition,
assume that the state of system (1) will not jump instanta-
neously when the subsystem is switched, that is, the solution
of system (1) is continuous everywhere. Also assume that
jk is not equal to jk+1 for all k ∈ {0, 1, · · · , Cη(T, 0)}.
It is worth mentioning that the above two assumptions are
standard in the switched system literatures [33]–[35].

B. Control objectives and preliminaries

Fig. 1. Illustration of attribute of ξ1(κ).

The output error z1 and the state errors zi, i = 2, · · · , n
are defined as

z1 = x1 − yr
zi = x̂i − αi−1,j , i = 2, · · · , n

(3)

where αi−1,j , j ∈ M , are virtual control laws, and yr(t) is
a desired trajectory.

In order to constrain the output error z1, a boundary
function ϕ1(t) is introduced as

ϕ1(t) = (ϕ10
− ϕ1∞)e−ε1t + ϕ1∞ , (4)

where ϕ10
, ϕ1∞ and ε1 are positive constants, ϕ10

> ϕ1∞ ,
ϕ10

is the initial value, ϕ1∞ is the upper bound of steady-
state error, and ε1 denotes the convergence speed of expo-
nential function.

Traditionally, for PPC scheme, the following equivalent
unconstrained behaviors are usually acquired from the the
constrained behavior |z1(t)| < ϕ1(t) [21]–[25]:

z1(t) = ϕ1(t)K(ξ1(t)) (5)

where K(ξ1(t)) = eξ1−e−ξ1
eξ1+e−ξ1

. And the error transformation
ξ1 and its derivation are

ξ1(t) = K−1

(
z1(t)

ϕ1(t)

)
=

1

2
ln(

K + 1

1−K
) (6)
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and

ξ̇1(t) = Λ1

(
ż1 −

z1ϕ̇1

ϕ1
dt

)
(7)

with Λ1 = 1
2ϕ1

( 1
K+1 −

1
K−1 ) respectively.

Here, we introduces an auxiliary smooth function ξ1(κ)
which can help to realize PPC and satisfies

lim
κ→−1

ξ1(κ) = −∞, lim
κ→1

ξ1(κ) =∞.

The tend of ξ1(κ) is shown in Fig. 1. For instance, ξ1(κ) =
2 tanh−1(κ) = ln( 1+κ

1−κ ) or ξ1(κ) = tan(π2κ) can be a can-
didate for ξ1(κ). Based on ξ1(κ), a new error transformation
is designed as:

ξ1(t) = ξ1(κ) = ξ1(
z1(t)

ϕ1(t)
) (8)

And ξ̇1(t) is

ξ̇1(t) = 2Γ1(ż1 −
ϕ̇1z1

ϕ1
) (9)

where Γ1 = 1
ϕ1

∂ξ1(κ)
∂κ , and ξ̇1(t) is here ready for later use.

Remark 2: It can be seen from Fig. 1 that if ξ1(κ) is
bounded, then |κ| < 1 holds. Naturally, let κ = z1(t)

ϕ1(t) . So,
for |z1(0)| < |ϕ1(0)|, the overshoot of z1(t) (t > 0) can
be limited to less than ϕ1(t). The next step is to build the
appropriate objective function Vn(ξ2

1 , ·).
The aim of the work is to design a switched adaptive neural

network output-feedback controller of the subsystems, and
ensure that all closed-loop signals are uniformly bounded
and the system output error does not violate the prescribed
constraint function. To this end, the following assumption
and lemma are introduced.

Assumption 1: The high-order time derivatives y
(i)
r (t),

i = 0, 1, 2, · · · , n, of the reference signal yr(t) are continu-
ous and bounded.

Lemma 1: [7]–[11] RBF neural network (RBFNN)
θTS(Υ) can approximate a smooth continuous function
G(Υ) defined on a compact set ΩΥ such that

G(Υ) = θTS(Υ) + ε(Υ), |ε(Υ)| ≤ ε̄∗ (10)

where ε(Υ) is the approximation error with ε̄∗ > 0 being
an unknown constant, Υ ⊂ Rn is the input vector, S(Υ) =
[S1(Υ), S2(Υ), · · · , Sl(Υ)]T are the basic function vector,
θ = [θ1, θ2, . . . , θl]

T are the constant weight vector, and l is
the number of neuron nodes. The following Gauss function
is usually chosen as the basis function:

Si(Υ) = exp

[
−(Υ− ri)T (Υ− ri)

ω2

]
,

i = 1, 2, · · · , l
(11)

where ri = [ri1, ri2, · · · , rin]T is the center vector, and ω is
Gaussian function’s width.

By Lemma 1, the optimal weight θ∗ can be obtained by

θ∗ := arg min
θ∈Rl

{
sup

Υ∈ΩΥ

|G(Υ)− θTS(Υ)|
}

Remark 3: In fact, the bounded properties of y
(i)
r (t)

(i = 0, 1, · · · , n) described in Assumption 1 is a common
assumption in nonlinear tracking control [3]–[5], [7], [10]–
[13], [16], [17].

III. MAIN RESULTS

In this part, for uncertain switched nonlinear systems with
disturbances, an adaptive output-feedback tracking control
method with prescribed performance is proposed by using
backstepping technology, in which a suitable switched input-
driven filter is designed to estimate the unmeasured state.

A. Design of switched input-driven filter

Since the states of the system (1) are not available,
the following switched input-driven filter is established to
estimate the system states.

˙̂xi = x̂i+1 − dij x̂1,

˙̂xn = uj − dnj x̂1,

i = 1, 2, · · · , n− 1, j ∈M
(12)

where x̂i is the estimated value of each state xi, dij are the
designed parameters of the filter, and uj is the actual input
of the jth subsystem. Define ei = xi− x̂i, from (1) and (12),
one has

ėi = ei+1 − dije1 + fij(x̄i) + dijx1 + λij

ėn = −dnje1 + fnj(x̄n) + dnjx1 + λnj

i = 1, 2, · · · , n− 1, j ∈M
(13)

In order to get a compact expression, denote
e = [e1, e2, · · · , en]T , G0j(x̄n) = [f1j(x̄1) +
d1jx1, · · · , fn−1,j(x̄n−1) + dn−1,jx1, fnj(x̄n) + dnjx1]T ,
Λj(t) = [λ1j , · · · , λn−1,j , λnj ]

T and

Cj =

 −d1j

... In−1

−dnj 0 · · · 0

 , j ∈M.

It’s easy to see that ||Λj ||2 ≤ ||[λ̄∗1j , · · · , λ̄∗n−1j , λ̄
∗
nj ]

T ||2 ≤
Λ̄∗2j , where Λ̄∗j , j ∈ M , are unknown positive constants.
Then, it follows from (1), (12) and (13) that

ė = Cje+G0j(x̄n) + Λj

ẋ1 = x̂2 + e2 + f1j + λ1j

˙̂x2 = x̂3 − d2j x̂1

· · ·
˙̂xn = uj − dnj x̂1

(14)

It is also noted that dij is chosen such that the matrix Cj
is Hurwitz, which implies that for any positive symmetric
matrix Qj , there is a positive symmetric matrix Pj such that
CTj Pj + PjCj = −Qj , j ∈M .

B. Controller Design

First, an unknown constant is defined as

θ = max
1≤i≤n, 1≤j≤m

{||θij ||2} (15)

where θij will be specified later. θ̂ is the estimation of θ,
there has

˙̂
θ(t) =

γ

2a2
1j

ξ2
1S1j(Υ1)TS1j(Υ1)

+
n∑
i=2

γ

2a2
ij

z2
i Sij(Υi)

TSij(Υi)− σθ̂
(16)
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with aij > 0, i = 1, 2, · · · , n, j = 1, 2, · · · ,m, γ > 0
and σ > 0 being design parameters, where Sij(Υi) will be
defined later. θ̃ = θ − θ̂ is the estimated error.

Step 1: A positive definite Lyapunov function is construct-
ed as:

V1j =
1

γ
eTPje+

1

4
ξ2
1 +

1

2γ
θ̃2 (17)

By (9) and ż1 = f1j + e2 + x̂2 + λ1j − ẏr, one has

V̇1j =
2

γ
eTPj(Cje+G0j + Λj)−

1

γ
θ̃

˙̂
θ

+ ξ1Γ1

(
f1j + e2 + x̂2 + λ1j − ẏr −

ϕ̇1z1

ϕ1

) (18)

For the unknown term G0j(x̄n), RBFNN θT0jS0(x̄n) is
invoked. It can be deduced that fij + dijx1 = θT0ijS0(x̄n) +
ε0ij(x̄n), i = 1, 2, · · · , n and j ∈ M , where ε0ij(x̄n) are
the approximation errors satisfying |ε0ij(x̄n)| ≤ ε̄∗0ij with
ε̄∗0ij being positive constants. Furthermore, rewrite G0j(x̄n)
as the following compact form:

G0j(x̄n) = θT0jS0(x̄n) + ε0j(x̄n), ||ε0j(x̄n)|| ≤ ε̄∗0
where θ0j = [θT01j , · · · , θT0nj ]T , ε0j(x̄n) = [ε01j(x̄n), · · · ,
ε0nj(x̄n)]T and ε̄∗0 is the upper bound of ||ε0j(x̄n)||. Assume
that 0 < ST0 (x̄n)S0(x̄n) ≤ s for a given constant s > 0, and
define a positive constant θ0 = maxj∈M{||θ0j ||2}. Next, by
invoking the completion of square, the following inequalities
hold:

2

γ
eTPjG0j ≤

1

γ

(
2||e||2 + ||Pj ||2θ0s+ ||Pj ||2ε̄∗20

)
(19a)

2

γ
eTPjΛj ≤

1

γ

(
||e||2 + ||Pj ||2Λ̄∗2j

)
(19b)

ξ1Γ1e2 ≤
1

γ
||e||2 +

γ

4
ξ2
1Γ2

1 (19c)

ξ1Γ1λ1j ≤
ξ2
1Γ2

1

2
+
λ̄∗21j

2
(19d)

Now, let G1j(Υ1) = Γ1(f1j − ẏr − ϕ̇1z1
ϕ1

+ ξ1Γ1

2 + γξ1Γ1

4 ) +
1
2ξ1, where Υ1 = [x1, yr, ẏr, ϕ1, ϕ̇1]T ∈ R5. And then
substituting (19) into (18) yields

V̇1j ≤−
1

γ
(λmin(Qj)− 4) ||e||2

+ ξ1Γ1(z2 + α1j) + ξ1G1j −
ξ2
1

2
+
λ̄∗21j

2
− 1

γ
θ̃

˙̂
θ

+
1

γ
||Pj ||2

(
θ0s+ ε̄∗20 + Λ̄∗2j

)
(20)

From Lemma 1, the RBFNN can be used to approximate
G1j(Υ1) such that

G1j(Υ1) = θT1jS1j(Υ1) + ε1j(Υ1), |ε1j(Υ1)| ≤ ε̄∗1j (21)

where ε1j(Υ1), j ∈M , denote the approximation errors with
ε̄∗1j > 0 being constants. It follows from the completion of
square, (15) and (21) that

ξ1G1j(Υ1) ≤ 1

2a2
1j

ξ2
1 ||θ1j ||2ST1jS1j +

a2
1j

2
+
ξ2
1

2
+
ε̄∗21j

2

≤ 1

2a2
1j

ξ2
1θS

T
1jS1j +

a2
1j

2
+
ξ2
1

2
+
ε̄∗21j

2

(22)

Next, choose the virtual control law α1j as

α1j = − ξ1
Γ1

(
c1j +

1

2a2
1j

θ̂ST1j(Υ1)S1j(Υ1)

)
(23)

where c1j , j ∈M , are design positive constants. Combining
(22) and (23) with (20) produces

V̇1j ≤∆∗1j − c1jξ2
1 + Γ1ξ1z2 +

1

γ
θ̃(
γξ2

1S
T
1jS1j

2a2
1j

− ˙̂
θ) (24)

where ∆∗1j = − 1
γ (λmin(Qj)−4)||e||2+ 1

γ ||Pj ||
2(θ0s+ε̄∗20 +

Λ̄∗2j ) +
a2

1j

2 +
λ̄∗21j

2 +
ε̄∗21j

2 . The term Γ1ξ1z2 will be processed
in the next step.

Step 2: Select Lyapunov function candidate as follows

V2j = V1j +
1

2
z2

2 (25)

By z2 = x̂2 − α1j , ż2 = x̂3 − d2j x̂1 − α̇1j and α̇1j =
∂α1j

∂x1
(f1j + x̂2 + e2 + λ1j) +

∂α1j

∂θ̂

˙̂
θ +

∑1
k=0

∂α1j

∂ϕ
(k)
1

ϕ
(k+1)
1 +∑1

k=0
∂α1j

∂y
(k)
r

y
(k+1)
r , the time derivative of V2j is given by

V̇2j =V̇1j + z2

(
x̂3 − d2j x̂1 −

∂α1j

∂x1
(f1j + x̂2

+e2 + λ1j)−
∂α1j

∂θ̂

˙̂
θ −

1∑
k=0

∂α1j

∂ϕ
(k)
1

ϕ
(k+1)
1

−
1∑
k=0

∂α1j

∂y
(k)
r

y(k+1)
r

) (26)

For the terms −z2
∂α1j

∂x1
e2 and −z2

∂α1j

∂x1
λ1j , j ∈ M , the

following inequalities hold−z2
∂α1j

∂x1
e2 ≤ 1

γ ||e||
2 + γ

4

(
∂α1j

∂x1

)2

z2
2

−z2
∂α1j

∂x1
λ1j ≤ 1

2

(
∂α1j

∂x1

)2

z2
2 +

λ̄∗21j

2

(27)

Denote G2j(Υ2) = Γ1ξ1 − d2j x̂1 − ∂α1j

∂x1
(f1j + x̂2) +

(γ4 + 1
2 )z2(

∂α1j

∂x1
)2− ∂α1j

∂θ̂

γ
2a2

1j
ξ2
1S

T
1jS1j− ∂α1j

∂θ̂

γ
2a2

2j
z2

2S
T
2jS2j+

∂α1j

∂θ̂
σθ̂−

∑1
k=0

∂α1j

∂ϕ
(k)
1

ϕ
(k+1)
1 −

∑1
k=0

∂α1j

∂y
(k)
r

y
(k+1)
r + z2

2 with

Υ2 = [x1, x̂1, x̂2, θ̂, yr, ẏr, ÿr, ϕ1, ϕ̇1, ϕ̈1]T ∈ R10. Then, the
substitution of (27) into (26) results in

V̇2j ≤∆∗1j − c1jξ2
1 +

1

γ
θ̃(
γξ2

1S
T
1jS1j

2a2
1j

− ˙̂
θ)

− ∂α1j

∂θ̂
z2

n∑
`=3

γ

2a2
`j

z2
`S

T
`jS`j

+ z2(z3 + α2j +G2j)−
z2

2

2
+
||e||2

γ
+
λ̄∗21j

2

(28)

Similar to Step 1, G2j(Υ2) can be approximated by RBFNN
θT2jS2j(Υ2) as follows

G2j(Υ2) = θT2jS2j(Υ2) + ε2j(Υ2), |ε2j(Υ2)| ≤ ε̄∗2j (29)

with ε̄∗2j , j ∈ M , being positive constants. Also similar to
Step 1, it can be obtained

z2G2j ≤
z2

2θS
T
2jS2j

2a2
2j

+
a2

2j

2
+
z2

2

2
+
ε̄∗22j

2
(30)
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Now, take the virtual control law α2j as

α2j = −c2jz2 −
1

2a2
2j

z2θ̂S
T
2j(Υ2)S2j(Υ2) (31)

where c2j , j ∈ M , are design positive constants. Then, it
follows from (28)-(31) that

V̇2j ≤∆∗2j − c1jξ2
1 − c2jz2

2 + z2z3

+
1

γ
θ̃(
γξ2

1S
T
1jS1j

2a2
1j

+
γz2

2S
T
2jS2j

2a2
2j

− ˙̂
θ)

− ∂α1j

∂θ̂
z2

n∑
`=3

γ

2a2
`j

z2
`S

T
`jS`j

(32)

where ∆∗2j = − 1
γ (λmin(Qj)−5)||e||2+ 1

γ ||Pj ||
2(θ0s+ε̄∗20 +

Λ̄∗2j ) +
∑2
k=1(

a2
kj

2 +
ε̄∗2kj
2 ) + λ̄∗21j .

Step i (i = 3, · · · , n − 1): Choose Lyapunov function as
follows

Vij = Vi−1,j +
1

2
z2
i (33)

By combining zi = x̂i − αi−1,j , żi = x̂i+1 −
dij x̂1 − α̇i−1,j , and α̇i−1,j =

∂αi−1,j

∂x1
(f1j + x̂2 + e2 +

λ1j)+
∑i−1
k=1

∂αi−1,j

∂x̂k
˙̂xk +

∂αi−1,j

∂θ̂

˙̂
θ+
∑i−1
k=0

∂αi−1,j

∂ϕ
(k)
1

ϕ
(k+1)
1 +∑i−1

k=0
∂αi−1,j

∂y
(k)
r

y
(k+1)
r , we have

V̇ij =V̇i−1,j + zi

(
x̂i+1 − dij x̂1 −

∂αi−1,j

∂x1
(f1j + x̂2

+e2 + λ1j)−
i−1∑
k=1

∂αi−1,j

∂x̂k
˙̂xk −

∂αi−1,j

∂θ̂

˙̂
θ

−
i−1∑
k=0

∂αi−1,j

∂ϕ
(k)
1

ϕ
(k+1)
1 −

i−1∑
k=0

∂αi−1,j

∂y
(k)
r

y(k+1)
r

) (34)

Recursively, there has

V̇i−1,j ≤∆∗i−1,j − c1jξ2
1 −

i−1∑
k=2

ckjz
2
k + zi−1zi

+
1

γ
θ̃(
γξ2

1S
T
1jS1j

2a2
1j

+
i−1∑
k=2

γz2
kS

T
kjSkj

2a2
kj

− ˙̂
θ)

−
i−2∑
k=1

∂αkj

∂θ̂
zk+1

n∑
`=i

γ

2a2
`j

z2
`S

T
`jS`j

(35)

where ∆∗i−1,j = − 1
γ (λmin(Qj)−2−i)||e||2+ 1

γ ||Pj ||
2(θ0s+

ε̄∗20 + Λ̄∗2j ) +
∑i−1
k=1(

a2
kj

2 +
ε̄∗2kj
2 ) + i−1

2 λ̄∗21j .
For the terms −zi ∂αi−1,j

∂x1
e2 and −zi ∂αi−1,j

∂x1
λ1j , we have−zi

∂αi−1,j

∂x1
e2 ≤ 1

γ ||e||
2 + γ

4

(
∂αi−1,j

∂x1

)2

z2
i

−zi ∂αi−1,j

∂x1
λ1j ≤ 1

2

(
∂αi−1,j

∂x1

)2

z2
i +

λ̄∗21j

2

(36)

Denoting Gij(Υi) = zi−1 − dij x̂1 − ∂αi−1,j

∂x1
(f1j +

x̂2) −
∑i−1
k=1

∂αi−1,j

∂x̂k
˙̂xk + (γ4 + 1

2 )zi(
∂αi−1,j

∂x1
)2 −

∂αi−1,j

∂θ̂

γ
2a2

1j
ξ2
1S

T
1jS1j − ∂αi−1,j

∂θ̂

∑i
k=2

γ
2c2kj

z2
kS

T
kjSkj +

∂αi−1,j

∂θ̂
σθ̂ −

∑i−1
k=0

∂αi−1,j

∂ϕ
(k)
1

ϕ
(k+1)
1 −

∑i−1
k=0

∂αi−1,j

∂y
(k)
r

y
(k+1)
r +

zi
2 − γ

2a2
ij
ziS

T
ijSij

∑i−2
k=1

∂αkj

∂θ̂
zk+1, where

Υi = [x1, ˆ̄x
T
i , θ̂, ȳ

(i)T
r , ϕ̄

(i)T
1 ]T ∈ R(3i+4) with

ˆ̄xi = [x̂1, x̂2, · · · , x̂i]T , ȳ
(i)
r = [yr, ẏr, · · · , y(i)

r ]T ,
ϕ̄

(i)
1 = [ϕ1, ϕ̇1, · · · , ϕ(i)

1 ]T . Further, it is easy to obtain that

V̇ij ≤∆∗i−1,j +
1

γ
||e||2 − c1jξ2

1 −
i−1∑
k=2

ckjz
2
k

+
1

γ
θ̃

(
γξ2

1S
T
1jS1j

2a2
1j

+
i−1∑
k=2

γz2
kS

T
kjSkj

2a2
kj

− ˙̂
θ

)

−
i−1∑
k=1

∂αkj

∂θ̂
zk+1

n∑
`=i+1

γ

2a2
`j

z2
`S

T
`jS`j

+ zi(zi+1 + αij +Gij)−
z2
i

2
+
λ̄∗21j

2

(37)

Using RBFNNs again, for the given positive constants ε̄∗ij ,
j ∈M , we have

Gij(Υi) = θTijSij(Υi) + εij(Υi), |εij(Υi)| ≤ ε̄∗ij

For the term ziGij , invoking the completion of square leads
to

ziGij ≤
z2
i θS

T
ijSij

2a2
ij

+
a2
ij

2
+
z2
i

2
+
ε̄∗2ij
2

(38)

Next, the virtual control law of Step i is constructed as

αij = −cijzi −
1

2a2
ij

ziθ̂S
T
ij(Υi)Sij(Υi) (39)

where cij , j ∈ M , are design positive constants. Then,
following the same procedure in Steps 1 and 2, one has

V̇ij ≤∆∗ij − c1jξ2
1 −

i∑
k=2

ckjz
2
k + zizi+1

+
1

γ
θ̃(
γξ2

1S
T
1jS1j

2a2
1j

+
i∑

k=2

γz2
kS

T
kjSkj

2a2
kj

− ˙̂
θ)

−
i−1∑
k=1

∂αkj

∂θ̂
zk+1

n∑
`=i+1

γ

2a2
`j

z2
`S

T
`jS`j .

(40)

where ∆∗ij = − 1
γ (λmin(Qj)− 3− i)||e||2 + 1

γ ||Pj ||
2(θ0s+

ε̄∗20 + Λ̄∗2j ) +
∑i
k=1(

a2
kj

2 +
ε̄∗2kj
2 ) + i

2 λ̄
∗2
1j .

Remark 4: Inspired by the literature [38], there is only one
adaptive update parameter ˙̂

θ in (16). This method does not
need to design adaptive laws θ1, θ2, · · · , θn in all recursive
steps, thus reducing the complexity of controller. However,
the difficulty is that the nonlinear term α̇i−1,j in (39) includes
∂αi−1,j

∂θ̂

˙̂
θ, which is a function of Υn rather than Υi, so it

can not be directly approximated by RBFNN θTijSij(Υi).

Therefore, the term ∂αi−1,j

∂θ̂

˙̂
θ needs to be decomposed into

the sum of ∂αi−1,j

∂θ̂
( γ

2a2
1j
ξ2
1S

T
1jS1j +

∑i
k=2

γ
2a2
kj
z2
kS

T
kjSkj −

σθ̂) that can be merged into the composite function Gij(Υi)

and ∂αi−1,j

∂θ̂
(
∑n
k=i+1

γ
2a2
kj
z2
i S

T
kjSkj) that will be processed

by step i+ 1.
Step n: The actual controller vj(t) of the jth subsystem

will be provided at the end. Select the Lyapunov function as
follows

Vnj = Vn−1,j +
1

2
z2
n (41)
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and

V̇nj ≤V̇n−1,j + zn

(
uj − dnj x̂1 −

∂αn−1,j

∂x1
(f1j

+x̂2 + e2 + λ1j)−
n−1∑
k=1

∂αn−1,j

∂x̂k
˙̂xk

−∂αn−1,j

∂θ̂

˙̂
θ −

n−1∑
k=0

∂αn−1,j

∂ϕ
(k)
1

ϕ
(k+1)
1

−
n−1∑
k=0

∂αn−1,j

∂y
(k)
r

y(k+1)
r

)
(42)

Similar to the previous n− 1 steps, denote
Gnj(Υn) = − γ

2a2
nj
znS

T
njSnj

∑n−2
k=1

∂αkj

∂θ̂
zk+1 +

zn−1 − dnj x̂1 − ∂αn−1,j

∂x1
(f1j + x̂2) −∑n−1

k=1
∂αn−1,j

∂x̂k
˙̂xk + (γ4 + 1

2 )zn(
∂αn−1,j

∂x1
)2 − ∂αn−1,j

∂θ̂

˙̂
θ −∑n−1

k=0
∂αn−1,j

∂ϕ
(k)
1

ϕ
(k+1)
1 −

∑n−1
k=0

∂αn−1,j

∂y
(k)
r

y
(k+1)
r + zn

2 ,

where Υn = [x1, ˆ̄x
T
n , θ̂, ȳ

(n)T
r , ϕ̄

(n)T
1 ]T ∈ R(3n+4) with

ˆ̄xn = [x̂1, x̂2, · · · , x̂n]T , ȳ
(n)
r = [yr, ẏr, · · · , y(n)

r ]T ,
ϕ̄

(n)
1 = [ϕ1, ϕ̇1, · · · , ϕ(n)

1 ]T . We then have

V̇n,j ≤∆∗n−1,j +
1

γ
||e||2 − c1jξ2

1 −
n−1∑
k=2

ckjz
2
k

+
1

γ
θ̃

(
γξ2

1S
T
1jS1j

2a2
1j

+
n−1∑
k=2

γz2
kS

T
kjSkj

2a2
kj

− ˙̂
θ

)

+ zn (uj +Gnj)−
z2
n

2
+
λ̄∗21j

2

(43)

By using RBFNN, for ε̄∗nj , j ∈M , we have

Gnj(Υn) = θTnjSnj(Υn) + εnj(Υn), |εnj(Υn)| ≤ ε̄∗nj

Similar to (38), one has

znGnj ≤
1

2a2
nj

z2
nθS

T
njSnj +

a2
nj

2
+
z2
n

2
+
ε̄∗2nj
2

(44)

The actual controller is chosen as

uj = −cnjzn −
1

2a2
nj

znθ̂S
T
nj(Υn)Snj(Υn) (45)

with cnj , j ∈ M , are design positive constants. Substitute
(44) and (45) into (43) leads to

V̇nj ≤ −c1jξ2
1 −

n∑
k=2

ckjz
2
k +

σ

γ
θ̃θ̂ + ∆∗nj (46)

where ∆∗nj = − 1
γ (λmin(Qj)− 3−n)||e||2 + 1

γ ||Pj ||
2(θ0s+

ε̄∗20 + Λ̄∗2j ) +
∑n
k=1(

a2
kj

2 +
ε̄∗2kj
2 ) + n

2 λ̄
∗2
1j . Because σ

γ θ̃θ̂ ≤
σ
γ (− 1

2 θ̃
2 + 1

2θ
2), rewriting (46) gets

V̇nj(χ(t)) ≤ −µ0Vnj(χ(t)) + ν0 (47)

where Vnj(χ(t)) = 1
γ e
TPje + 1

4ξ
2
1 +

∑n
i=2

1
2z

2
i + 1

2γ θ̃
2,

χ(t) = [eT , ξ1, z2, · · · , zn, θ̃]T , and µ0 and ν0 are constants

given by

µ0 = min
j∈M

{
λmin(Qj)− 3− n

λmax(Pj)
, 4c1j , 2cij , i = 2, · · · , n, σ

}
ν0 = max

j∈M

{
1

γ
||Pj ||2(θ0s+ ε̄∗20 + Λ̄∗2j )

+
n∑
i=1

(
a2
ij

2
+
ε̄∗2ij
2

) +
n

2
λ̄∗21j +

σ

2γ
θ2

}
.

C. Stability analysis

Theorem 1: For the system (1) under Assumption 1,
assuming the unknown functions Gij(Υi) can be approached
by RBFNNs θTi Si(Υi) with a bounded error εij(Υi), i =
1, 2, · · · , n, j ∈ M . By using the designed PPC (23), (31),
(39), (45) and adaptive parameter update rate (16), if a
positive number τ0 >

log(a0)
µ0

is chosen as the average dwell
time of the switching signal η(t) such that

a0 = max
j, `∈M

{
λmax(Pj)

λmin(P`)

}
(48)

then all signals can be semi-globally bounded in the closed-
loop system. Furthermore, y(t) can follow yr(t) in the sense
that z1(t) is constrained by ϕ1(t), |z1(0)| < ϕ1(0).

Proof: Note that the proof of the semi-global stability is
similar to the one in [34], while the proof of the output
tracking error z1(t) constrained by preset function ϕ1(t) is
different from other similar documents [21]–[26] because of
the proposed new error transformation function ξ1(t).

1) For the Lyapunov function Vnj , it can be easily deduced
that there is a K-class function K(χ) such that Vnj(χ) ≤
K(||χ||). With (48), one has Vnj ≤ a0Vn`, ∀ j, ` ∈M . Next,
we construct an auxiliary function Φ(t) = eµ0tVnη(χ(t))
that is piecewise differentiable. On each time interval t ∈
[tk, tk+1), invoking (47), one has

Φ̇(t) = eµ0tV̇nη(t)(χ(t)) + µ0e
µ0tVnη(t)(χ(t))

≤ ν0e
µ0t, t ∈ [tk, tk+1)

(49)

Integrating (49) with interval [tk, tk+1) yields

Φ(t−k+1) ≤ Φ(tk) +

∫ tk+1

tk

ν0e
µ0tdt (50)

Considering Vnj ≤ a0Vn`, ∀ j, ` ∈ M and (50), it can be
obtain that

Φ(tk+1) = eµ0tk+1Vnη(tk+1)(χ(tk+1))

≤ a0e
µ0tk+1Vnη(tk)(χ(tk+1))

≤ a0Φ(t−k+1)

≤ a0

(
Φ(tk) +

∫ tk+1

tk

ν0e
µ0t

) (51)

Next, for an arbitrary T > 0 (according to convention, t0 =
0), iterating the inequality (51) from k = 0 to k = Cη(T, 0)
gets

Φ(T−) ≤aCη(T,0)
0 Φ(0) +

∫ T

tCη(T,0)

ν0e
µ0tdt

+

Cη(T,0)−1∑
k=0

a
Cη(T,0)−k
0

∫ tk+1

tk

ν0e
µ0tdt

(52)
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In addition, by observing, for each k ∈ {0, 1, · · · , Cη(T, 0)},
one has

Cη(T, 0)− k ≤ Cη(T, tk+1) + 1 (53)

Note that τ0 > log a0

µ0
, there exists a constant % ∈ (0, µ0 −

log a0

τ0
), such that τ0 > log a0

µ0−% . This, together with (2), means
that

Cη(T, t) ≤ C0 +
(µ0 − %)(T − t)

log a0
, ∀ T ≥ t ≥ 0 (54)

Combining (54) with (53) obtains

a
Cη(T,0)−k
0 ≤ a1+C0

0 e(µ0−%)(T−Tk+1) (55)

By % < µ0, it holds that e−µ0(tk+1−tk) < e−%(tk+1−tk).
Further, one has∫ tk+1

tk

ν0e
µ0tdt ≤ e(µ0−%)tk+1

∫ tk+1

tk

ν0e
%tdt (56)

Substituting (56) into (52) leads to

Φ(T−) ≤aCη(T,0)
0 Φ(0) + a1+C0

0 e(µ0−%)T
∫ T

0

ν0e
%tdt (57)

which implies that

Vnη(T−)(χ(T−)) ≤ eC0 log a0e(
log a0
τ0
−µ0)TK(||χ(0)||)

+ a1+C0
0

ν0

%
(1− e−%T )

≤ eC0 log a0e(
log a0
τ0
−µ0)TK(||χ(0)||)

+ a1+C0
0

ν0

%
, ∀ T > 0.

(58)

By (58), if log a0

τ0
−µ0 < 0, then Vnη(T−)(χ(T−)) is bounded,

so is ξ1, zi, i = 2, 3, · · · , n and θ̃. θ is a constant that deduces
θ̂ to be bounded. According to the definition of (3), it can be
inferred that xi, i = 1, 2, · · · , n are bounded. Therefore, all
signals of the closed-loop system (1), (16), (23), (31), (39)
and (45) are bounded.

2) From (58) and Vnj(χ(t)) = 1
γ e
TPje + 1

4ξ
2
1 +∑n

i=2
1
2z

2
i + 1

2γ θ̃
2, it means that

ξ2
1(T )

4
=

1

4
ln2

(
1 + κ(T )

1− κ(T )

)
≤eC0 log a0e(

log a0
τ0
−µ0)TK(||χ(0)||) + a1+C0

0

ν0

%

≤∆0, ∀ T > 0,
(59)

where κ(T ) = z1(T )
ϕ1(T ) , and ∆0 > 0 is a constant. It

naturally holds that, for any given constant ∆0 > 0, if
1
4 ln2( 1+κ(T )

1−κ(T ) ) ≤ ∆0, then |κ(T )| < 1. Hence, for all T > 0,
the inequality |z1| < ϕ1 holds under the initial condition
|z1(0)| < ϕ1(0).

IV. SIMULATION

Consider a second-order nonlinear system as follows:

ẋ1 = f1j(x1) + x2 + λ1j(t)

ẋ2 = f2j(x̄2) + uj + λ2j(t)

y = x1

(60)

Fig. 2. Switching signal η(t).

where f11(x1) = x1e
−0.5x1 , f21(x̄2) = x1 sin(x2

2), λ11 =
0.2 sin(t), λ21 = sin(2t), f12(x1) = 0.3x1 sin(2x1),
f22(x̄2) = 0.5(0.8x2 + e−x

2
1), λ12 = −0.1 cos(t), λ22 =

0.5 sin(t), and j ∈ M = {1, 2}, that is, the number of sub-
systems to be switched is 2. Next, the simulation parameters
are chosen as d11 = 15, d21 = 11, d12 = 10, d22 = 15,
c11 = 10, c21 = 1, c12 = 10, c22 = 1, a11 = 0.3, a21 = 0.2,
a12 = 0.35, a22 = 0.15, σ = 0.5 andp γ = 20. The ref-
erence signal yr(t) = 0.5 sin(t). Meanwhile, the prescribed
performance function is ϕ1 = (0.3 − 0.02)e−1.5t + 0.02.
We set Q1 = [10, 0; 0, 10], Q2 = [9, 0; 0, 9]. Hence, it
follows from dij and Qj , i ∈ {1, 2}, j ∈ {1, 2}, that
P1 = [4,−5;−5, 7.1818], P2 = [7.2,−4.5;−4.5, 3.48].
Furthermore, it can be calculated that µ0 = 0.3691, a0 =
31.5137 and τ0 >

ln(a0)
µ0

= 9.3488.
In simulation, select the error transformation function as

ξ1(t) = ln(
ϕ1 + z1

ϕ1 − z1
). (61)

and the time derivation of ξ1(t) is

ξ̇1(t) = 2Γ1(ż1 −
ϕ̇1z1

ϕ1
), (62)

where Γ1 = ϕ1/(ϕ
2
1 − z2

1).
The initial conditions [x1(0), x2(0), x̂1(0),x̂2(0),θ̂(0)]T =

[0.1,−0.2, 0.1, 0.3, 0]T . In addition, 61 neuron nodes dis-
tributed in [-15:0.5:15] and [-30:1:30] are used to construct
the basis function vectors S1j and S2j , j = 1, 2, respectively.
The width ω of Gaussian function is designed as

√
2. The

simulation time is set to 80 seconds, and the simulation
results of the proposed algorithm are shown in Figs. 2-8.
Concretely, the switching signal are shown in Fig. 2. It is
clear from Figs. 3 and 4 that the system output y(t) can well
track the reference signal yr(t). And the tracking error z1(t)
does not violate the constraint function ϕ1(t). Fig. 5 shows
the state x2 and its estimated value x̂2, and Fig. 8 shows the
adaptive parameter θ̂. More especially, for each subsystem j,
the actual control input signal uj(t) are shown on Figs 6 and
7 respectively. From the above simulation results, the PPC
method is implemented for the considered system. Also, in
the closed-loop system, all signals, especially the adaptive
estimation curve θ̂, are all bounded.
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Fig. 3. System output y(t) and reference signal yr(t).

Fig. 4. Tracking error z1 under the prescribed performance constraint
ϕ1(t).

Fig. 5. System state x2.

V. CONCLUSION

In this paper, a state observer based adaptive PPC strategy
is proposed for uncertain strictly feedback switched nonlin-
ear systems including external disturbances. Different from

Fig. 6. Actual control signal u1 of subsystem 1.

Fig. 7. Actual control signal u2 of subsystem 2.

Fig. 8. Adaptive laws θ̂(t).

other similar PPC algorithms, a novel error transformation
function is proposed to realize the performance constraint
on the output error. In addition, the uncertain disturbance
and uncertain nonlinearity of the system are compensated
by using RBFNNs. In future research, the authors intend
to apply the proposed algorithm to the ETC problem of
switched systems.

REFERENCES

[1] C. Wen, J. Zhou, Z. Liu, and H. Su, “Robust Adaptive Control of
Uncertain Nonlinear Systems in the Presence of Input Saturation
and External Disturbance,” IEEE Transactions on Automatic Control,
vol. 56, no. 7, pp. 1672-1678, 2011.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 1, January 2024, Pages 140-148

 
______________________________________________________________________________________ 



[2] W. Chen, S. S. Ge, J. Wu, and M. Gong, “Globally Stable Adaptive
Backstepping Neural Network Control for Uncertain Strict-feedback
Systems with Tracking Accuracy Knowna Priori,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 26, no. 9, pp. 1842-
1854, 2014.

[3] S. Tong, T. Wang, Y. Li, and B. Chen, “A Combined Backstepping
and Stochastic Small-gain Approach to Robust Adaptive Fuzzy Output
Feedback Control,” IEEE Transactions on Fuzzy Systems, vol. 21,
no. 2, pp. 314-327, 2012.

[4] J. Zhou and C. Wen, Adaptive Backstepping Control of Uncertain
Systems: Nonsmooth Nonlinearities, Interactions or Time-variations.
Springer, 2008.

[5] B. Chen, X. Liu, and C. Lin, “Observer and Adaptive Fuzzy Control
Design for Nonlinear Strict-feedback Systems with Unknown Virtual
Control Coefficients,” IEEE Transactions on Fuzzy Systems, vol. 26,
no. 3, pp. 1732-1743, 2017.

[6] B. Zhang, D. Hou, and Y. Shang, “A Time-varying Scaling Approach
to Global Fixed-time Stabilization of Switched Nonlinear Systems in
P-normal Form,” Engineering Letters, vol. 29, no. 3, pp. 965-969,
2021.

[7] S. S. Ge, F. Hong, and T. H. Lee, “Adaptive Neural Network Control of
Nonlinear Systems with Unknown Time Delays,” IEEE Transactions
on Automatic Control, vol. 48, no. 11, pp. 2004-2010, 2003.

[8] L.-B. Wu and G.-H. Yang, “Adaptive Output Neural Network Con-
trol for a Class of Stochastic Nonlinear Systems with Dead-zone
Nonlinearities,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 28, no. 3, pp. 726-739, 2015.

[9] Y. Liu, X. Liu, Y. Jing, X. Chen, and J. Qiu, “Direct Adaptive
Preassigned Finite-time Control with Time-delay and Quantized Input
Using Neural Network,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 31, no. 4, pp. 1222-1231, 2019.

[10] Y.-X. Li and G.-H. Yang, “Adaptive Neural Control of Pure-feedback
Nonlinear Systems with Event-triggered Communications,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 29,
no. 12, pp. 6242-6251, 2018.

[11] H. Wang, P. X. Liu, S. Li, and D. Wang, “Adaptive Neural Output-
feedback Control for a Class of Nonlower Triangular Nonlinear
Systems with Unmodeled Dynamics,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 8, pp. 3658-3668, 2017.

[12] S. Tong, T. Wang, and Y. Li, “Fuzzy Adaptive Actuator Failure
Compensation Control of Uncertain Stochastic Nonlinear Systems with
Unmodeled Dynamics,” IEEE Transactions on Fuzzy Systems, vol. 22,
no. 3, pp. 563-574, 2013.

[13] S.-C. Tong, X.-L. He, and H.-G. Zhang, “A Combined Backstepping
and Small-gain Approach to Robust Adaptive Fuzzy Output Feedback
Control,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 5, pp.
1059-1069, 2009.

[14] C. P. Chen, Y.-J. Liu, and G.-X. Wen, “Fuzzy Neural Network-
based Adaptive Control for a Class of Uncertain Nonlinear Stochastic
Systems,” IEEE Transactions on Cybernetics, vol. 44, no. 5, pp. 583-
593, 2013.

[15] J. Dong and G.-H. Yang, “Reliable State Feedback Control of T–
S Fuzzy Systems with Sensor Faults,” IEEE Transactions on Fuzzy
Systems, vol. 23, no. 2, pp. 421-433, 2014.

[16] H. Wang, W. Liu, J. Qiu, and P. X. Liu, “Adaptive Fuzzy Decentralized
Control for a Class of Strong Interconnected Nonlinear Systems with
Unmodeled Dynamics,” IEEE Transactions on Fuzzy Systems, vol. 26,
no. 2, pp. 836-846, 2017.

[17] S. Tong and Y. Li, “Adaptive Fuzzy Output Feedback Tracking Back-
stepping Control of Strict-feedback Nonlinear Systems with Unknown
Dead Zones,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp.
168-180, 2011.

[18] Z. Song, W. Fang, X. Liu, and A. Lu, “Adaptive Fuzzy Control for
a Class of Mimo Nonlinear Systems with Bounded Control Inputs.”
Engineering Letters, vol. 28, no. 3, pp. 820-826, 2020.

[19] C. P. Bechlioulis and G. A. Rovithakis, “Prescribed Performance
Adaptive Control of Siso Feedback Linearizable Systems with Dis-
turbances,” in 2008 16th Mediterranean Conference on Control and
Automation. IEEE, 2008, pp. 1035-1040.

[20] C. P. Bechlioulis and G. A. Rovithakis, “Prescribed Performance
Adaptive Control for Multi-input Multi-output Affine in the Control
Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 55,
no. 5, pp. 1220-1226, 2010.

[21] Y. Yang, C. Ge, H. Wang, X. Li, and C. Hua, “Adaptive Neural
Network Based Prescribed Performance Control for Teleoperation
System Under Input Saturation,” Journal of the Franklin Institute, vol.
352, no. 5, pp. 1850-1866, 2015.

[22] C. Cheng, Y. Zhang, and S. Liu, “Neural Observer-based Adaptive
Prescribed Performance Control for Uncertain Nonlinear Systems with
Input Saturation,” Neurocomputing, vol. 370, pp. 94-103, 2019.

[23] S. Sui, S. Tong, and Y. Li, “Observer-based Fuzzy Adaptive Prescribed
Performance Tracking Control for Nonlinear Stochastic Systems with
Input Saturation,” Neurocomputing, vol. 158, pp. 100-108, 2015.

[24] S. Li and Z. Xiang, “Adaptive Prescribed Performance Control for
Switched Nonlinear Systems with Input Saturation,” International
Journal of Systems Science, vol. 49, no. 1, pp. 113-123, 2018.

[25] Y. Wang, J. Hu, J. Li, and B. Liu, “Improved Prescribed Performance
Control for Nonaffine Pure-feedback Systems with Input Saturation,”
International Journal of Robust and Nonlinear Control, vol. 29, no. 6,
pp. 1769-1788, 2019.

[26] X. Liu, H. Wang, C. Gao, and M. Chen, “Adaptive Fuzzy Funnel
Control for a Class of Strict Feedback Nonlinear Systems,” Neuro-
computing, vol. 241, pp. 71-80, 2017.

[27] J.-X. Zhang and G.-H. Yang, “Prescribed Performance Fault-tolerant
Control of Uncertain Nonlinear Systems with Unknown Control Di-
rections,” IEEE Transactions on Automatic Control, vol. 62, no. 12,
pp. 6529-6535, 2017.

[28] J.-X. Zhang and G.-H. Yang, “Low-complexity Tracking Control of
Strict-feedback Systems with Unknown Control Directions,” IEEE
Transactions on Automatic Control, vol. 64, no. 12, pp. 5175-5182,
2019.

[29] N.-N. Zhao, X.-Y. Ouyang, L.-B. Wu, and F.-R. Shi, “Event-triggered
Adaptive Prescribed Performance Control of Uncertain Nonlinear Sys-
tems with Unknown Control Directions,” ISA Transactions, vol. 108,
pp.121-130, 2021.

[30] Q. Zhou, P. Shi, J. Lu, and S. Xu, “Adaptive Output-feedback Fuzzy
Tracking Control for a Class of Nonlinear Systems,” IEEE Transac-
tions on Fuzzy Systems, vol. 19, no. 5, pp. 972-982, 2011.

[31] S. Tong, Y. Li, and S. Sui, “Adaptive Fuzzy Tracking Control Design
for Siso Uncertain Nonstrict Feedback Nonlinear Systems,” IEEE
Transactions on Fuzzy Systems, vol. 24, no. 6, pp. 1441-1454, 2016.

[32] J.-X. Zhang and G.-H. Yang, “Fuzzy Adaptive Output Feedback Con-
trol of Uncertain Nonlinear Systems with Prescribed Performance,”
IEEE Transactions on Cybernetics, vol. 48, no. 5, pp. 1342-1354,
2018.

[33] L.-B. Wu and J. H. Park, “Adaptive Fault-tolerant Control of Uncertain
Switched Nonaffine Nonlinear Systems with Actuator Faults and Time
Delays,” IEEE Transactions on Systems Man Cybernetics-Systems,
vol. 50, no. 9, pp. 3470-3480, 2020.

[34] L. Long and J. Zhao, “Adaptive Output-feedback Neural Control of
Switched Uncertain Nonlinear Systems with Average Dwell Time,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 26,
no. 7, pp. 1350-1362, 2014.

[35] L. Long, “Multiple Lyapunov Functions-based Small-gain Theorems
for Switched Interconnected Nonlinear Systems,” IEEE Transactions
on Automatic Control, vol. 62, no. 8, pp. 3943-3958, 2017.

[36] Z. Li, Y. Wei, and L. Wang, “Active Event-triggered Fault-tolerant
Control Design for Switched Pure-feedback Nonlinear Dystems.”
Engineering Letters, vol. 31, no. 3, pp. 896-905, 2023.

[37] B. Niu, Y. Liu, W. Zhou, H. Li, P. Duan, and J. Li, “Multiple Lyapunov
Functions for Adaptive Neural Tracking Control of Switched Nonlin-
ear Nonlower-triangular Systems,” IEEE Transactions on Cybernetics,
vol. 50, no. 5, pp. 1877-1886, 2019.

[38] H. Wang, B. Chen, X. Liu, K. Liu, and C. Lin, “Robust Adaptive Fuzzy
Tracking Control for Pure-feedback Stochastic Nonlinear Systems with
Input Constraints,” IEEE Transactions on Cybernetics, vol. 43, no. 6,
pp. 2093-2104, 2013.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 1, January 2024, Pages 140-148

 
______________________________________________________________________________________ 




