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Abstract—In this paper, we consider the generalized viscosity If we let &, = max{0,sup, ,cc([|[T"z —T"y|| - |z —yl)},

implicit rules for fixed points of total asymptotically nonex- then lim,_. & = 0, and relational expression of (iii) is
pansive mapping in Hilbert spaces, and obtain some strong reduced to

convergence theorems under certain assumptions imposed on
the parameters. The results presented in this paper extend and 1Tz — T™y|| < ||z —y|| + &0, Yo,y € C,n>1;
improve varieties of results in the recent literature. B o

iv) generalized asymptotically nonexpansive if there exist
Index Terms—Total asymptotically nonexpansive mapping; V)9 ymp y P

Fixed points; Generalized viscosity implicit rules; Hibert WO real number sequencegi,}, {&.} < [0,+00) with
spaces. n — 0 and¢, — 0 asn — oo such that

T"z =Tyl < (L4 pn)|lz —yl| + &0, Yo,y Cin>1;

|. INTRODUCTION (V) ({gn}, {&n}, ¢)-total asymptotically nonexpansive if
there exist two nonnegative real number sequencgsgnd
{&} with 1, — 0 andg, — 0 asn — oo and a strictly
increasing continuous functigh: R* — Rt with (0) =0
such that, for anyr,y € C andn > 1,

17"z = T"y|| < [lz =yl + pnlllz = yl) + &n;

(vi) uniformly L—Lipschitzian if there exists a constant
L > 0 such that

HROUGHOUT this paper, we assume that is a

nonempty subset of real Hilbert spatke LetT : C' —
C be a mapping and’(T") be the set of fixed points df.
Now we recall the following basic definitions.

Definition 1.1 A nonlinear mappindl’ : C — C'is said to
be

(i) contraction if there exists a constante [0,1) such
that [T"z =Tyl < Lz —yll, Va,y€Cn=>1

IT@) =T lI< elle =yl Vo.y€C; Remark 1.11f {(z) = z, total asymptotically nonexpansive

whena = 1, thenT is called nonexpansive: mappings coincides with generalized asymptotically nonex-

(i) asymptotically nonexpansive if there exists a redfansivé mappings. In add!t|on, fin =0 for. all n € N
number sequencé,} C [0, +00) With limy e jin = 0 .the.n gene_rallzed asymptoncally nonexpansive mappings co-
such that incides with asymptotically nonexpansive mappings in the

intermediate sense; i, = 0, then generalized asymptoti-

T2 — Ty < (1+ po)llz —yl, Va,yeCon>1; cally nonexpansive mappings coincides with asymptotically

nonexpansive mappings; ji, = 0 and¢,, = 0, then we

(iii) asymptotically nonexpansive in the intermediate sens#btain nonexpansive mappings.

if 7" is uniformly continuous and The interest and importance of construction of fixed points
of nonlinear operators stem mainly from the fact that it have
limsup sup (||T"z —T"y|| — ||z — y||) < 0; been widely applied to signal processing, imagine recovery,

n—oo  x,ye

equilibrium problem, optimization problem and so on, see [1-

_ , , 5] and the references therein. Recently, the viscosity iterative
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{z,} generated by(1) converges strongly tg € F(T) in fixed point of T, which also solves the variational inequality
Hilbert spaces or uniformly smooth Banach spaces, whi¢h).
also solves the variational inequality: Motivated and inspired by the above work, in this paper we
investigate the general viscosity implicit iteration generated
(I =f)zx—2) 20, VoeF(T) © by (7) for a total asymptotically nonexpansive mapping in
On the other hand, the implicit midpoint rule is one of thélilbert spaces. Under suitable assumptions imposed on the
powerful numerical methods for solving ordinary differentiaP@rameters, we obtain some strong convergence theorems for
equations and differential algebraic equations, see [12-1#]ding a fixed point of the total asymptotically nonexpansive
and the references therein. mapping. The results we presented extend and improve the
In 2015, Xu et al. [17] applied the viscosity techniqué&orresponding results of [20], [21] and others.
to the implicit midpoint rule for nonexpansive mappings

and presented the following viscosity implicit midpoint Il. PRELIMINARIES
rule(VIMR): Set H be a Hilbert space with inner produgt) and
Tn + Tnit norm || - ||, respectively, and le€ be a nonempty, closed,

Tpy1 = apf(on) + (1 - an)T(f% n€N, (3) and convex subset aff. Then we have the nearest point

rojection fromH onto C, P, defined b
wherea,, € (0,1) and f is a contraction. They also provedp ) © y

that VIMR converges strongly to a fixed point @f, which Po(x) := argmin ||z — 2||?, 2 € H.
is also the unique solution of the variational inequality (2). ) ¢ o o

In the same year, Yao et al. [18] presented a modifid¥gmely, Po(z) is the only point inC' that minimizes
semi-implicit midpoint rule with the viscosity technique forthe objective|z — z||* over z € C. Note that Pc(x) is

nonexpansive mappings: characterized as follows:
{ Wy = (@0 + Tnt1), @ Po(x) e C and (x—Po(x),y—Pc(x)) <0, VYyeC.
Tnt1 = Qn f(Tn) + Bn@n + YnTwn, n €N, In order to prove our results, we need the following

where {a,} C (0,1), {8,} C [0,1) and {y,} C (0,1) are lemmas and results.

three sequences satisfying, + 3,, + v, = 1 for all n >

0. They proved that the suggested algorithm (4) converge@mma 2.1[22] Let £ be a reflexive Banach space with

strongly to a special fixed point of nonexpansive mappindéeakly continuous normalised duality. L€t be a closed

under some different conditions. convex subset off and T : C — C be a uniformly
Later on, Ke and Ma [19] developed the following gencontinuous total asymptotically nonexpansive mapping with

eralized viscosity implicit scheme to approximate the fixeBounded orbit, thed — 7" is demiclosed at zero,wheteis

point of a nonexpansive mappiri in a Hilbert space: the identity mapping off.
{ Wn = $np + (1 = $n)Tnt1, (5) Lemma 2.2[23] Assume that{a,,} is a sequence of non-
Tni1 = anf(@n) + Bpan + Y Twn, n €N, negative real numbers such that
where f is a contraction, and sequencés, }.{G.}.{}, a1 < (1= 8,)an + v, Vn >0,

{sn} are in(0,1) for all n € N. With appropriate assump-
tions on control sequences, they established the strong céfere{d.} C (0,1) and{v,} C R are two sequences such
vergence results for (5), and solved the variational inequal@at

(2). (1) 3252 6n = 003 N
In 2018, Yan and Cai [20] introduced the following_ (2) limsup, o 5= <008 > .=, [v,] < oo.
viscosity implicit midpoint scheme in a Hilbert space: ~ Thenlim, .. a, = 0.
wn = 3(Tn + Tni1), (6) I1l. MAIN RESULTS
Tn+1 = anf(xn) + ann + ’Ynanna ne N7

Theorem 3.1 Assume that”' is a honempty closed con-
where{a,, },{8,} and{~, } are in[0, 1] with ., +3,,+7,, = vex subset of the real Hilbert spadé. Let T : C —

1, f is a contractive mapping ar#l is an asymptotically C' be a uniformly Lipschitzian and{u,}, {&.}, ¢)-total
nonexpansive mapping in the intermediate sense. They aé@ymptotically nonexpansive mapping with two sequences
proved that the sequende:,,} generated by (6) converges{y,},{.} C [0,4+o00), and f : C — C a contraction
strongly to a pointp € F(T'), which is also the unique with coefficienta € [0,1). Pick anyx; € C, let {z,} be

solution of the variational inequality (2). a sequence generated by (7), whére, }, {8.}, {y.} are
Recently, Sang B Mendy et al. [21] studied the followinghree sequences if0,1) such thata,, + 5, + v, = 1. If
implicit iterative algorithm in Hilbert space: limy, o0 ||@n —T"2,|| = 0 @and F(T") # 0, and the following
Wy, = snan + (1 — s0)z conditions hold:
n — °ntn — on)dn+1, [e%s) .
7 Cl — n == ’
{ Tp+1 = anf(xn) + ﬂnxn + 'Yn,annv nec N, ( ) Eczg I%I:I’ln,;_l,z Y ;)Ol;

where {a, },{6.} {7} and {s,} are in[0,1] with a,, + (C3)limy, .o £ =0;
Brn -+ =1, f is a contractive mapping arifl is an asymp- (C4) >~ , &, < +o0;
totically nonexpansive mapping. Under suitable condition&C5) s,, € (0,1] for all n > 0 andlim,, ., s, = s € (0,1];

they proved that the sequen¢e,, } converge strongly to a (C6) there exists a constadf* > 0 such that((z) < M*z
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for eachz > 0. (12), for anyn > N, we have
Then{x, } converges strongly to a fixed poiatof 7', which
is the unique solution of the variational inequality [n-+1 = 4l

ana+ By + ’Ynsn(l + ,UnM*)

< Ty —
(I-fzx—2)>0, VoeF(T). - 1= %(Cly ]]f?;)(l_ﬂ;ﬁ‘nM) fon
y o T30 = sa) L+ )
Proof. We divide the proof into five steps as follows. A
(I) we show that sequencgr,, } is bounded. +1 (L= sn) (L + o M)
For anyq € F(T), from (7) and (C6) we have Qn@ — in 4 Ynpin M*
= I gy el
[2n+1 —dll N anl|f(q) — gl
= |lanf(zn) + Batn + 1T wn — 4| =y (1 = 80) (1 + p M*)
< anllf(@n) = all + Bullen — gl + 7l T"wn — gl T Tn YRS
<l f )~ F@)+ @l F(@) — all + Bl — al Tl )0 el
+ynllwn = all + i (llwn — al) + €] s My a s a g oy el
< apalzn —qll + anllf(@) — qll + Ballzn — 4l N anllf (@) = qll +g£
Fnlllwn = all + pn M [Jwn — || + & 1=y (1= sp) (A +pnM*) — 57"
< anallz, — gl + Bullzn — qll + vsallzn — 4| = [1- an(l —a—¢ s — gl
701 = ) |1 = all + Ynptn M sl = al] L= m(1 = sn)(1 4 i M)
i M (L= sn) |21 — qll + el f (@) — gl +1 al"(l_a_e) e 17(g) 4
vk = Tn(1 = sn) (1 + ptn ) 1—a—e
= [ana+ B +ynsn (1 + pn M5)]||z, — g +§§"
(L= s0) (L4 pn M) 2011 — gl < maz{|zn — gl Hf( ) CI||}
+anllf(a) — all + mé&n -
By induction, it follows that
that is lzn — gl
[1— (1 = 52) (1 + g M*)]||Zns1 — g < maz{llzy —qf, Hf( ) q”}

< [ana+ﬂn+7n5n(l +/~LnM*)]||xn _(]H

2
+—(G+&+. &
+an |l f(q) = qll + nén- ®) S(fl &2 &n—1)

| < maz{|lz, —ql, ”f( ) q”}+ ZE (13)
From o, + B, + v, = 1 and (C2), we obtain that -

_ From (C4)and (13), we know that the sequen{e,} is
Jim_a,, = 0; (9)  bounded, and so argf(z,)} and {T"(x,,)}.
(I we prove thatlim, . || Zn+1 — Zn|| = 0.

and Indeed, it follows from (7) that

[Zn+1 — @all
|Znt1 =T 2l + [T 20 — 20|

||Oénf(zn) + ﬂnxn + ’Ynann - Tnxn”
Since M* is a constant, by conditions (C2), (C3), (C5) and T2 — x|

(9), for any given positive numbet(0 < ¢ < 1 — a), there n o
exists a sufficiently large positive integé¥ such that, for < onllf(zn) = T"2nl + Bollzn — T2
anyn > N, T | T Wy — T"wp || + [|T" 2y — 2|

anllf(zn) = T @n || + (1 + Bn)llzn — T x|
YVt M™ < pp M™ < eay, (11) +Yn[llwn = |l + pn([lwn — znl) + &
an| f(@n) = T xpll + (L4 Bn)llzn — T"2n||
and T (1 = sp) [ Tng1 — || + Yupn M*(1 — 5,)
X[|Znt1 = Zull + Ynén

an| f(@n) = T xp|| + (L4 Bn)l|2n — T"2n||
(1 = 80) (1 + pn M) |2n11 — || + En-

where nhj{.lo s Sy — s From(8), (11) and Since{f(z,)} and{T"z,} are bounded, there exisk§ > 0

lim 3, = 0. (10)

n— oo

INIA

IA

IN

Tn

T =) (L 00D (12)

<

IN

2
s
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such thatsup,,>4 || f(zn) — T"z,|| < K. Thus,

|Znt1 — zall
< anK+ (14 B)l|lzn — TMxy||
(L = 80) (1 + pn M) |2011 — T || + En-

It tours out that
a, K
L= (1 = sn) (1 + pn M)
(L4 Bn)l[#n — T"an|
1= (1 =) (1 + pp M)
&n

[Znt1 — 2nll

+ .(14
1=y (1= sp) (1 + pn M*) a4

By condition (C4), we can see
lim &, =0. (15)

From (9), (14), (15) andim,,, ||z, — T™z,| = 0, we
obtain that
lim ||zpr1 —2n] =0. (16)

(1) we claim thatlim,, . || T2, — 2, || = 0.
From (7) we get

[Znt1 = T"Tni |

S an”f(-rn) - Tnxn-l-l || + ﬁn||xn - Tnxn-&-l”
F [T wp — T" 11|
< anllf(zn) =T "2ng1 |l + Bullrn — T"p ]|
+’7n||wn - xn-&-l || + 7nﬂn<(||wn - mn-{—l ||) + '_Yngn
X||2n — Tpp1 || + En- a7
By (15)-(17) and (9)-(10) we have
nhj%o [#nt1 — T @nq1 | = 0. (18)

SinceT is uniformly continuous mapping, we obtain that
lim ||T2p1 —T" M2, = 0. (29)
n—oo

Moreover,

< HTxn+1 - TnJrlzn-&-l”

HT" 2ty — gl (20)

”Tzn-&-l - In-&-l”

From (19), (20) andim,,— ||z, — T"x,|| = 0, we get that
lim, 00 | TZnt1 — Znt1|| = 0, which implies that

lim ||Tx, —z,| =0. (21)
(IV) we show that
(z = f(2),z —x,) <0, (22)

wherez = Pp(7) f(2).
Indeed, take a subsequenge,.} of {z,} such that

limsup(z — f(2), z — @) = limsup(z — f(2), z — )
Since{x, } is bounded, there exists a subsequencéigf}
which converges weakly ta*. Without loss of generality,
we may assume that,, — z* asi — oco. From (21) we
havelim;_. || Tz, — zn,|| = 0, and by using Lemma 2.1

we obtain thate* = Tz*, that is,z* € F(T). This together
with the property of the metric projection implies that

limsup(z — f(2), z

(z = f(2),2 —a") < 0.

- .’ﬂn7>

limsup(z — f(2),2z — x,)

(V) We prove thatr,, — z asn — oo, wherez € F(T)
is the unique fixed point of contractiobz 7 f, that is,z =

Prr) f(2).
Since{z, } is bounded, there exist&/ > 0 such that
sup,,> |lzn — z|| < M, and from (7) we have

241 = 2|

(Tpa1 — 2y Tpt1 — 2)

(an f(xn) + Prnn + T Wy — 2,p41 — 2)

an(f(zn) — f(2),Tn1 — 2) + an(f(2) — 2, Zng1

—2) + Bnlxn — 2, Tpy1 — 2) + Y (T W, — 2,

Tpt1 = 2)

anllf(zn) = f(2)[|2n1 — 2] + an(f(2) — 2,

Tpt1 — 2) + Ballzn — 2|l[|Tn41 — 2|

9l T wn — 2|l[|Tn41 — 2]

anallzy = zll[|tn+1 — 2l + an(f(2) — 2, 2n41 — 2)

+BnllTn — 2[|[|Tnt1 — 2]l + Ya[llwn — 2]

FunC(llwn = 2|) + &n]llzn+1 — 2|l

anallzy, = z|||zne1 — 2|l + an(f(2) — 2, Tn41 — 2)

+BnllTn — 2|[|Tnt1 — 2l + Ynsnllzn — 2|

X[ g1 = 2] + (1 = sn)l|Tnt1 — Z||2

+7n,unM*H5nxn + (1 - Sn)xn—&-l - Z||||£an+1 - Z”

+7n€n‘|xn+1 - ZH

(ana + Br + Ynsn + YnSnftn M™)|| 20 — 2|

Xllenss — 2l + an{f(2) = 2 Tns1 - 2)

(1= 50) (L M1 — ]2

Fménllzni1 — 2

ana + Bn + YnSn (1 + pnM*)
2

Hllzntr — 21%) + an(f(2) = 2, 2041 — 2)

(1 = s0) (1 + pn M) || T0 11 — 2”2

+YnénllTnt1 — 2|l

ana ~+ Bn + Ynsn (1 4+ unM*)
2

+ana + Bn + %(22—

+an(f(2) — 2,Zn11 — 2) + MW llTnt1 — 2|

an® ~+ Bn + Ynsn (1 + pupn M*)

2

OénOé+ n+ 71,2*
N B 7(2

—|—Oén<f(2) — 2, Tp41 — Z> + M&,,

IN

IN

IN

IN

IN

(Il — 2[?

IN

ln = 2|2

U M)y o

IN

llzn — 2”2

Sn)(l + ,L‘nM*)

l2nt1 — 2|

which implies

[ €ns1 — 2|
ana+ Bn + Ynsn (1 + pupM*)
2 — ana = B — V(2 = 55) (1 + pn M*)
20, (f(2) — 2, Tps1 — 2) + 2ME,
2 — apa — Bn — (2 — 8p) (1 4 pp M*)

< [l — 212

(23)
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From conditions(C2), (C3), (C5) and (9), it follows that « € [0,1). Pick anyz; € C, let {z,} be a sequence
lim, . oo[2 — apa— By — ¥ (2 — sn) (1 + p, M*)] = s > 0, generated by

and for sufficiently largex > N, we have {

2_an0¢_ﬂn_7n(2_

sn)(1 4 pp M*) > 0,

By (11) and (23) we know that

41 — 212
20,0+ 23, + 29 — 2+ 29 M

Wn = %(xn + xn+1)7

Tnt1 = anf(xn) + 5nmn + 'Ynannv n e N,

where {a,, }, {8n}, {7} are three sequences (i, 1) such
that o, + B, + v, = 1. If lim,, . ||z, — T"2,|| = 0 and
F(T) # 0, and conditions (C1)-(C4) and (C6) in Theorem
3.1 hold, then{z,,} converges strongly to a fixed pointof

< 1+ 2 — i — B — (2 — sn) (1 + unM*)] T, which is the unique solution of the variational inequality
x||zn — 2| ((I—=flz,x—2) >0, VaxeF(T).
T 200, (f(2) — 2, Tp 11 — 2) + 2ME,
2 —apa = B — (2 —s,)(1 ‘*‘NZM*) Proof. Take s, = 3 for ary n > 1 in Theorem 3.1, then
- [+ 2ana — 2an + 2ynpin M ] condition (C5) in Theorem 3.1 holds. From Theorem 3.1,
2 - Onct = Br = (2 = sn) (1 + pp M*) the proof is completed.
X|[an — ]|
n 200, (f(2) — z,xp1 — 2) + 2ME, If T:C — C is a generalized asymptotically nonexpan-
2 — @ — B — V(2 — 5,) (1 + p, M*) sive mapping, we can obtain the following two results from
200,00 — 200, + 2€a, Theorem 3.1.
< [+ ]
2 — ana — B — (2 — sp) (1 + pn M*) .
w[[n — 2|2 Corollary 3.3 Assume that' is a nonempty closed convex
”2 £(z) - ) 4o subset of the real Hilbert spadé. Let T : C — C be a
+ o (f(2) = 2 Tnin — 2 &n . uniformly Lipschitzian and generalized asymptotically non-
2= ana = Py —7n(2 = s0)(1 4 pn M) expansive mapping with sequencgs, },{&.} C [0, +o0),
. 20m(1 — o —¢) l and f : C — C a contraction with coefficient € [0,1).
2 — ana— By — Yn(2 = sn) (1 + pp M*) Pick anyz; € C, let {z,,} be a sequence generated by
2
XHxn_ZH c Wh, :Snxn+(1_5n)xn+17
200 ((f(2) — 2,Znt1 — 2) + M 3>) Tna1 = Qnf(xn) + Bnn + v T"w,, n € N,
2—ana—f . Tn(2 = sn) (1 + pn M) where {a,,},{6.}, {7} are three sequences {, 1) such
= (1-=96n)|lzn — 2| + vn, (24) thata,, + Bn + v = 1. If lim,, o ||z, — T"z,|| = 0 and
where F(T) # 0, and conditions (C1)-(C5) in Theorem 3.1 hold,
then{z,,} converges strongly to a fixed pointof T', which
5 — 2an(1 —a —¢) is the unique solution of the variational inequality
" 2*n*n*n2*n1+ nM*’
@0 = fn = (2 = 8n) (1 + pn M) (I-flzyx—2)>0, Yze F(T).
_200((f(2) — 2 @aga — 2) + ME)
" 2—ana = B = (2 = s0) (1 A+ g M*) Proof. Take¢(x) = x(x > 0) in Theorem 3.1, then condition
By conditions (C1) and (C4), we get that (C6) in Theorem 3.1 is satisfied automatically. Hence the
conclusion of Corollary 3.3 can be obtained from Theorem
lim & o, (25) 3.1 immediately.

From (C1)-(C5), (22) and (25), we haw,} < (0,1),

n—00 Uy,

Corollary 3.4 Assume thatC' is a nonempty closed convex

>0 6, = oo, and subset of the real Hilbert spadé. Let T : C — C be a
" uniformly Lipschitzian and generalized asymptotically non-
. vn F(2) = 2, @pq1 — 2) + M= expansive mapping with sequencgs, }, {¢,} C [0, +o0),
h?fipi B hgljogp l—a—c¢ “ =0 andf:C — C a contraction with coefficient: e [0,1).

Pick anyz; € C, let {z,,} be a sequence generated by

It following form (24) and Lemma 2.2, we obtain that

r, — 2z = Pp(r)f(z), which solves the following variational

inequality:

(z— f(z),x —2) >0, VaeF(T).

The proof is completed.

Wp = %(xn + In—&-l),

Tn+1l = anf(-ﬁn) + ﬁnxn + "Ynanna nec Na

where{«a, }, {6.}, {7.} are three sequences (A, 1) such
thata, + B, + v = 1. If limy, o0 ||z, — T™2,]| = 0 and
F(T) # 0, and conditions (C1)-(C4) in Theorem 3.1 hold,
then{x, } converges strongly to a fixed poiatof T', which

Corollary 3.2 Assume thaC' is a nonempty closed convexis the unique solution of the variational inequality
subset of the real Hilbert spaéé. Let7 : C' — C be a uni-

— —2) > .
formly Lipschitzian and{u., }, {¢.}, ¢)-total asymptotically ({(I=fzz=2 20 voeF(T)
nonexpansive mapping with two sequendgs,}, {¢,} C
[0,400), and f : C — C a contraction with coefficient Proof. Take s,, = % in Corollary 3.3, then condition (C5)
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in Corollary 3.3 holds. From Corollary 3.3, this completede a asymptotically nonexpansive mapping with sequence
the proof. {pn} C [0,400), and f : C — C a contraction with
coefficienta € [0,1). Pick anyz; € C, let {z,} be a
If T : C — C is an asymptotically nonexpansivesequence generated by

mapping in the intermediate, we can obtain the foIIowing{ wn = $nTn + (1 — 8n)Tns1
n — “neIn n n
’ (27)

Wi rollaries.
two corollaries Tnt1 = O f(2n) + Butn + T w,, n €N,

Corollary 3.5 Assume that is a nonempty closed convexWhere{ax},{5,},{.} are three sequences {0,1) such
subset of the real Hilbert spacd. Let T : C — C be thata, + B, + 7y, = 1. If limy oo [ — T"@y|| = 0
a asymptotically nonexpansive mapping in the intermedia@d £'(T) # 0, and conditions (C1), (C2) (C3) and (C5) in
sense with sequencg,} C [0,+c0), and f : C — C a Theorem 3.1 hold, thefz,,} converges strongly to a fixed
contraction with coefficient € [0,1). Pick anyz; € C, let point z of T, which is the unique solution of the variational

{z,} be a sequence generated by inequality
Wp, = SpTp + (1 - 57L)In+17 (26) <(I B f)Z,$ - Z> 20, Vrxe F(T)
Tnt1 = anf(fl:n) + ﬂnxn + ’Ynann, n e ]\/v7

where {o,}, {8}, {1=} are three sequences {f,1) such Proof. Take¢, = 0 in Corollary 3.3, then condition (C4) in
that o, + B, + v = 1. If lim,, o ||z, — T"2,|| = 0 and Corollary 3.3 is satisfied automatically, this completes the
F(T) # 0, and conditions (C1), (C2), (C4) and (C5) inProof.

Theorem 3.1 hold, thekz,,} converges strongly to a fixed

point z of 7', which is the unique solution of the variationalRemark 3.3 Corollary 3.7 studied the strongly convergence
inequality theorem without the monotonic increase of sequefice,

and so improves and extends the main results in [21].
(I—-fz,x—2)>0, VeeF(T).
Corollary 3.8 Assume that' is a nonempty closed convex

Proof. Take s, = 0 and ((z) = z(z > 0), then conditions subset of the real Hilbert spgdé. Let T : C — C be
(C3) and (C6) in Theorem 3.1 are satisfied automatical. @symptotically nonexpansive mapping with sequence

Hence the conclusion of Corollary 3.5 can be obtained frontin} S [0,+00), and f : ¢ — C a contraction with
Theorem 3.1. coefficienta € [0,1). Pick anyz; € C, let {z,} be a

sequence generated by
Remark 3.1 Corollary 3.2-3.5 still are new consequences. [ w,, = 1(z, + zn11),
Tnt+1l = O‘nf(xn) + ﬂnmn + ’Ynanvu n e N,
where {«,, }, {6.}, {7-} are three sequences {f, 1) such
aggat an + Bn + 0 = 1. If limy, o0 ||z, — T™2,]| = 0 and
(T) # 0, and conditions (C1), (C2) and (C3) in Theorem
3.1 hold, then{x,,} converges strongly to a fixed poiatof
T, which is the unique solution of the variational inequality

(I —=flz,x—2)>0, VexeFT).

Corollary 3.6 Assume thatC' is a nonempty closed convex
subset of the real Hilbert spadé. Let T : C — C be a
asymptotically nonexpansive mapping in the intermedi
sense with sequencg,} C [0,+c0), andf : C — C a

contraction with coefficienty € [0, 1). Pick anyz; € C, let

{z,} be a sequence generated by

Wn = %(xn + xn+1)7
Tp1 = anf(xn) + Bn®n + I "Wy, n €N,

Proof. Take s, = 3, then condition (C5) in Corollary
where {an}, {fin}, {7} are three sequences {0, 1) such 3.7 holds. From Corollary 3.7 we can be obtained from

that o, + B + v, = 1. If lim,, o ||z, — T"2,|| = 0 and ) .
F(T) # 0, and conditions (C1), (C2) and (C4) in TheoremCoroIlary 3.5 immediately.
3.1 hold, then{z,,} converges strongly to a fixed pointof

T, which is the unique solution of the variational inequality IV. APPLICATION TO VARIATIONAL INEQUALITIES

(I = flz,z—2) 20, YoeFTT). Assume that”' is a nonempty closed convex subset of a
real Hilbert spaceH. Let A : H — H be a single-valued

Proof. Take s, = %, then condition (C4) in Corollary 3.5 monotone operat.or.suchltrﬁtc Ci.om(A)" Nextwe consider
2 the following variational inequality (VI):

holds. From conclusion of Corollary 3.6 can be obtained
from Corollary 3.5 immediately. (Azg,z —20) 20, z€C. (28)
Remark 3.2 Corollary 3.6 improves and extends th(%?t:ﬁ t;a; ?)/I (28) is equivalent to the fixed point problem,
main results of [20] in regard to parametey. y '
Pc(I - )\A)l‘o = Z9- (29)
If T: C — C'is an asymptotically nonexpansive mapping,

we have the following two results. Definition 4.1 A nonlinear mappingAd : H — H is L-

Corollary 3.7 Assume thatC is a nhonempty closed convexl‘IpSChItZIan for somel, > 0, if

subset of the real Hilbert spacH. Let T : C — C [Azx — Ay|| < Lljz —y||, Vax,y€ H.
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[16]

Definition 4.2 A nonlinear mappingd : H — H is n-

inverse-strongly monotone, for some> 0, if

(17]

<AI*Ay,I*y>T]HASC7Ay”2, VfﬁayeH-

If A is Lipschitzian andp-inverse-strongly monotone, it[ig)
is well known [24] that the operatdf’ = Po(I — A\A) is

nonexpansive provided < A < 2. Thus, we can get the
following theorem.

[29]

Theorem 4.1 Assume that”' is a nonempty closed convex!?l
subset of the real Hilbert spadé. Let A: H — H be alL-
Lipschitzian andn-inverse-strongly monotone mapping and
f: C — C acontraction with coefficient € [0,1). Assume [l
VI(28) is solvable. Let{z,} be a sequence generated by

{

[22]
Wy, = Sy + (1 — Sp)Tpnt1,

Tn+1l = anf(xn) + ann + ’YnPC(I - )\A)wna (30)

where 0 < A < 29, and {a,},{6n}, {7} are three [23]

sequences in(0,1) such thata,, + 8, + v = 1. If
lim, o ||z, — T™z,|| = 0 and (C1), (C2) and (C5) in

[24]

Theorem 3.1 hold. Thenz,,} converges strongly to a
solution zy of VI (28), which is also a solution to the
variational inequality

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

(9]

[20]

[11]

(12]

(23]

[14]

[15]

(I = f)zo,x —x0) >0, =€ A H(0). (31)
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