
 

  
Abstract—Engineering and economics both make extensive 

use of fractional programming. Because they are highly 
nonconvex and multimodal, they are regarded as challenging. 
This paper proposes an enhanced firefly algorithm (HFA) for 
solving fractional programming . The new population mean 
center is predicted by using the historical data of the population 
mean centers and added to the movement equation of fireflies to 
better guide their search. Numerical experiments are provided 
to demonstrate the efficiency and robustness of HFA. The 
results obtained by HFA show that it is always better than those 
produced by other methods. 
 

Index Terms—Firefly algorithm, Optimization, Swarm 
intelligence,  Mean-based prediction 
 

I. INTRODUCTION 
HE following fractional programming is considered in 

this paper: 

  

wher  

are finite affine functions such that  
for all 𝑥𝑥∈Λ≜ {𝑥𝑥∣𝐴𝐴𝐴𝐴≤𝑏𝑏,𝑥𝑥∈𝑋𝑋0}, , 
and  are real constant coefficients, .  

Currently, FP is one of the most successful fields in 
nonlinear optimization. Up to now, extensive research on 
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specific cases of FP has been carried out. The first reason is 
that FP has many important applications in many domains, 
such as multiobjective bond portfolio [1], cluster analysis [2], 
government contracting challenges [3], etc. The second 
reason is that it usually poses significant theoretical and 
computational issues since it has multiple local optima that 
are not globally optima. Furthermore, the goal function is 
NP-hard and neither quasiconvex nor quasiconcave [4]. 

FP has so far been addressed by a variety of techniques. A 
parametric simplex strategy, for example, has been devised 
[5] for . Alternatively, numerous algorithms have been 
presented [6,7] for  that iteratively search the 
nonconvex outcome space until a globally optimal solution is 
identified. Additionally, a number of different branch and 
bound based methods have been suggested for specific FP 
cases [8-14]. 

Although deterministic algorithms for global optimal 
solutions of fractional programming have made great 
progress, most of these methods are limited to FP without 
coefficients . A more general model is considered in this 
study. 

The aim of this paper is to develop an enhanced firefly 
algorithm (HFA) to solve FP.  The main features of this 
algorithm are as follows: (1) Only special cases of the 
problem (FP) may be handled by the previously studied 
approaches (e.g., [9,11,12,14]); in contrast, the suggested 
algorithm HFA can solve the general FP. (2) Compared to 
Shen and Wang's approach, HFA does not require to 
introduce extra variables [13]. (3) The HFA's movement 
equation looks for a potential area by incorporating the 
population mean's historical data. HFA can handle almost all 
the test problems in finding globally optimal solutions, as 
shown in numerical experiment. 

This paper is organized as follows. The basic FA is 
introduced in Section II.  Section III provides a description of 
the suggested algorithm HFA. Section IV presents some 
numerical results, and Section V offers some conclusions.  

 

II.  BASIC FA ALGORITHM 
Scholars have shown a great deal of interest in the firefly 

algorithm (FA) since it was proposed by Yang in 2008 [15]. 
The job shop scheduling problem [16], vision-based railway 
overhead inspection system [17], visual tracking [18], 
network reconfiguration of unbalanced distribution networks 
[19], and many other problems were solved by FA. 

FA imitates the flashing behavior of fireflies. Every firefly 
in the search space is viewed as a potential solution, and their 
movement patterns show how solutions are upgraded in quest 
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of better ones. 
In addition, three idealized hypotheses are tested to make 

sure the algorithm is headed in the right direction. They are 
shown as follows: 

 (1) Fireflies are asexual, which means that every firefly 
will be attracted to brighter fireflies without being affected by 
gender. 

 (2) The brightness of the flashing is correlated with the 
attraction's size. If  is more depressed than  for two 
random fireflies,  is drawn to .  In the event that  is the 
best firefly available, it will travel randomly through the 
search range. 

(3) The firefly's brightness varies according to the 
objective function's value. Author List 

A. Basic parameters 
Assume that the search space has dimension  and that 

the swarm size is . 
First, in the search space, the initial population in FA is 

generated randomly as follows: 
                          (1) 

where  and  are the lower and upper bounds of the search 
space. 

In FA, both attractiveness ( ) and brightness ( ) are 
important variables. Generally speaking, there is a negative 
correlation for minimum difficulties and a positive 
correlation for maximum problems between the firefly's 
brightness and the objective function value. 

The following calculation of the Euclidean distance  
between  and  is required before determining the 
attractiveness : 

                                                 (2) 

Then, attractiveness  is calculated using the formula 
below: 

                                                                 (3) 
in which  represents the absorption coefficient and  is 
the maximum attractiveness. 

B. The movement equation of the firefly 
Assuming that  is drawn to ,  will travel according 

to the formula below: 
                                (4) 

where the position of  at the -th iteration is represented by 
,  [-0.5, 0.5], and  [0, 1] is a random step. 

C.  The basic steps of FA 
Step 1: Set parameters , , population size , and 

then initialize the population. 
Step 2: Use formulas (2) and (3) to calculate  and , 

respectively. 
Step 3: Use formula (4) to update the solution. 
Step 4: Compare the present solution with the prior 

solution to get a superior one. 
 

Step 5: Determine the objective function value for the new 
solution. 

Step 6: If the algorithm satisfies the terminate condition, it 
terminates and produces the best result; if not, move back to 
Step 2. 

Since FA was proposed, many variations have been 
developed, which fall into three categories: (1) The algorithm 
can quickly enter local optima due to the fixed step $\alpha$. 
To address this limitation, variable strategies for step setting 
were used to adapt FA [20-23]. (2) To adopt the advantages 
of other swarm intelligence algorithms, some hybrid 
algorithms have been proposed. In order to address the 
combinatorial optimization of non-slicing VLSI floor 
planning, Sivaranjani and Kumar [24] devised the hybrid 
particle swarm optimization-firefly method (HPSOFA). In 
FA, the brightest firefly moves at random, but the others, 
aside from the darker one, hardly move at all. Three 
innovative operators were used in a hybrid optimizer by 
Wang et al. [25]. The pattern search algorithm was used in 
[26] as a local optimization method to improve the firefly 
algorithm. Wang et al. [27] combined FA with differential 
evolution (DE) to improve the search for the brighter one. 
Rahmani and Mirhassani [28] suggested a hybrid 
firefly-Genetic Algorithm to address the capacitated facility 
locating problem. Goel and Maini [29] integrated the ant 
colony and FA to address vehicle routing difficulties and 
enhance FA's performance. By using the visual function of 
the similarity of fireflies and butterflies, Zhang et al. [30] 
presented a novel hybrid FA with butterfly optimization 
algorithm (BOA), namely FA-BOA. To solve job shop 
scheduling problems, Nugraheni et al. [31] designed a hybrid 
metaheuristics based on genetic algorithm (GA) and FA. (3) 
To enhance FA's performance even more, some scholars 
blend it with traditional optimization methods. Gandomi et al. 
[32], for instance, integrated chaos with FA to enhance the 
solution's resilience and exploration. In order to improve FA, 
Kotteeswaran and Sivakumar [33] created L vy -flight. 

In basic FA, all fireflies that are brighter than a particular 
darker firefly can attract it. As a result, it may increase the 
computational complexity of time and easily lead to 
oscillations during the search. Wang et al.[34] presented a 
novel FA in 2016 called the firefly algorithm with random 
attraction (RaFA) in an effort to lessen its detrimental 
consequences. In their method, not all fireflies, but only the 
firefly , which is randomly selected among the rest aside 
from , can attract firefly . As a result, the time 
complexity is decreased significantly. But, it cannot ensure 
that  should be directed in a better way; instead, it can slow 
down the algorithm's accuracy and convergence. Wang et 
al.[35] presented an enhanced FA (NaFA) in order to get 
around this drawback. In NaFA,   found a -neighbor 
surrounding it based on a circular topology. If , a member 
of the -neighbor, is brighter than , then  will travel in 
the direction of . 

To further enhance the performance of FA, this paper tries 
to incorporate the past population's collective experience into 
the movement equation. Thus, each firefly can be guided by 
this integration to look for potentially fruitful areas. 
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III. THE IMPROVED FA:HFA 
In FA, the brighter fireflies have the ability to attract each 

firefly several times. Nonetheless, not all of population 
evolution's experience has been put to good use.  To fully use 
the historical experience, HFA will predict the population 
mean center and introduce it into the movement equation to 
better direct population dynamics. Here is the detailed 
procedure. 

Let   be the mean center of the initial population. 
 is a preset value, which will determine the extent to 

which the historical mean influences the prediction results. 
Let  be the mean center of the population at the 

-th iteration,  be the prediction value about 
.  is defined as follows: 

                 (5) 
where , . 

Obviously,  incorporates the mean 
information of the previous populations, and the influence of 
the early population mean information weakens as the 
iteration progresses. 

Based on , we propose a novel movement 
equation for fireflies, which is given as follows: 

 

where  is a random step, , 
and  denotes the position of  at the -th iteration. 

The algorithm steps of HFA are as follows: 
Step 1: Set parameters , , the population size , and 

initialize the population. 
Step 2: Use formulas (2) and (3) to calculate  and , 

respectively. 
Step 3: Use formulas (5) and (6) to update the solution. 
Step 4: Compare the present solution with the prior 

solution to get a superior one. 
Step 5: Determine the objective function value for the new 

solution. 
 
Step 6: If the algorithm satisfies the terminate condition, it 

terminates and produces the best result; if not, move back to 
Step 2. 

IV. NUMERICAL RESULTS AND ANALYSIS 
Two experiments are conducted in order to evaluate HFA's 

performance. 14 widely used benchmark functions that were 
taken from CEC 2005 are chosen for Experiment 1 and 
evaluated with FA, RaFA, and NaFA. In Experiment 2, the 
effectiveness of HFA in solving fractional problems is 
evaluated by contrasting it with a number of conventional 
techniques, such as those found in [10], [13], [14], and [36]. 
These experiments are carried out on a Windows 7 PC using 
Matlab 2017a (Win 64) with an Inter(R) Core(TM) i5-4258U 
CPU running at 2.40 GHz. 

A. Experiment 1: test on benchmark functions 
Table I provides the details of these functions. The 

dimensions, search space bounds, and global minimum 

values of these functions are denoted by , Range, and 
, respectively. In this experiment, the population size 

is  50, and each algorithm runs independently on each test 
function 30 times to ensure fair comparison. 3000 is the 
maximum number of iterations that can be done, and it also 
serves as the termination condition. The proposed 
comparison techniques are applied to the remaining 
parameters. Minimum value (Min), mean value (Mean) and 
standard deviation (Std) are used to compare their 
performance. Table II provides a summary of the comparison 
results. 

 
TABLE I 

 BENCHMARK TEST FUNCTIONS 

Function  

Range [-100,100] 
D 30 
Optimal Value 0 

Function  

Range [-10,10] 
D 30 
Optimal Value 0 

Function  

Range [-100,100] 
D 30 
Optimal Value 0 
Function  
Range [-100,100] 
D 30 
Optimal Value 0 

Function  

Range [-100,100] 
D 30 
Optimal Value 0 

Function  

Range [-100,100] 
D 30 
Optimal Value 0 

Function  

Range [-100,100] 
D 30 
Optimal Value 0 

Function  

Range [-100,100] 
D 30 
Optimal Value 0 
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Function  

Range [-100,100] 
D 30 
Optimal Value 0 

Function  

Range [-100,100] 
D 30 
Optimal Value 0 

Function  

Range [-100,100] 
D 30 
Optimal Value 0 

Function  

Range [-100,100] 
D 30 
Optimal Value 0 

Function  

Range [-100,100] 
D 30 
Optimal Value 0 

Function  

Range [-100,100] 
D 30 
Optimal Value 0 

 
 From Table II, we can see that HFA can find their optimal 

solutions on functions , , and ,  
accounting for  of the test problem. For , although 
FA can also find its optimal solution, its robustness is poor 
and the mean deviation is large. For  and ,  the accuracy 
of HFA is much higher than that of other algorithms. The 
comparison results show that the performance of HFA is far 
superior to other algorithms. 

To intuitively compare the convergence rate of HFA and 
the other three FAs, the convergence curves of these 
algorithms are displayed on , , ,  and in Figs 
1-5. From Figs 1-5, it is easy to see that HFA can find a better 
solution when the algorithm terminates. Especially for , 
HFA converges to the optimal solution at a faster speed. 

The comparison results indicate that the mean prediction 
information introduced by HFA is of great useful in 
improving its performance.  

 

TABLE II 
 THE COMPARISON RESULTS FOR DIFFERENT ALGORITHMS 

Function                                     

FA 
Min 0 

Mean 0 
SD 0 

NaFA 
Min 2.154e+03 

Mean 2.706e+03 
SD 7.797e+02 

RaFA 
Min 7.409e+02 

Mean               9.717e+02 
SD 3.236e+02 

HFA 
Min           0 

Mean           0 
SD           0 

Function                          

FA 
Min 4.249e-322 

Mean 4.693e-322 
SD 0 

NaFA 
Min 3.155e+00 

Mean 5.197e+00 
SD 1.483e+00 

RaFA 
Min 6.603e+00 

Mean 7.845e+00 
SD 1.566e+00 

HFA 
Min 0 

Mean 0 
SD 0 

Function                         

FA 
Min 1.166e+03 

Mean 1.841e+03 
SD 8.842e+02 

NaFA 
Min 1.764e+03 

Mean 2.900e+03 
SD 1.410e+03 

RaFA 
Min 1.531e+03 

Mean 2.483e+03 
SD 1.021e+02 

HFA 
Min 5.060e-273 

Mean 7.667e-267 
SD 0 

Function                       

FA 
Min 4.392e-14 

Mean 2.019e-02 
SD 1.947e-02 

NaFA 
Min 2.541e+01 

Mean 2.637e+01 
SD 1.307e+00 

RaFA 
Min 1.168e+01 

Mean 1.223e+01 
SD 7.869e-01 

HFA 
Min 2.002e-242 

Mean 4.239e-240 
SD 0 

Function                         

FA 
Min 4.608e-04 

Mean 3.904e+00 
SD 1.455e+00 
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NaFA 
Min 2.384e+02 

Mean 2.546e+02 
SD 2.303e+01 

RaFA 
Min 1.918e+02 

Mean 2.153e+02 
SD 2.767e+01 

HFA 
Min 0 

Mean 0 
SD 0 

Function                      

FA 
Min 0 

Mean 0 
SD 0 

NaFA 
Min 1.507e-01 

Mean 5.884e-01 
SD 6.190e-01 

RaFA 
Min 6.302e-02 

Mean 1.218e-01 
SD 7.672e-02 

HFA 
Min 0 

Mean 0 
SD 0 

Function                       

FA 
Min 4.230e-07 

Mean 4.351e-07 
SD 1.707e-08 

NaFA 
Min 7.919e-05 

Mean 5.146e-04 
SD 6.158e-04 

RaFA 
Min 1.593e-07 

Mean 5.097e-06 
SD 6.984e-06 

HFA 
Min 0 

Mean 0 
SD 0 

Function                       

FA 
Min 1.482e+06 

Mean 7.078e+06 
SD 5.302e+02 

NaFA 
Min 2.530e+07 

Mean 3.044e+07 
SD 1.605e+03 

RaFA 
Min 9.086e+06 

Mean 1.281e+07 
SD 5.273e+06 

FA 
Min 0 

Mean 0 
SD 0 

Function  

FA 
Min 0 

Mean 5.103e-01 
SD 7.071e-01 

NaFA 
Min 1.0e+00 

Mean 1.0e+00 
SD 0 

RaFA 
Min 3.0e+00 

Mean 3.501e+00 
SD 1.224e-01 

HFA Min 0 

Mean 0 
SD 0 

Function  

FA 
Min 2.320e-02 

Mean 3.191e-02 
SD 1.023e-02 

NaFA 
Min 2.678e-01 

Mean 3.517e-01 
SD 1.185e-01 

RaFA 
Min 6.601e-02 

Mean 8.192e-02 
SD 2.263e-02 

HFA 
Min 5.775e-06 

Mean 6.045e-06 
SD 3.812e-07 

Function  

FA 
Min 5.285e+01 

Mean 5.621e+01 
SD 1.634e+00 

NaFA 
Min 4.137e+01 

Mean 6.623e+01 
SD 2.267e+01 

RaFA 
Min 3.365e+01 

Mean 4.898e+01 
SD 1.199e+01 

HFA 
Min 0 

Mean 0 
SD 0 

Function                      

FA 
Min 1.332e-14 

Mean 1.758e-14 
SD 3.891e-15 

NaFA 
Min 3.667e-01 

Mean 4.321e-01 
SD 6.981e-02 

RaFA 
Min 6.106e-01 

Mean 7.721e-01 
SD 1.439e-01 

HFA 
Min 9.770e-15 

Mean 1.758e-14 
SD 3.891e-15 

Function  

FA 
Min 1.270e-01 

Mean 2.850e-01 
SD 1.297e-01 

NaFA 
Min 4.999e-01 

Mean 5.012e-01 
SD 2.656e-05 

RaFA 
Min 1.298e-01 

Mean 1.789e-01 
SD 1.850e-02 

HFA 
Min 9.700e-02 

Mean 9.700e-02 
SD 2.060e-13 

Function  

FA 
Min 7.581e-02 

Mean 1.683e-01 
SD 6.992e-02 

NaFA Min 1.009e+01 
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Mean 1.137e+01 
SD 1.049e+00 

RaFA 
Min 7.761e+00 

Mean 1.068e+01 
SD 1.812e+00 

HFA 
Min 0 

Mean 0 
SD 0 
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Fig 1 The convergence curves of different algorithms on   
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Fig 2 The convergence curves of different algorithms on   
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Fig 3 The convergence curves of different algorithms on   
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Fig 4 The convergence curves of different algorithms on   
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Fig 5 The convergence curves of different algorithms on   

B. Experiment 2: test on fractional problems 
 In this subsection, HFA is used to solve several fractional 

problems, and is compared with some methods in [10], [13], 
[14], and [36]. The convergence tolerance is set to 𝜖𝜖=1.0𝑒𝑒−8,  
just like what is given in the comparative literatures.  
 Example 1. (Shen and Wang [13]) 

Example 2. (Wang et al. [14])  
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Example 3. (Jiao [36]) 

Example 4. (Shen and Wang [13]) 

 

Example 5.(Jiao [36])   

  

Example 6.(Ji et al. [10])   

  

The comparison results are given in Table III. Among 
these comparison results, except for HFA, all other results are 
directly from the corresponding comparative literature. 

From Table III, it can be seen that HFA can find better 
results than the comparative algorithms, at least not inferior 
to the their results.  Moreover, HFA does not require 
branching of the search region and constructing linear 
relaxation functions. Therefore, HFA is an effective method 
for solving fractional programming problems. 

 
TABLE III 

  COMPUTATIONAL RESULTS OF TEST EXAMPLES 1-6 

Example 
           
Method Optimal Solution Optimal 

Value 

1 [13] (0.0, 3.333333, 0.0)         1.9 
HFA (0.0,3.3333333,0.0)         1.9 

2 [14] (1.0, 0.0, 0.0) -4.081481 
HFA (1.111111, 0.0, 0.0) -4.0907029 

3 [15] (0.0, 3.3333, 0.0) -3.0029239 
HFA (0.0, 3.333333, 0.0) -3.0029239 

4 [13] (3.0, 4.0) -3.29167 
HFA (3.0, 4.0) -3.2916666 

5 [15] (0.0,  0.283935) 1.6231833 
HFA (0.0, 0.2839473925) 1.6231833 

6 [10] (1.0,  0.0) 1.42857 
HFA (1.0,  0.0) 1.4285714 

  

V. CONCLUSION 
In this work, we integrated empirical knowledge into the 

FA algorithm to direct fireflies toward qualified region, 
hence improving individual guidance for movement. The 

efficiency of this mechanism was shown by the numerical 
experiments. We intend to use this approach in the future to 
solve some real-world issues. 
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