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Abstract—This paper investigates anti-disturbance synchro-
nization for Lur’e systems using a hierarchical composite
control mechanism. This mechanism integrates two control
approaches: disturbance observer-based control and switched-
gain event-triggered control, ensuring the H∞ exponential
stability of the synchronization-error system in the presence
of multiple disturbances. A condition on the H∞ exponential
stability is derived utilizing a piecewise-defined and time-
dependent Lyapunov function and several inequalities. Based
on the condition, a co-design is proposed for the gains of
the event-triggered controller and disturbance observer. For
comparison, the hierarchical composite control with a fixed gain
is also investigated, and the corresponding design approach
is presented. Finally, the effectiveness of the proposed com-
posite anti-disturbance synchronization control mechanism is
validated through an example involving master-slave Chua’s
circuits.

Index Terms—Lur’e system, event-triggered control, distur-
bance observer, synchronization

I. INTRODUCTION

LUR’E systems (LSs) are common nonlinear systems
characterized by the coexistence of linear dynamic

systems and feedback nonlinearity that is constrained by
sector-bounded conditions. Numerous dynamic systems, such
as Chua’s circuits [1] and Hopfield network [2], can be
effectively modeled within the framework of LSs. LSs can
manifest complex and chaotic behavior. Over the past two
decades, chaos synchronization of LSs has emerged as a
prominent research hotspot, garnering significant attention
due to its widespread applications in secure communications,
image processing, and various other fields [3–5].

There are numerous factors influencing the chaos syn-
chronization of LSs, among which the effect of disturbances
stands out as a key concern. Real-world dynamic systems
are susceptible to exogenous disturbances originating from
the environment or unidentified factors. These disturbances
can significantly impact system performance, leading to devi-
ations from expected behavior [6–8]. To reduce the influence
of external disturbances on the chaos synchronization of LSs,
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various effective control methods have been proposed, in-
cluding, but not limited to, sliding-mode control [9], adaptive
control [10], intuitionistic fuzzy control [11], fractional-order
control [12], impulsive pinning control [13], H∞ control
[14], and sampled-data control [15].

It should be noted that most existing control methods
primarily address norm-bounded disturbances. However, in
practical applications, disturbances often exhibit diverse
characteristics, including multiple disturbances with both
harmonic and norm-bounded attributes. Dealing with such
complex scenarios with a singular control method is often
infeasible, necessitating unconventional control strategies.
In 2004, a composite control mechanism integrating dis-
turbance observer-based control (DOBC) with traditional
control methods was proposed [16]. Subsequently, this com-
posite control idea has been successfully applied in many
different dynamic systems [17–21].

Event-triggered control (ETC) has garnered growing at-
tention with the advancement of control theory. Instead of
continuously updating and transmitting control signals, as in
traditional time-triggered control architectures, ETC schemes
only update and transmit control signals when certain pre-
defined events occur or specific conditions are met [22–25].
In this way, ETC optimizes the utilization of computational
resources and network bandwidth while ensuring the desired
control performance. Thus, the question arises: Can ETC
and DOBC be combined to address the composite anti-
disturbance synchronization control of LSs with multiple
disturbances? This issue, to our knowledge, remains open
and challenging, warranting further investigation.

Based on the aforementioned discussion, this paper aims
to investigate the hierarchical composite anti-disturbance
synchronization control of LSs with multiple disturbances.
These disturbances comprise two types: one in the form of
a norm-bounded vector, and the other described by an ex-
ogenous system. The hierarchical composite anti-disturbance
synchronization control mechanism integrates two control
approaches: DOBC and switched-gain ETC, ensuring the
H∞ exponential stability of the synchronization-error system
(SS) in the presence of multiple disturbances. By selecting an
appropriate Lyapunov function, a condition for H∞ exponen-
tial stability of the SS is derived. Subsequently, based on this
condition, a co-design approach is proposed for determining
the gains of the event-triggered controller and disturbance
observers. For comparison, the composite anti-disturbance
synchronization control with a fixed gain is also considered,
and the corresponding design approach is presented. Finally,
the effectiveness of the proposed composite anti-disturbance
synchronization control mechanism is verified through a
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numerical example.
Notation: Throughout, Rn1×n2 and Rn represent the sets

of n1×n2-real matrices and n-dimensional real vectors. For
a matrix Z, Z > 0 (Z < 0) represents that Z is positive
(negative) definite, and S (Z) represents the expression Z+
ZT . diag{·} represents a diagonal matrix and col{·} denotes
a column vector. In block symmetric matrices, the symbol
“∗” indicates a block derived by symmetry. Furthermore, the
dimensions of matrices, if not explicitly stated, are assumed
to be compatible.

II. PRELIMINARIES

Consider the following LS with master-slave synchroniza-
tion mechanism, the master system is{

δ̇m(t) = Aδm(t) +Hf(Dδm(t)) +Dmdm(t)

σm(t) = Cδm(t)
(1)

and the slave system is
δ̇s(t) =Aδs(t) +Hf(Dδs(t)) +Dsds(t)

+B0ω(t) + u(t)

σs(t) =Cδs(t)

(2)

where δm(t) ∈ Rm and δs(t) ∈ Rm are the state vectors of
master system and slave system, σm(t) ∈ Rn and σs(t) ∈ Rn

are the corresponding output vectors, u(t) ∈ Rm is the con-
trol input vector, dm(t) ∈ Rdm and ds(t) ∈ Rds are the un-
known disturbances. ω(t) ∈ Rωs is another additional distur-
bance in L2[0,∞). A ∈ Rm×m, H ∈ Rm×f , Dm ∈ Rm×dm ,
Ds ∈ Rm×ds , C ∈ Rn×m, and B0 ∈ Rm×ωs are all known
constant matrices. f(·) = col{f1(·), f2(·), . . . , ff (·)} ∈ Rf

is a nonlinear function vector with f(0) = 0, and for any
ς1, ς2 ∈ R, i ∈ {1, 2, . . . , f}, it satisfies the following sector-
bounded constraint:

(fi(ς1)− fi(ς2))(fi(ς1)− fi(ς2)− Ei(ς1 − ς2)) ≤ 0.

Define δe(t) = δm(t)−δs(t), σe(t) = σm(t)−σs(t). Then,
combining systems (1) and (2), the SS can be expressed as

δ̇e(t) =Aδe(t) +HF(Dδe(t), δs(t)) +Dmdm(t)

−Dsds(t)−B0ω(t)− u(t)

σe(t) =Cδe(t)

(3)

where F(Dδe(t), δs(t)) = f(Dδe(t)+Dδs(t))−f(Dδs(t)).
It is assumed that F(Dδe(t), δs(t)) belongs to sector [0, E ]
[26–28], which means that

FT (Dδe(t), δs(t))(F(Dδe(t), δs(t))− EDδe(t)) ≤ 0 (4)

with E = diag{E1, E2, . . . , Ef}.

Assumption 1. The unknown disturbances dm(t) and ds(t)
can be generated by the following exogenous systems:{

ξ̇m(t) = Wmξm(t)

dm(t) = Vmξm(t)
(5){

ξ̇s(t) = Wsξs(t)

ds(t) = Vsξs(t)
(6)

where Wm ∈ RWξm×Wξm , Vm ∈ Rdm×Wξm , Ws ∈
RWξs×Wξs , and Vs ∈ Rds×Wξs are all known real constant
matrices.

In order to get the estimations of unknown disturbances
d̂m(t) and d̂s(t), the corresponding disturbance observers can
be designed as

d̂m(t) =Vmξ̂m(t)

ξ̂m(t) =ρm(t)− Lmδm(t)

ρ̇m(t) =(Wm + LmDmVm)(ρm(t)− Lmδm(t))

+ Lm(Aδm(t) +Hf(Dδm(t)))

(7)


d̂s(t) =Vsξ̂s(t)

ξ̂s(t) =ρs(t)− Lsδs(t)

ρ̇s(t) =(Ws + LsDsVs)(ρs(t)− Lsδs(t))

+ Ls(Aδs(t) +Hf(Dδs(t)) + u(t))

(8)

where Lm and Ls are the observer gains that need to be
obtained. The disturbance estimation errors can be expressed
as

eξm(t) = ξm(t)− ξ̂m(t) (9)

eξs(t) = ξs(t)− ξ̂s(t). (10)

Combined with (1), (2), and (5)-(10), the error dynamics are
represented as

ėξm(t) = (Wm + LmDmVm)eξm(t) (11)
ėξs(t) = (Ws + LsDsVs)eξs(t) + LsB0ω(t). (12)

In this paper, the controller within the DOBC scheme is
designed to be event-triggered. The following trigger rule is
defined to obtain triggering instants:

tk+1 = min{t ≥ tk + h |(σe(t)− σe(tk))
TΛ(σe(t)− σe(tk))

> ασT
e (t)Λσ

T
e (t)}

where Λ ≥ 0 represents the trigger matrix and needs to be
determined, α ≥ 0 is known threshold parameter. Let ek(t) =
σe(t)−σe(tk) be the error between the current sampling time
and the latest transmission time. Then, the trigger rule can
be rewritten as:

tk+1=min{t≥ tk+h |eTk (t)Λek(t)>ασT
e (t)Λσ

T
e (t)}. (13)

Based on this rule, the imposed anti-disturbance controller
is given by

u(t) = Dmd̂m(t)−Dsd̂s(t)−Kζ(t)σe(tk) (14)

where ζ(t) is a switched signal defined as

ζ(t) =

{
1, t ∈ [tk, tk + h)

2, t ∈ [tk + h, tk+1)

and Kζ(t) represents the corresponding gain matrices that
need to be ascertained. Thus, the SS (3) can be rewritten as

δ̇e(t) =(A+Kζ(t)C)δe(t) +HF(Dδe(t), δs(t))−B0ω(t)

+DmVmeξm(t)−DsVseξs(t)−Kζ(t)Cek(t). (15)

Defining the reference output as z(t) = Z1δe(t) +
Z2eξs(t), for SS (15), the system is H∞ exponentially stable,
in the sense that

1) It is exponentially stable when ω(t) ≡ 0;
2) It has a specified H∞ disturbance-rejection performance

level γ, meaning that under the zero initial condition,∫ ∞

0

(zT (t)z(t)− γ2ωT (t)ω(t)) dt < 0.
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III. MAIN RESULTS

A. H∞ Stability Analysis

This subsection is indicated to the H∞ stability analysis of
the SS (15). The following condition can be obtained through
using a Lyapunov function.

Theorem 1. For given constants α > 0, η > 0, h > 0, γ > 0,
and arbitrary matrices K1, K2, SS (15) is H∞ exponentially
stable if there exist matrices P1 > 0, P2 > 0, P3 > 0,
P4 > 0, P5 > 0, P6 > 0, Λ ≥ 0, Y1, Y2, Q1, Q2, Q3, X ,
X1, and diagonal matrix U > 0 such that

Φ1
1 =

[
P1 + hS (X2 ) h(−X +X1)

∗ hS (−X1 +
X
2 )

]
> 0 (16)

Φ2
1 =

[
Σ(h) ν1
∗ Ω

]
< 0 (17)

Φ3
1 =

[
Θ(h) ν2
∗ Ω

]
< 0 (18)

Φ4
1 =

[
Γ(h) ν3
∗ Ω

]
< 0 (19)

hold, where Σ(h) = [Σi1j1 ], i1, j1 = 1, 2, . . . , 9, Θ(h) =
[Θi2j2 ], i2, j2 = 1, 2, . . . , 7, Γ(h) = [Γi3j3 ], i3, j3 =
1, 2, . . . , 6,

Σ11 = 2ηP1 + S (Y T
1 (A+K1C)− X

2
−Q1)

Σ12 = P1 −Q2 − Y T
1 + (A+K1C)TY2

Σ13 = Y T
1 DmVm, Σ14 = −Y T

1 DsVs

Σ15 = X −X1 +QT
1 −Q3

Σ16 = Y T
1 H+ EDTU, Σ17 = −Y T

1 K1C

Σ18 = Σ19 = hQT
1 , Σ22 = −S (Y2)

Σ23 = Y T
2 DmVm, Σ24 = −Y T

2 DsVs

Σ25 = Q2, Σ26 = Y T
2 H, Σ27 = −Y T

2 K1C

Σ28 = Σ29 = hQT
2

Σ33 = 2ηP2 + S (P2(Wm + LmDmVm))

Σ44 = 2ηP3 + S (P3(Ws + LsDsVs))

Σ55 = S (Q3 +X1 −
X

2
), Σ58 = Σ59 = hQT

3

Σ66 = −2U, Σ77 = −P6, Σ88 = −hP4

Σ99 = −hP5, Θ11 = Σ11 + η2hP5 + ηhS (X)

Θ12 = Σ12 + h
X

2
, Θ13 = Σ13, Θ14 = Σ14

Θ15 = Σ15 + hη(−X +X1), Θ16 = Σ16

Θ17 = Σ17, Θ22 = Σ22 + hP4, Θ23 = Σ23

Θ24 = Σ24, Θ25 = Σ25 + h(−X +X1)

Θ26 = Σ26, Θ27 = Σ27 + hCTPT
6 , Θ33 = Σ33

Θ44 = Σ44, Θ55 = Σ55, Θ66 = Σ66, Θ77=Σ77+2ηhP6

Γ11 = 2ηP1 + S (Y T
1 (A+K2C)) + αCTΛC

Γ12 = P1 − Y T
1 + (A+K2C)TY2, Γ13 = Σ13

Γ14 = Σ14, Γ15 = Σ16, Γ16 = −Y T
1 K2C

Γ22 = Σ22, Γ23 = Σ23, Γ24 = Σ24, Γ25 = Σ26

Γ26 = −Y T
2 K2C, Γ33 = Σ33, Γ44 = Σ44

Γ55 = Σ55, Γ66 = −Λ

νT1 =

[
−BT

0 Y1 −BT
0 Y2 0 BT

0 L
T
s 0 0 0 0 0

Z1 0 0 Z2 0 0 0 0 0

]

νT2 =

[
−BT

0 Y1 −BT
0 Y2 0 BT

0 L
T
s 0 0 0

Z1 0 0 Z2 0 0 0

]
νT3 =

[
−BT

0 Y1 −BT
0 Y2 0 BT

0 L
T
s 0 0

Z1 0 0 Z2 0 0

]
Ω =

[
−γ2I 0
0 −I

]
and other blocks unspecified are zero matrices.

Proof: Choose the following piecewise-defined and
time-dependent Lyapunov function:

V (t) =

Va(t) =
5∑

i=1

Vi(t), t ∈ [tk, tk + h)

Vb(t) = V1(t), t ∈ [tk + h, tk+1)

where

V1(t) = δTe (t)P1δe(t) + eTξm(t)P2eξm(t) + eTξs(t)P3eξs(t)

V2(t) = (tk + h− t)

∫ t

tk

e2η(s−t)δ̇Te (s)P4δ̇e(s) ds

V3(t) = η2(tk + h− t)

∫ t

tk

e2η(s−t)δTe (s)P5δe(s) ds

V4(t) = (tk + h− t)eTk (t)P6ek(t)

V5(t) = (tk + h− t)ϖT (t)Mϖ(t)

with

M =

[
S (X2 ) −X +X1

∗ S (−X1 +
X
2 )

]
ϖ(t) = col{δe(t), e−η(t−tk)δe(tk)}.

Evidently, V1(t), V2(t), V3(t), and V4(t) are positive definite.
From inequality (16), it can be seen that

V1(t) + V5(t)

=ϖT (t)

([
P1 0
0 0

]
+ (tk + h− t)M

)
ϖ(t)

+ eTξm(t)P2eξm(t) + eTξs(t)P3eξs(t)

=ϖT (t)

(
t− tk
h

[
P1 0
0 0

]
+
tk+h−t

h

([
P1 0
0 0

]
+ hM

))
×ϖ(t) + eTξm(t)P2eξm(t) + eTξs(t)P3eξs(t)

=
t− tk
h

ϖT (t)

[
P1 0
0 0

]
ϖ(t) +

tk + h− t

h
ϖT (t)Φ1

1ϖ(t)

+ eTξm(t)P2eξm(t) + eTξs(t)P3eξs(t)

P1 > 0, P2 > 0, P3 > 0, and Φ1
1 > 0. Therefore, V1(t) +

V5(t) is positive definite, Va(t) and Vb(t) are confirmed to
be both positive definite.

Furthermore, for t ∈ [tk, tk+1), from the expression of
V (t), it can be seen that

V2(tk) = V3(tk) = V4(tk) = V5(tk) = 0

lim
t→(tk+h)−

V2(t) = lim
t→(tk+h)−

V3(t) = lim
t→(tk+h)−

V4(t)

= lim
t→(tk+h)−

V5(t) = 0

which indicates

lim
t→tk

V (t) = V (tk), lim
t→(tk+h)−

V (t) = V (tk + h).

Thus, V (t) is continuous at instants tk and tk + h. This,
along with the arbitrariness of the time instants tk, implies
that V (t) is continuous on [0,+∞).
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Calculating the derivatives of Vi(t)(i = 1, . . . , 5) along
the trajectories of system (15), it yields

V̇1(t) =2δTe (t)P1δ̇e(t)+2eTξm(t)P2ėξm(t) + 2eTξs(t)P3ėξs(t)

V̇2(t) =−
∫ t

tk

e2η(s−t)δ̇Te (s)P4δ̇e(s) ds− 2ηV2(t)

+ (tk + h− t)δ̇Te (t)P4δ̇e(t)

V̇3(t) =− η2
∫ t

tk

e2η(s−t)δe
T (s)P5r(s) ds− 2ηV3(t)

+ η2(tk + h− t)δTe (t)P5δe(t)

V̇4(t) =− eTk (t)P6ek(t) + 2(tk + h− t)eTk (t)P6Cδ̇e(t)

V̇5(t) =−ϖT (t)Mϖ(t) + 2(tk + h− t)ϖ̇T (t)Mϖ(t).

Then the discussion of stability analysis can be divided into
two different intervals based on the switched event-triggered
rule.

Case 1: t ∈ [tk, tk + h)
In this case, ζ(t) = 1, u(t) = Dmd̂m(t) − Dsd̂s(t) −

K1σe(tk), the Lyapunov function Va(t) can be em-
ployed. It follows that there is a small positive scalar
ϱa = min{λmin(P1), λmin(P2), λmin(P3), λmin(Φ

1
1)},

which makes

Va(t) ≥ ϱa |δe(t)|2 . (20)

Through some calculations, it can obtain

V̇a(t) + 2ηVa(t)

= 2δTe (t)P1δ̇e(t) + 2eTξm(t)P2ėξm(t) + 2eTξs(t)P3ėξs(t)

+ 2η(δTe (t)P1δe(t) + eTξm(t)P2eξm(t) + eTξs(t)P3eξs(t))

+(tk + h− t)δ̇Te (t)P4δ̇e(t)+η2(tk + h− t)δTe (t)P5δe(t)

+2η(tk+h−t)eTk (t)P6ek(t)+2η(tk+h−t)ϖT (t)M
×ϖ(t)− eTk (t)P6ek(t) + 2(tk + h− t)eTk (t)P6Cδ̇e(t)

−ϖT (t)Mϖ(t) + 2(tk + h− t)ϖ̇T (t)Mϖ(t)

−
∫ t

tk

e2η(s−t)δ̇Te (s)P4δ̇e(s) ds

− η2
∫ t

tk

e2η(s−t)δe
T (s)P5δe(s)ds. (21)

Define

Wα(t) =
1

t− tk

∫ t

tk

eη(s−t)δ̇e(s) ds

Wβ(t) =
η

t− tk

∫ t

tk

eη(s−t)δe(s) ds.

Then, the integral terms can be estimated by using Jensen’s
inequality. The estimated results are as follows:

−
∫ t

tk

e2η(s−t)δ̇Te (s)P4δ̇e(s) ds≤−(t−tk)W
T
α (t)P4Wα(t)

(22)

−η2
∫ t

tk

e2η(s−t)δTe (s)P5δe(s) ds≤ −(t−tk)W
T
β (t)P5Wβ(t).

(23)

Moreover, according to the basic theorem of calculus and
SS (15), the following two equations hold true for arbitrary
matrices Y1, Y2, Q1, Q2, Q3 with appropriate dimensions:

0 =2[δTe (t)Q
T
1 + δ̇Te (t)Q

T
2 + e−η(t−tk)δTe (tk)Q

T
3 ][−δe(t)

+e−η(t−tk)δe(tk)+(t−tk)Wα(t)+(t−tk)Wβ(t)] (24)

0 =2[δTe (t)Y
T
1 + δ̇Te (t)Y

T
2 ][−δ̇e(t) + (A+K1)δe

+HF(Dδe(t), δs(t)) +DmVmeξm(t)−DsVseξs(t)

−K1Cek(t)−B0ω(t)]. (25)

According to sector condition (4), there exists a diagonal
matrix U = diag{µ1, µ2, . . . , µf} > 0 such that

0 ≤− 2

f∑
i=1

µiFi(d
T
i δe(t), δs(t))(Fi(d

T
i δe(t), δs(t))

− EidTi δe(t))
=− 2FT (Dδe(t), δs(t))UF(Dδe(t), δs(t))

+ 2EδTe (t)DTUF(Dδe(t), δs(t)) (26)

holds.
When ω(t) = 0, it can be derived from (21)-(26) that

V̇a(t) + 2ηVa(t)

≤ t− tk
h

φT
1 (t)Σ(h)φ1(t)+

tk + h− t

h
φT
2 (t)Θ(h)φ2(t) (27)

where

φ1(t) = col{δe(t), δ̇e(t), eξm(t), eξs(t), e
−η(t−tk)δe(tk),

F(Dδe(t), δs(t)), ek(t),Wα(t),Wβ(t)}
φ2(t) = col{δe(t), δ̇e(t), eξm(t), eξs(t), e

−η(t−tk)δe(tk),

F(Dδe(t), δs(t)), ek(t)}.

It is evident that Σ(h) and Θ(h) are the sub-matrices of Φ2
1

and Φ3
1, respectively. Thus, (17) and (18) imply that Σ(h) <

0 and Θ(h) < 0. Consequently, from (27) we have

V̇a(t) + 2ηVa(t) ≤ 0.

Case 2: t ∈ [tk + h, tk+1)
In this case, ζ(t) = 2, u(t) = Dmd̂m(t) − Dsd̂s(t) −

K2σe(tk), the Lyapunov function Vb(t) can be employed.
It follows that there is a small positive scalar ϱb =
min{λmin(P1), λmin(P2), λmin(P3)}, which makes

Vb(t) ≥ ϱb |δe(t)|2 . (28)

By performing certain calculations, we can derive the result:

V̇b(t) + 2ηVb(t)

= 2δTe (t)P1δ̇e(t) + 2eTξm(t)P2ėξm(t) + 2eTξs(t)P3ėξs(t)

+2η(δTe (t)P1δe(t)+eTξm(t)P2eξm(t)+eTξs(t)P3eξs(t)). (29)

In addition, from trigger rule (13), we have

0 ≤ −eTk (t)Λek(t) + ασT
e (t)σe(t). (30)

And for arbitrary matrices Y1, Y2, such that

0 =2[δTe (t)Y
T
1 + δ̇Te (t)Y

T
2 ][−δ̇e(t) + (A+K2)δe

+HF(Dδe(t), δs(t)) +DmVmeξm(t)−DsVseξs(t)

−K2Cek(t)−B0ω(t)] (31)

holds true. Therefore, combining (26), (29)-(31), when
ω(t) = 0, it can infer that

V̇b(t) + 2ηVb(t) ≤ φT
3 (t)Γ(h)φ3(t) (32)

where

φ3(t)=col{δe(t),δ̇e(t), eξm(t), eξs(t),F(Dδe(t), δs(t)), ek(t)}.
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Since Γ(h) is a sub-matrix of Φ4
1, (19) implies that Γ(h) <

0. Therefore, we have from (32) that

V̇b(t) + 2ηVb(t) ≤ 0.

Besides, V (t) is continuous at instants tk and tk + h, so for
any t ∈ [tk, tk+1)

V̇ (t) + 2ηV (t) ≤ 0

ϱ |δe(t)|2 ≤ V (t)

where ϱ = min{ϱa, ϱb}. Note this, it can deduce that

V (t) ≤ V (tk)e
−2η(t−tk)

≤ V (tk−1)e
−2η(t−tk−1)

...

≤ V (0)e−2ηt.

Further,

|δe(t)| ≤

√
V (0)

ϱ
e−ηt

which means that SS (15) is exponentially stable with a decay
rate η in the absence of disturbance.

Next, we will define an index function J (t) to evaluate the
H∞ disturbance-rejection performance of the system when
ω(t) ̸= 0,

J (t) = zT (t)z(t)− γ2ωT (t)ω(t).

Adding J (t) to both sides of inequalities (27) and (32), we
can get

V̇a(t) + 2ηVa(t) + J (t)

≤ t− tk
h

φ̄T
1 (t)Φ

2
1φ̄1(t) +

tk + h− t

h
φ̄T
2 (t)Φ

3
1φ̄2(t)

V̇b(t) + 2ηVb(t) + J (t) ≤ φ̄T
3 (t)Φ

4
1φ̄3(t)

where

φ̄1(t)=col{δe(t), δ̇e(t), eξm(t), eξs(t), e
−η(t−tk)δe(tk),

F(Dδe(t), δs(t)), ek(t),Wα(t),Wβ(t), ω(t),z(t)}
φ̄2(t)=col{δe(t), δ̇e(t), eξm(t), eξs(t), e

−η(t−tk)δe(tk),

F(Dδe(t), δs(t)), ek(t), ω(t), z(t)}
φ̄3(t)=col{δe(t), δ̇e(t), eξm(t), eξs(t),F(Dδe(t), δs(t)),

ek(t), ω(t), z(t)}.

From (17)-(19), it can be seen that Φ2
1 < 0, Φ3

1 < 0, Φ4
1 < 0,

and V (t) is continuous at instants tk and tk + h, therefore,
for any t ∈ [tk, tk+1)

V̇ (t) + 2ηV (t) + J (t) ≤ 0

because η ≥ 0 and V (t) ≥ 0, such that

V̇ (t) + J (t) ≤ 0. (33)

For any t ∈ [0, tg], integrating both sides of (33) from 0 to
tg , then we can get∫ tg

0

V̇ (t) + J (t) dt

=V (tg)−V (tg−1)+V (t−g−1)−· · ·−V (0)+

∫ tg

0

J (t) dt

≤ 0.

Since V (tg) ≥ 0, V (0) = 0, and V (t−m−1) − V (tm−1) = 0
for m = 2, 3, · · · , g, it can obtained that∫ tg

0

J (t) dt ≤ 0

so when tg → ∞,∫ ∞

0

zT (t)z(t) dt ≤ γ2

∫ ∞

0

ωT (t)ω(t) dt

which indicates that SS (15) is exponentially stable when
ω(t) = 0 and has the prescribed H∞ disturbance-rejection
performance. Thus, the proof is completed.

B. Controller Synthesis

From Theorem 1, it is easy to write the following results:

Theorem 2. For given constants α > 0, η > 0, h > 0,
γ > 0, and θ > 0, suppose there exist matrices P1 > 0,
P2 > 0, P3 > 0, P4 > 0, P5 > 0, P6 > 0, Λ ≥ 0, Y1,
Q1, Q2, Q3, X , X1, K̂1, K̂2, L̂m, L̂s, and diagonal matrix
U > 0 such that

Φ1
1 =

[
P1 + hS (X2 ) h(−X +X1)

∗ hS (−X1 +
X
2 )

]
> 0 (34)

Φ2
2 =

[
Σ̂(h) ν1
∗ Ω

]
< 0 (35)

Φ3
2 =

[
Θ̂(h) ν2
∗ Ω

]
< 0 (36)

Φ4
2 =

[
Γ̂(h) ν3
∗ Ω

]
< 0 (37)

hold, where Σ̂(h) = [Σ̂i1j1 ], i1, j1 = 1, 2, . . . , 9, Θ̂(h) =
[Θ̂i2j2 ], i2, j2 = 1, 2, . . . , 7, Γ̂(h) = [Γ̂i3j3 ], i3, j3 =
1, 2, . . . , 6,

Σ̂11 = 2ηP1 + S (Y T
1 A+ K̂1C − X

2
−Q1)

Σ̂12 = P1 −Q2 − Y T
1 + θ(ATY1 + CT K̂T

1 )

Σ̂17 = −K̂1C, Σ̂22 = −θS (Y1), Σ̂23 = θY T
1 DmVm

Σ̂24 = −θY T
1 DsVs, Σ̂26 = θY T

1 H, Σ̂27 = −θK̂1C

Σ̂33 = 2ηP2 + S (P2Wm + L̂mDmVm)

Σ̂44 = 2ηP3 + S (P3Ws + L̂sDsVs)

Θ̂11 = Σ̂11 + η2hP5 + ηhS (X), Θ̂12 = Σ̂12 + h
X

2
Θ̂17 = Σ̂17, Θ̂22 = Σ̂22 + hP4, Θ̂23 = Σ̂23, Θ̂24 = Σ̂24

Θ̂26 = Σ̂26, Θ̂27 = Σ̂27 + hCTPT
6 , Θ̂33 = Σ̂33

Θ̂44 = Σ̂44, Γ̂11 = 2ηP1 + S (Y T
1 A+ K̂2C) + αCTΛC

Γ̂12 = P1 − Y T
1 + θ(ATY1 + CT K̂2), Γ̂16 = −K̂2C

Γ̂22 = Σ̂22, Γ̂23 = Σ̂23, Γ̂24 = Σ̂24, Γ̂25 = Σ̂26

and other blocks unspecified are the same as Theorem 1.
Then, under the controller (14) with gains K1 = (Y T

1 )−1K̂1,
K2 = (Y T

1 )−1K̂2, disturbance observer gains Lm =
P−1
2 L̂m, Ls = P−1

3 L̂s, and trigger matrix Λ, the SS (15) is
exponentially stable when ω(t) = 0 and has the prescribed
H∞ disturbance-rejection performance.

Proof: Set Y2 = θY1, K̂1 = Y T
1 K1, K̂2 = Y T

1 K2,
L̂m = P2Lm, L̂s = P3Ls. Then, the inequalities (35)-(37)
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in Theorem 2 can be rewritten as the inequalities (17)-(19)
in Theorem 1, respectively. This completes the proof.

In Theorem 2, the controller gain is allowed to be switched
between K̂1 and K̂2. When K̂1 = K̂2 = K̂, the controller
simplifies to the following form:

u(t) = Dmd̂m(t)−Dsd̂s(t)−Kσe(tk) (38)

and the SS becomes

δ̇e(t) =(A+KC)δe(t) +HF(Dδe(t), δs(t))−B0ω(t)

+DmVmeξm(t)−DsVseξs(t)−KCek(t). (39)

Then, the following corollary can be obtained:

Corollary 1. For given constants α > 0, η > 0, h > 0,
γ > 0, and θ > 0, if there exist matrices P1 > 0, P2 > 0,
P3 > 0, P4 > 0, P5 > 0, P6 > 0, Λ ≥ 0, Y1, Q1, Q2, Q3,
X , X1, K̂, L̂m, L̂s, and diagonal matrix U > 0 such that
the following inequalities hold

Φ1
1 =

[
P1 + hS (X2 ) h(−X +X1)

∗ hS (−X1 +
X
2 )

]
> 0 (40)

Φ2
3 =

[
Σ̂(h) ν1
∗ Ω

]
< 0 (41)

Φ3
3 =

[
Θ̂(h) ν2
∗ Ω

]
< 0 (42)

Φ4
3 =

[
Γ̂(h) ν3
∗ Ω

]
< 0 (43)

where Σ̂(h) = [Σ̂i1j1 ], i1, j1 = 1, 2, . . . , 9, Θ̂(h) =
[Θ̂i2j2 ], i2, j2 = 1, 2, . . . , 7, Γ̂(h) = [Γ̂i3j3 ], i3, j3 =
1, 2, . . . , 6,

Σ̂11 = 2ηP1 + S (Y T
1 A+ K̂C − X

2
−Q1)

Σ̂12 = P1 −Q2 − Y T
1 + θ(ATY1 + CT K̂T )

Σ̂17 = −K̂C, Σ̂22 = −θS (Y1), Σ̂23 = θY T
1 DmVm

Σ̂24 = −θY T
1 DsVs, Σ̂26 = θY T

1 H, Σ̂27 = −θK̂C

Σ̂33 = 2ηP2 + S (P2Wm + L̂mDmVm)

Σ̂44 = 2ηP3 + S (P3Ws + L̂sDsVs)

Θ̂11 = Σ̂11 + η2hP5 + ηhS (X), Θ̂12 = Σ̂12 + h
X

2
Θ̂17 = Σ̂17, Θ̂22 = Σ̂22 + hP4, Θ̂23 = Σ̂23, Θ̂24 = Σ̂24

Θ̂26 = Σ̂26, Θ̂27 = Σ̂27 + hCTPT
6 , Θ̂33 = Σ̂33

Θ̂44 = Σ̂44, Γ̂11 = 2ηP1 + S (Y T
1 A+ K̂C) + αCTΛC

Γ̂12 = P1 − Y T
1 + θ(ATY1 + CT K̂), Γ̂16 = −K̂C

Γ̂22 = Σ̂22, Γ̂23 = Σ̂23, Γ̂24 = Σ̂24, Γ̂25 = Σ̂26

and other blocks unspecified are the same as Theorem 1,
then under the controller (38) with gain K = (Y T

1 )−1K̂,
disturbance observer gains Lm = P−1

2 L̂m, Ls = P−1
3 L̂s,

and trigger matrix Λ, the SS (39) is exponentially stable and
has the prescribed H∞ disturbance-rejection performance.

IV. NUMERICAL SIMULATION

The effectiveness of the proposed results is verified below
by using two Chua’s circuits with unknown disturbances. As

Fig. 1. The double-scroll attractor.

in [29], the master system and the slave system are described
by the following forms:

δ̇m1(t) = a[δm2(t)− h(δm1(t))] + dm1(t)

δ̇m2(t) = δm1(t)− δm2(t) + δm3(t) + dm2(t)

δ̇m3(t) = −bδm2(t) + dm2(t)

σm(t) = δm1(t)

(44)


δ̇s1(t)=a[δs2(t)−h(δs1(t))]+ds1(t)−4ω1(t)+u1(t)

δ̇s2(t)=δs1(t)−δs2(t)+δs3(t)+ds2(t)+3ω2(t)+u2(t)

δ̇s3(t)=−bδs2(t) + ds2(t) + 5ω3(t) + u3(t)

σs(t) = δs1(t)

(45)

where

h(δi1(t)) =m1δi1(t) +
1

2
(m0 −m1)

× (|δi1(t) + c| − |δi1(t)− c|), (i = m, s).

When a = 9, b = 14.28, m0 = − 1
7 , m1 = 2

7 , c = 1, then the
Chua’s circuits can be transformed into the following Lur’e
form by

A =

 −am1 a 0
1 −1 1
0 −b 0

 , H =

 −a(m0 −m1)
0
0


C = D =

[
1, 0, 0

]
, B0 =

[
−4, 3, 5

]T
, ω(t) =

1

1 + t2

dm(t) =

[
dm1(t)
dm2(t)

]
, ds(t) =

[
ds1(t)
ds2(t)

]
, u(t) =

u1(t)
u2(t)
u3(t)


and f(ϵ) = 1

2 (|ϵ+ c| − |ϵ− c|) belonging to sector [0, 1].
Set δm(0) = col{1, 0.5,−0.5}, δs(0) = col{−1, 0.1, 0.1}.

In the absence of disturbances and control input, the afore-
mentioned Chua’s circuits exhibit double-scroll attractors, as
shown in Fig. 1.

In what follows, we focus on verifying the exponential
stability of SS (15) under the controller (14), along with the
disturbance observers (7) and (8). The associated parameter
matrices are provided as follows:

Wm =

[
0 0.5

−0.5 0

]
, Ws =

[
0 0.4

−0.4 0

]
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Fig. 2. Master-slave systems synchronization error.
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Fig. 3. Exogenous disturbance estimation errors for dm(t).
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Fig. 4. Exogenous disturbance estimation errors for ds(t).

Z1 =

 1 0 0
0 1 0
0 0 1

 , Z2 =

 1 0
0 1
0 0


Dm = Ds =

 1 0
0 1
0 1

 , Vm = Vs = I
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Fig. 5. Reference output under different control methods.
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Fig. 6. The trajectory of H(t).

Take α = 0.1, η = 0.1, θ = 0.2, h = 0.05, and γ = 2.
Then, by solving the inequalities (34)-(37) in Theorem 2, the
desired gains and trigger matrix can be calculated as

K1 =

 −4.6801 −2.0132 0.7999
−1.0780 −1.8924 1.0885
0.7314 2.5876 −3.1280


K2 =

 −7.3932 −5.4091 3.2602
−0.9572 −2.6040 0.5909
3.4341 7.0774 −7.8341


Lm =

[
−0.6806 0.0011 −0.0000
−0.0953 −0.7685 0.0000

]
Ls =

[
−0.8647 3.1786 −2.6015
−0.5980 −0.8226 −0.0045

]

Λ =

 6.2986 2.1315 −0.3487
2.1315 7.1011 −2.2913
−0.3487 −2.2913 5.6271

 .

As illustrated in Fig. 2, it is apparent that the synchro-
nization error progressively converges to zero under the
influence of the composite controller, thereby indicating that
synchronization between the master and slave systems has
been successfully achieved.

Subsequently, we analyze the estimation errors of external
disturbances dm(t) and ds(t), respectively. As shown in Figs.
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TABLE I
hmax FOR VARIOUS η.

Methods
hmax (γ = 2)

η = 0 η = 0.1 η = 0.2 η = 0.3

Theorem 2 0.1019 0.0984 0.0951 0.0920

Corollary 1 0.0890 0.0852 0.0816 0.0783

TABLE II
γmin FOR VARIOUS η.

Methods
γmin (h = 0.05)

η = 0 η = 0.1 η = 0.2 η = 0.3

Theorem 2 0.6823 0.6925 0.7033 0.7148

Corollary 1 0.9031 0.9298 0.9586 0.9899

3 and 4, estimation errors eξm(t) and eξs(t) gradually tend to
zero, indicating that the estimated value of the disturbances
are infinitely close to the real disturbances.

The reference outputs under single H∞ control method
and composite control method are compared, as shown in
Fig. 5. It can be seen from the figure that the effect of using
composite control method in suppressing disturbances is
significantly better than that of a single H∞ control method.
Moreover, as in [30], we define

H(t) =

√√√√ ∫ t

0
zT (s)z(s) ds∫ t

0
ωT (s)ω(s) ds

to characterize the H∞ disturbance-rejection performance.
The curve of H(t) under zero initial condition is shown in
Fig. 6, it can be found that H(∞) = 0.0042 < γmin =
0.6925. In summary, the numerical simulation demonstrates
the effectiveness of the proposed event-triggered disturbance
observer-based design.

Finally, to illustrate the superiority of the controller (14)
with switched gain over the controller (38) with a fixed gain,
we compare the maximum allowable sampling interval hmax

and optimal H∞ disturbance-rejection performance γmin

based on Theorem 2 and Corollary 1. The results, presented
in Tables I and II, clearly indicate that, under the same
parameter conditions, the controller with switched gain not
only permits a larger sampling interval but also demonstrates
superior H∞ disturbance-rejection performance.

V. CONCLUSION

This paper investigated the issue of anti-disturbance syn-
chronization for LSs using a hierarchical composite control
mechanism (14). This mechanism integrated two control
approaches: DOBC and switched-gain ETC, ensuring the
H∞ exponential stability of the SS (15) in the presence
of multiple disturbances. A condition on the H∞ expo-
nential stability was established in Theorem 1 utilizing a
piecewise-defined and time-dependent Lyapunov function
and several inequalities. Based on the condition, a co-design
was proposed for the gains of the event-triggered controller
and disturbance observer in Theorem 2. For comparison,
the hierarchical composite control with a fixed gain was

also considered, and the corresponding design approach was
presented in Corollary 1. Finally, the effectiveness of the
proposed composite anti-disturbance synchronization control
mechanism was validated through an example involving
master-slave Chua’s circuits.
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synchronization of two-layered complex dynamical networks,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 63,
no. 11, pp. 2010–2021, 2016.
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