
 

  

Abstract—Environmental issues become a major concern in 

many studies in engineering field, especially optimization. 

Meanwhile, many optimization studies utilize metaheuristics 

due to their flexibility. On the other hand, there are abundant 

metaheuristics available to employ. Unfortunately, studies that 

introduce a new metaheuristic and use environmental issues in 

their case are hard to find. This paper introduces a new swarm-

based metaheuristic called time-shift optimizer (TSO). TSO 

employs a novel approach in constructing the reference based 

on the mixture of two agents: an exploration-oriented agent and 

exploitation-oriented agent. TSO is then challenged to handle 

both constrained and unconstrained problems. The set of 23 

traditional functions is taken as the unconstrained problem 

while economic emission dispatch (EED) problem is taken as the 

constrained problem. EED problem is taken as a multi-objective 

problem that considers both economic and environmental 

aspects. In these assessments, TSO is confronted with preschool 

education optimization algorithm (PEOA), addax optimization 

algorithm (AOA), dollmaker optimization algorithm (DOA), 

golden search optimization (GSO), and slime mold algorithm 

(SMA). The result shows the supremacy of TSO in handling high 

dimension functions and competitive in handling fixed 

dimension functions and EED problems. 

 

Index Terms—environment, optimization, power system, 

economic emission dispatch, metaheuristic, swarm intelligence. 

 

I. INTRODUCTION 

 ENVIRONMENTAL isssues become a major concern in 

many studies, especially in the engineering field. Among 

them, carbon emission receives significant attention, such as 

in studies reducing the dissolved carbon emission in 

submerged vegetaion covered river network [1], investigating 

the carbon emission of civil aviation [2], analysing carbon 

emission in hospital [3], reducing carbon emission in logistic 

supply chain [4], optimizing train plan [5], and so on. Some 

studies investigates the renewable energies, such as studies in 

solar thermal poer plants [6], wind-solar enenergy storage [7], 

micro hydro [8], and so on.  

Economic emission dispatch (EED) problem is one 

optimization problem in engineering, especially in power 

system that promotes the environmental issues equal with the 

 

 
 

economic issues. EED problem is a multi-objective problem 

whose objective is minimizing both fuel/operational cost and 

emission reduction cost [9]. EED is a derivative of economic 

load dispatch (ELD) problem which is a single objective 

problem where the objective is minimizing the operation or 

fuel cost only. Metaheuristics have been widely used in these 

studies, such as chaotic artificial hummingbird algorithm 

[10], simulated annealing [9], manta ray foraging 

optimization algorithm [11], artificial bee colony [12], 

chaotic driving training-based optimization [13], and so on. 

Unfortunately, studies in EED or ELD problems that also 

introduced new metaheuristics are hard to find.  

There are abundant metaheuristics already exist in the 

recent decades. Specifically, there are abundant 

metaheuristics were introduced in recent years. Many of these 

metaheuristics are metaphor-based metaheuristics which are 

inspired by the behavior of animals, such as addax 

optimization algorithm (AOA) [14], prairie dog optimization 

algorithm (PDOA) [15], crayfish optimization algorithm 

(COA) [16],  elk herd optimizer (EHO) [17], chameleon 

swarm algorithm (CSA) [18], apiary organizational based 

optimization algorithm (AOOA) [19], marine predator 

algorithm (MPA) [20], giant armadillo optimization (GAO) 

[21], and so on. Meanwhile, there are metaphor-based 

metaheuristics that imitates the social behavior, such as 

preschool education optimization algorithm (PEOA) [22], 

migration algorithm (MA) [23], language education 

optimization (LEO) [24],  driving training based optimization 

(DTBO) [25], chef based optimization algorithm (CBOA) 

[26],  election based optimization algorithm (EBOA) [27], 

dollmaker optimization algorithm (DOA) [28], mother 

optimization algorithm (MOA) [29], deep sleep optimizer 

(DSO) [30], modified social forces algorithm (MFSA) [31], 

and so on. Fortunately, there are also new metaheuristics that 

do not use metaphors and utilize their fundamental concept 

for their name, such as average subtraction-based 

optimization (ASBO) [32], subtraction-average based 

optimization (SABO) [33], total interaction algorithm (TIA) 

[34], average subtraction-based optimization (ASBO) [32], 

fully informed search algorithm (FISA) [35], golden search 

optimization (GSO) [36], group better-worse algorithm 

(GBWA) [37], and so on. 

Despites the massive development of new metaheuristics, 

environmental issues have not been considered yet. Many of 

these studies employed standard sets of functions to 

investigate the performance of the proposed metaheuristics, 
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such as 23 traditional functions, such as in TIA [34] or GSO 

[36]; or CEC series like in EHO [17]. Meanwhile, some 

studies employed standard mechanical design problems 

representing the constrained problems like in SABO [33], 

AOA [14], and so on. Once again, environmental issues are 

still not popular. 

This paper is aimed at constructing a new metaheuristic 

called time shift optimizer (TSO). As the name suggests, this 

metaheuristic introduces a new approach in constructing a 

reference for the directed search by shifting the exploration 

to exploitation as the iteration goes. TSO does not utilize any 

metaphor so that its novel approach can be easily 

acknowledged.   

This TSO is then assessed by employing it to handle both 

constrained and unconstrained problems. The set of 23 

traditional functions is taken representing the unconstrained 

problem as this set of functions has been widely used in 

various studies promoting new metaheuristics. The EED 

problem with the case is Java-Bali power grid in Indonesia to 

promote the environmental issues rather than economic issues 

only. 

Based on this previous explanation, below is the summary 

of novelties and scientific contributions of this paper. 

1) This paper introduces a new metaheuristic called as time 

shift optimizer (TSO) whose novelty is on constructing 

the reference based on the shifting from exploration-

oriented agent to exploitation-oriented agent during the 

iteration. 

2) The assessment of the performance of TSO is conducted 

by employing it to handle both constrained and 

unconstrained problems. The standard set of 23 

traditional functions exposes the unconstrained problem 

while two EED problems with multiple power demands 

represent the constrained problem. 

3) TSO is confronted with five brand new swarm-based 

metaheuristics, including PEOA, AOA, DOA, GSO, 

and SMA during the assessment. 

The organization of the rest of this paper is as follows. 

Section two exposes the model of the proposed TSO 

including the concept, pseudocode, and mathematical 

formulation. Section three provides the model of economic 

emission dispatch problem including the concept and 

mathematical formulation. Section four provides the 

assessment, including the scenario and result. Section five 

provides a comprehensive discussion regarding the result, 

finding, complexity, limitation, and baseline for future 

studies. Section six provides the summary of the conclusion 

and tracks for future studies. 

II. THE PROPOSED MODEL 

The time-shift optimizer (TSO) is constructed based on 

the concept of the transition of shifting in constructing a 

reference which is controlled by the iteration. This transition 

reflects the orientation change during the time. Rather than 

changing strategy in extreme way like in MPA, TSO employs 

smooth transition by changing the portion of components that 

construct the reference. In this context, this transition is 

performed in a deterministic manner. There are two guided 

searches that are employed during the iteration. There is a 

specific reference in every search. 

The reference is constructed based on the mixture of two 

agents. The first agent is the exploration-oriented agent while 

the second agent is the exploitation-oriented agent. The 

portion of the exploration-oriented agent decreases linearly 

during the iteration while the portion of the exploitation-

oriented agent increases linearly during the iteration. This 

concept reflects the linear shifting from exploration to 

exploitation during the iteration. This shifting is illustrated in 

Fig. 1.  

 

 
Fig. 1 Shifting portion of the agents that construct the reference during the 

iteration. 

 

In the first search, the reference is the mixture between a 

randomly picked higher quality member and the highest 

quality member. In this first search, the randomly picked 

higher quality member represents the exploration-oriented 

agent while the highest quality member represents the 

exploitation-oriented agent. This first search, the motion is 

toward the reference. 

In the second search, the reference is the mixture of a 

randomly picked member within the swarm and a randomly 

picked higher quality member. In this second search, the 

randomly picked member within swarm represents the 

exploration-oriented agent while the randomly picked higher 

quality member represents the exploitation-oriented agent.  

In this second search, the direction of the motion depends 

on the comparative quality of the reference related to the 

member. If the reference is better than the member then the 

member moves toward its reference. Otherwise, the member 

moves away from its reference.  

 
TABLE I 

 ANNOTATIONS FOR THE MODEL OF TSO 

Not. Description 

bl, bu lower and upper boundaries  

c1, c2 first and second candidates 

f objective function 

i, j indexes for swarm members and dimensions 

r1, r2 first and second references 

s swarm member 

S swarm 

shst highest quality member 

Shgr a set that consists of higher quality members  

ss1, ss2 the first and second randomly picked member 

t iteration 

tm maximum iteration 

u1 uniform random [0,1] 

u2 uniform random among a population 

 

The formal description of the model of TSO is provided 

in algorithm 1 while the formulation following the model is 
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provided using (1) to (7). The annotations used in this model 

and mathematical formulations are provided in Table 1. 

 

algorithm 1: time shift optimizer 

1 begin 

2  for all s  S 

3   initialize si 

4   update shst 

5  end for 

6  for t = 1 to tm 

7   for all s  S 

8    first motion of si 

9    update shst 

10    second motion of si 

11    update shst 

12   end for 

13  end for 

14  return shst 

15 end 

 

Below is the explanation of algorithm 1. As is common in 

metaheuristics, the algorithm is split into two stages. The first 

stage is initialization while the second stage is iteration. 

Initialization is employed to generate the initial value or 

position of each swarm member where in algorithm 1 is 

provided from line 2 to line 5. Iteration is employed to 

improve the quality of solution based on stochastic motions 

where in this algorithm is provided from line 6 to 13. Then 

the highest quality member becomes the final solution, and 

this value is returned to the main program. 

There are two processes performed in the initialization 

stage. The first process is generating the initial value of each 

swarm member which is uniformly distributed along the 

space as stated in (1). This process gives equal opportunity 

along the space as there is not any initial clue regarding the 

location of the global optimal solution. The second process is 

the updating of the highest quality member which is 

formalized using (2).  

 

𝑠𝑖,𝑗 = 𝑏𝑙,𝑗 + 𝑢1(𝑏𝑢,𝑗 − 𝑏𝑙,𝑗)            (1) 

 

𝑠ℎ𝑠𝑡
′ = {

𝑠𝑖 , 𝑓(𝑠𝑖) < 𝑓(𝑠ℎ𝑠𝑡)
𝑠ℎ𝑠𝑡 , 𝑒𝑙𝑠𝑒

             (2) 

 

As provided in algorithm 1, there are two motions 

performed by each swarm member during the iteration. Each 

motion will be followed by the updating of the highest quality 

member as provided in line 9 and line 11. This process is 

conducted as the highest quality member is used to construct 

the reference whether in the first and the second motions. 

The formalization of the first motion is provided using (3) 

to (7). Equation (3) formalizes the construction of a pool 

consisting of all higher quality members relative to the related 

member plus the highest quality member. Equation (4) 

formalizes the uniform random picking of a member within 

this pool. Equation (5) exposes the mixture of a randomly 

picked higher quality member and the highest quality 

member to create the first reference. Equation (6) formalizes 

the motion toward the first reference. Equation (7) formalizes 

the updating of the swarm member based on the first 

candidate. 

 

𝑆ℎ𝑔𝑟,𝑖 = {𝑠𝜖𝑆 ∧ 𝑓(𝑠) < 𝑓(𝑠𝑖)} ∪ 𝑠ℎ𝑠𝑡          (3) 

 

𝑠𝑠1,𝑖 = 𝑢2(𝑆ℎ𝑔𝑟,𝑖)                (4) 

 

𝑟1,𝑖,𝑗 = (1 −
𝑡

𝑡𝑚
) 𝑠𝑠1,𝑖,𝑗 +

𝑡

𝑡𝑚
𝑠ℎ𝑠𝑡,𝑗          (5) 

 

𝑐1,𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝑢1(𝑟1,𝑖,𝑗 − 2𝑠𝑖,𝑗)           (6) 

 

𝑠𝑖
′ = {

𝑐1,𝑖 , 𝑓(𝑐1,𝑖) < 𝑓(𝑠𝑖)

𝑠𝑖 , 𝑒𝑙𝑠𝑒
             (7) 

 

The formalization of the second motion is provided using 

(8) to (11). Equation (8) formalizes the randomly picking 

member within the swarm. Equation (9) formalizes the 

construction of second reference which is the mixture of the 

randomly picked higher quality member and a randomly 

picked member. Equation (10) formalizes the second motion 

with two possible directions. Equation (11) formalizes the 

updating process of the swarm member using the second 

candidate. 

 

𝑠𝑠2,𝑖 = 𝑢2(𝑆)                  (8) 

 

𝑟2,𝑖,𝑗 = (1 −
𝑡

𝑡𝑚
) 𝑠𝑠2,𝑖,𝑗 +

𝑡

𝑡𝑚
𝑠𝑠1,𝑖,𝑗          (9) 

 

𝑐2,𝑖,𝑗 = {
𝑠𝑖,𝑗 + 𝑢1(𝑟2,𝑖,𝑗 − 2𝑠𝑖,𝑗), 𝑓(𝑟2,𝑖) < 𝑓(𝑠𝑖)

𝑠𝑖,𝑗 + 𝑢1(𝑠𝑖,𝑗 − 2𝑟2,𝑖,𝑗), 𝑒𝑙𝑠𝑒
    (10) 

 

𝑠𝑖
′ = {

𝑐2,𝑖 , 𝑓(𝑐2,𝑖) < 𝑓(𝑠𝑖)

𝑠𝑖 , 𝑒𝑙𝑠𝑒
             (11) 

III. ECONOMIC EMISSION DISPATCH MODEL 

The general model of EED problem as an optimization 

problem can be split into three parts. The first part is the 

system. The second part is the objective function. The third 

part is the constraints which consists of the equality constraint 

and inequality constraint. The annotations used in this model 

are provided in Table 2. 

 
TABLE II 

 ANNOTATIONS FOR THE EED PROBLEM 

Not. Description 

g Generating unit 

G Set of generating units 

p power 

pmin, pmax minimum and maximum powers 

ptotal total power 

pdemand power demand 

we, wf emission cost weight and fuel cost weight 

ce, cf emission cost and fuel cost 

cetotal total emission cost 

cftotal total fuel cost 

ctotal total cost 

α, β, γ constants of cost function 

i generating unit index 
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The system of EED problem is a set of generating units. 

These generating units are connected to provide power. This 

system is formalized using (12).  

 

𝐺 = {𝑔1, 𝑔2, 𝑔3, … , 𝑔𝑛}              (12) 

 

As is common in every system, there are constraints that 

limit the operation of the system. In EED, these constraints 

are split into the equality constraint and inequality constraint. 

The equality constraint of EED is that the total power 

provided by the system should meet the power demand as 

stated in (13) [38]. Meanwhile, the total power of the system 

is obtained by accumulating the power provided by every 

generating unit in the system as formalized in (14). Then, 

each generating unit can provide power within its range 

which may be different among generating units as stated in 

(15). This constraint represents the inequality constraint. In 

its basic form, the power loss and the ramp rate are not 

considered. 

 

𝑝𝑡𝑜𝑡𝑎𝑙 = 𝑝𝑑𝑒𝑚𝑎𝑛𝑑                 (13) 

 

𝑝𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑝𝑖
𝑛
𝑖=1                  (14) 

 

𝑝𝑚𝑖𝑛,𝑖 ≤ 𝑝𝑖 ≤ 𝑝𝑚𝑎𝑥,𝑖               (15) 

 

EED problem is a multi-objective problem. Its objective 

is minimizing the total cost which is formulated using (16). 

This total cost is constructed by adding the weighted total 

emission cost and weighted total fuel cost as formulated in 

(17) [9]. The total emission cost is obtained by accumulating 

the emission cost of all generating units as stated in (18) while 

the total fuel cost is obtained by accumulating the fuel cost of 

all generating units as stated in (19). The emission cost 

function and fuel cost of each generating unit is provided in 

quadratic equation as provided in (20) for the emission cost 

function and in (21) for the fuel cost function. 

 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:min⁡(𝑐𝑡𝑜𝑡𝑎𝑙)              (16) 

 

𝑐𝑡𝑜𝑡𝑎𝑙 = 𝑤𝑒𝑐𝑒𝑡𝑜𝑡𝑎𝑙 + 𝑤𝑓𝑐𝑓𝑡𝑜𝑡𝑎𝑙           (17) 

 

𝑐𝑒𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑐𝑒,𝑖
𝑛
𝑖=1                 (18) 

 

𝑐𝑓𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑐𝑓,𝑖
𝑛
𝑖=1                 (19) 

 

𝑐𝑒,𝑖 = 𝛼𝑒,𝑖 + 𝛽𝑒,𝑖𝑝𝑖 + 𝛾𝑒,𝑖𝑝𝑖
2            (20) 

 

𝑐𝑓,𝑖 = 𝛼𝑓,𝑖 + 𝛽𝑓,𝑖𝑝𝑖 + 𝛾𝑓,𝑖𝑝𝑖
2            (21) 

IV. ASSESSMENT AND RESULT 

This section exposes the assessment of TSO to investigate 

the performance of TSO in handling optimization problems 

and the result. There are two assessments in this work. The 

first assessment is conducted to investigate the performance 

of TSO in handling standard unconstrained problems. The 23 

traditional functions are taken as the standard unconstrained 

problem. The second assessment is conducted to investigate 

the performance of TSO in handling the practical constrained 

problem. The EED problem with the case of Java-Bali power 

grid system is taken as the constrained practical problem. 

The 23 traditional functions are taken based on several 

reasons. First, these functions have been employed as 

standard functions in abundant studies introducing new 

metaheuristics, such as TIA [34], AOA [14], DOA [28], SMA 

[39], and so on. Second, these functions cover various 

considerations and scope as they can be split into seven high 

dimension unimodal functions (HDUs), six high dimension 

multimodal functions (HDMs), and ten fixed dimension 

multimodal functions (FDMs). The unimodal functions have 

only one optimal solution that represents the global optimal 

solution while the multimodal functions have multiple 

optimal solutions where only one of these optimal solutions 

is the global optimal one. The detailed specification of these 

23 functions is provided in Table 3. 

 
TABLE III 

 SPECIFICATION OF 23 TRADITIONAL FUNCTIONS 

No Function Dim Space Target 

1 Sphere 20 [-100, 100] 0 

2 Schwefel 2.22 20 [-100, 100] 0 

3 Schwefel 1.2 20 [-100, 100] 0 

4 Schwefel 2.21 20 [-100, 100] 0 

5 Rosenbrock 20 [-30, 30] 0 

6 Step 20 [-100, 100] 0 

7 Quartic 20 [-1.28, 1.28] 0 

8 Schwefel 20 [-500, 500] -418.9 x dim 

9 Ratsrigin 20 [-5.12, 5.12] 0 

10 Ackley 20 [-32, 32] 0 

11 Griewank 20 [-600, 600] 0 

12 Penalized 20 [-50, 50] 0 

13 Penalized 2 20 [-50, 50] 0 

14 Shekel Foxholes 2 [-65, 65] 1 

15 Kowalik 4 [-5, 5] 0.0003 

16 Six Hump Camel 2 [-5, 5] -1.0316 

17 Branin 2 [-5, 5] 0.398 

18 Goldstein-Price 2 [-2, 2] 3 

19 Hartman 3 3 [1, 3] -3.86 

20 Hartman 6 6 [0, 1] -3.32 

21 Shekel 5 4 [0, 10] -10.1532 

22 Shekel 7 4 [0, 10] -10.4028 

23 Shekel 10 4 [0, 10] -10.5363 

 

In both assessments, the TSO is confronted with five new 

metaheuristics as its benchmarks. These confronters include 

PEOA, AOA, DOA, GSO, and SMA. In both assessments, 

the population is set to 5 while the maximum iteration is set 

to 10. The decimal point which is less than 10-4 is rounded 

down to 0. 

The result of the first assessment is provided in Table 4 to 

Table 7. Table 4 exhibits the result in handling HDUs. Table 

5 exhibits the result in handling HDMs. Table 6 exhibits the 

result in handling FDMs. Table 7 summarizes the supremacy 

of TSO relative to its confronters. 

The result in Table 4 shows the supremacy of TSO in 

handling the HDUs. TSO becomes the first best in all seven 

HDUs. Meanwhile, there are also three other metaheuristics 

that become the first best too which are PEOA, DOA, and 

SMA. Table 4 also exposes the wide performance disparity 

between the best optimizer and the worst optimizer in 

handling HDUs. As these HDUs are designed to assess the 

exploitation capability [32], it can be said that TSO has 

superior exploitation capability compared to its confronters. 
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TABLE IV 

ASSESSMENT RESULT IN HANDLING HDUS 

Function Parameters PEOA AOA DOA GSO SMA TSO 

1 mean 1.7319x101 7.4623x101 8.0586x101 1.5645x104 3.4243x103 0.0000 

 rank 2 3 4 6 5 1 
2 mean 0.0000 0.0122 0.0000 6.1015x1025 0.0000 0.0000 

 rank 1 5 1 6 1 1 

3 mean 1.1791x103 5.3763x103 3.0222x103 3.1239x104 1.5877x104 0.2288 
 rank 2 4 3 6 5 1 

4 mean 6.7436 8.1926 9.2871 5.4014x101 2.0272x101 0.0061 

 rank 2 3 4 6 5 1 
5 mean 4.7325x102 3.5715x103 7.6046x103 2.5322x107 4.6695x106 1.8941x101 

 rank 2 3 4 6 5 1 

6 mean 2.1384x101 8.2437x101 9.7779x101 1.4492x104 1.8463x103 3.8324 
 rank 2 4 3 6 5 1 

7 mean 0.0904 0.1027 0.1004 8.4436 5.8436x101 0.0216 

 rank 2 4 3 5 6 1 

 

TABLE V 

ASSESSMENT RESULT IN HANDLING HDMS 

Function Parameters PEOA AOA DOA GSO SMA TSO 

8 mean -2.1482x103 -2.1017x103 -2.1036x103 -1.4324x103 -2.9449x103 -1.6156x103 

 rank 2 4 3 6 1 5 
9 mean 3.2251x101 1.0470x102 7.4954x101 1.8053x102 1.6813x101 0.0018 

 rank 3 5 4 6 2 1 

10 mean 1.9070 5.8460 4.5865 1.8074x101 7.4494 0.0016 
 rank 2 4 3 6 5 1 

11 mean 1.0359 1.8016 1.9568 1.4558x102 1.4621x101 0.0274 

 rank 2 3 4 6 5 1 
12 mean 1.6634 3.5461 3.4334 2.4417x107 6.0377x106 1.0490 

 rank 2 4 3 6 5 1 

13 mean 6.0108 4.6176x101 1.2267x101 6.8181x107 8.8517x106 3.1373 
 rank 2 4 3 5 6 1 

 

TABLE VI 

ASSESSMENT RESULT IN HANDLING FDMS 

Function Parameters PEOA AOA DOA GSO SMA TSO 

14 mean 1.0398x101 1.0826x101 1.1195x101 2.3833x101 1.1924x101 1.1353x101 
 rank 2 1 3 6 5 4 

15 mean 0.0110 0.0218 0.0226 0.0547 0.1448 0.0160 

 rank 1 3 4 5 6 2 
16 mean -0.9780 -0.9741 -1.0004 -0.6690 1.0076 -0.9243 

 rank 2 3 1 5 6 4 

17 mean 2.1360 0.5108 0.4903 4.8609 3.4889 3.7604 
 rank 3 2 1 6 4 5 

18 mean 2.4773x101 1.9708x101 1.0256x101 2.1268x101 9.0660x101 2.2561x101 

 rank 5 2 1 3 6 4 
19 mean -0.0495 -0.0495 -0.0495 -0.0044 -0.0495 -0.0495 

 rank 1 1 1 6 1 1 
20 mean -2.5706 -2.7758 -2.9484 -2.1748 -0.5896 -1.5168 

 rank 3 2 1 4 6 5 

21 mean -2.6305 -2.3994 -2.1242 -1.5660 -1.3453 -1.1093 
 rank 1 2 3 4 5 6 

22 mean -3.0701 -1.8439 -1.9839 -2.1151 -1.8623 -1.3998 

 rank 1 5 3 2 4 6 
23 mean -2.3108 -2.4478 -2.3388 -1.8349 -1.4991 -1.7481 

 rank 3 1 2 4 6 5 

 

Table 5 also exhibits the supremacy of TSO in handling 

HDMs. TSO becomes the first best in handling five HDMs 

(f9 to f13). Meanwhile, TSO becomes the fifth best in handling 

f8 and it is better only than GSO. Fortunately, the performance 

disparity among metaheuristics in f8 is narrow. It means that 

TSO is still competitive in this function. Meanwhile, the 

performance disparity between TSO as the best optimizer and 

the worst optimizer in five other HDMs is wide. This result 

indicates the supreme exploration capability of TSO as the 

high dimension multimodal functions are designed to 

investigate the exploration capability [32]. 

Result in Table 6 indicates that TSO is competitive in 

handling the FDMs. TSO becomes the first best only in one 

function (f19), second best in one function (f15), fourth best in 

three functions (f14, f16, and f18), fifth best in three functions 

(f17, f20 and f23), and sixth best in two functions (f21 and f22). 

Fortunately, the performance disparity among metaheuristics 

in almost all FDMs is narrow except in f15. This result 

indicates the competitive performance of TSO in balancing 

its exploration and exploitation capabilities as FDMs are 

designed to investigate this capability [32]. 
 

TABLE VII 

Supremacy Summary of TSO 
Cluster PEOA AOA DOA GSO SMA 

1 6 7 6 7 6 

2 5 5 5 6 5 

3 1 1 1 5 6 
Total 12 13 12 18 19 

 

Summary in Table 7 exhibits the dominance of TSO in 

high dimension functions, whether they are unimodal 

functions or multimodal ones. Meanwhile, TSO is not 
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superior in handling FDMs except compared to SMA. In 

general, TSO is superior to PEOA, AOA, DOA, GSO, and 

SMA in 12, 13, 12, 18, and 19 functions respectively. 

The second assessment is performed by employing TSO 

and its five confronters to solve the EED problem. There are 

two cases taken in this second assessment. The Java-Bali 

power grid was taken as the first case. Java-Bali power grid 

and connectivity is the largest power grid in Indonesia as it 

serves the most populous and industrialized area in Indonesia. 

This circumstance makes this power grid critical to this 

country. The six-unit system is taken as the second case. 

The Java-Bali power system consists of eight power 

plants. Six of them are thermal power plants so that it 

provides emission while the two others are hydro power 

plants which are more eco-friendly [9]. The specification of 

these power plants is provided in Table 8 to Table 10 [40]. 

Table 8 exposes the power range. Table 9 provides the data 

related to the constants of the fuel cost. Table 10 provides the 

data related to the emission cost. 

In this first case of the second assessment, there are three 

power demands: 7,000 MW; 11,000 MW; and 15,000 MW. 

This demand exposes the demand which is near the minimum 

total power, middle total power demand, and maximum 

power demand. The result is provided in Tables 11 to 13. 

 
TABLE VIII 

Power Range of 8-Unit System 
g pmin (MW) pmax (MW) 

1 1,610 4,200 

2 934 2,308 

3 404 1,008 
4 208 700 

5 848 2,400 

6 1,080 4,714 
7 360 900 

8 305 1,610 

 
TABLE IX 

Fuel Cost Related Constants of 8-Unit System 
g αf,i βf,i γf,i 

1 57,543,208.0 3,332,794.0 -400.0 

2 519,353,767.1 3,047,098.0 691.0 

3 0.0 400.0 0.0 
4 0.0 660.0 0.0 

5 133,177,025.6 2,828,349.0 -80.0 

6 180,205,527.9 2,104,640.0 218.0 

7 140,621,312.5 2,545,832.0 203.0 

8 112,522,922.1 5,877,235.0 -73.0 

 
TABLE X 

Emission Cost Related Constants of 8-Unit System 
g αe,i βe,i γe,i 

1 34,251,909.8 1,983,806.2 -236.7 
2 72,202,664.7 423.6 96.2 

3 0.0 0.0 0.0 

4 0.0 0.0 0.0 
5 93,654,729.7 1,988,993.9 -56.9 

6 123,428,443.8 1,441,534.9 149.5 

7 140,621,312.5 2,545,832.5 62.1 
8 24,146,549.8 1,261,209.3 -15.8 

 

TABLE XI 

Assessment Result with 7,000 MW Power Demand 
No Optimizer Total Cost (rupiah/hour) 

1 PEOA 12,800,620,703 
2 AOA 13,074,232,813 

3 DOA 12,986,151,634 

4 GSO 13,787,688,076 
5 SMA 13,064,359,854 

6 TSO 13,576,341,541 

TABLE XII 

Assessment Result with 11,000 MW Power Demand 
No Optimizer Total Cost (rupiah/hour) 

1 PEOA 18,319,300,447 
2 AOA 18,252,351,240 

3 DOA 18,178,744,481 

4 GSO 20,217,077,846 
5 SMA 18,527,378,607 

6 TSO 19,551,756,536 

 
TABLE XIII 

Assessment Result with 13,000 MW Power Demand 
No Optimizer Total Cost (rupiah/hour) 

1 PEOA 28,728,138,239 
2 AOA 28,822,632,124 

3 DOA 28,721,085,465 

4 GSO 29,285,572,248 
5 SMA 28,745,702,931 

6 TSO 29,144,245,323 

 

The 6-unit system consists of six generating units. The 

detailed specification is provided in Table 14 to Table 16 

[41]. There are three power demands: 500 MW, 800 MW, and 

1100 MW. The result is provided in Table 17 to Table 19. 

 
TABLE XIV 

Power Range of 6-Unit System 
g pmin (MW) pmax (MW) 

1 10 125 

2 10 150 
3 35 210 

4 35 225 

5 125 325 
6 130 325 

 
TABLE XV 

Fuel Cost Related Constants of 6-Unit System 
g αf,i βf,i γf,i 

1 756.7988 38.5390 0.1524 
2 451.3251 46.1591 0.1058 

3 1243.5311 38.3055 0.0354 

4 1049.9977 40.3965 0.0280 
5 1356.6592 38.2704 0.0179 

6 1658.5696 36.3278 0.0211 

 
TABLE XVI 

Emission Cost Related Constants of 6-Unit System 
g αe,i βe,i γe,i 

1 13.8593 0.3276 0.0041 

2 13.8593 0.3276 0.0041 

3 40.2669 -0.5455 0.0006 
4 40.2669 -0.5455 0.0006 

5 42.8955 -0.5111 0.0046 

6 42.8955 -0.5111 0.0046 
 

TABLE XVII 

Assessment Result with 500 MW Power Demand 
No Optimizer Total Cost (USD/hour) 

1 PEOA 13,626 

2 AOA 13,608 
3 DOA 13,607 

4 GSO 13,621 

5 SMA 13,613 
6 TSO 13,658 

 

TABLE XVIII 

Assessment Result with 800 MW Power Demand 
No Optimizer Total Cost (USD/hour) 

1 PEOA 20,583 
2 AOA 20,549 

3 DOA 20,557 

4 GSO 20,608 
5 SMA 20,557 

6 TSO 20,728 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 10, October 2024, Pages 1989-1997

 
______________________________________________________________________________________ 



 

TABLE XIX 

Assessment Result with 1,100 MW Power Demand 
No Optimizer Total Cost (USD/hour) 

1 PEOA 28,121 
2 AOA 28,065 

3 DOA 28,061 

4 GSO 28,368 
5 SMA 28,904 

6 TSO 28,503 

 

The result indicates that competition among 

metaheuristics in handling the EED problem is fierce. This 

circumstance occurs in both cases. The ratio between the 

ranges compared to the average total cost is very narrow. In 

the first case, TSO becomes the fifth best in all three scenarios 

while GSO becomes the worst. In the second case, TSO 

becomes the worst optimizer while the best optimizer while 

DOA becomes the best optimizer in 500 MW and 1,100 MW 

power demand while AOA becomes the best optimizer in 800 

MW power demand. 

V. DISCUSSION 

Overall, the assessment result shows that the performance 

of TSO is acceptable. TSO has superior exploration and 

exploitation capabilities as it can manage the high dimension 

functions compared to its confronters. In these functions, 

TSO is better than PEOA [22], AOA [14], and DOA [28] that 

are enriched with the neighborhood search. TSO is also better 

than GSO [36] and SMA [39] that do not employ stringent 

acceptance role. This superior performance also proves that 

the concept of TSO in mixing the exploration-oriented agent 

and exploitation-oriented agent is proven to work. 

The performance disparity among cases also exposes and 

strengthens the no-free-lunch (NFL) theory. As it is known, 

the performance of any optimization technique highly 

depends on the problem it tries to handle and not just based 

on its nature. It makes a technique can be superior in handling 

some problems and poor or mediocre in other problems [21]. 

The assessment result exhibits the supremacy of TSO in 

handling the high dimension functions whether they are the 

unimodal or multimodal ones. Meanwhile, TSO is still 

competitive but not superior in handling the fixed dimension 

multimodal functions and EED problem. The assessment 

result also exposes the wide performance disparity between 

the best and worst optimizers in all high dimension unimodal 

functions and most of high dimension multimodal functions. 

Meanwhile, this performance disparity is narrow in most of 

fixed dimension multimodal functions. This performance 

disparity becomes narrower in all three scenarios in EED 

problem.  

The computational complexity of TSO is highly related to 

the number of loops it employs. During the initialization, the 

complexity can be formulated as O(n(S).d). Meanwhile, the 

complexity during the iteration can be formulated as 

O(tm.n(S)2.d). 

Despite its effectiveness through shifting exploration to 

exploitation as iteration goes, there are a lot of other 

techniques that can be explored. This circumstance can be 

seen as a limitation and potential for future studies. This 

circumstance can be seen as limitation because this single 

metaheuristic can accommodate only single shifting strategy. 

On the other hand, this circumstance can be seen as potential 

because it makes opportunity to employ other shifting 

strategies for future new metaheuristics. TSO employs a 

linear shifting strategy. On the other hand, there are another 

trend, such as quadratic, exponential, logarithmic, or 

sinusoidal. On the other hand, the shifting can be employed 

by accommodating the acceptance strategy where in the 

beginning, the metaheuristic is flexible enough to 

accommodate worse solution candidate while in the later 

iteration, the worse solution candidate is much harder to be 

tolerated. 

Another mechanism in shifting exploration to exploitation 

can be conducted by reducing the solution space. This 

reduction can be achieved in many ways. The most common 

method is reducing the area for local or neighborhood search. 

Meanwhile, some other options can be taken, such as marking 

certain regions where they have been visited but fail to 

provide improvement, focusing on more specific regions, and 

so on. 

There are abundant optimization problems that can be 

employed as cases for investigation. In the power system, the 

problems include economic load dispatch problem, unit 

commitment problem, flower flow problem, and so on. Some 

other parameters can also be included such as ramp rate, 

power loss, and so on. Moreover, future studies can be 

performed through investigating more new use cases, 

especially the local ones rather than common or classic use 

cases. 

There are also abundant optimization problems in the 

supply chain from production, warehousing, to shipping. All 

these problems can be numerical or combinatorial. In the 

production system, optimization spans from allocation 

problem, which is allocating certain number of tasks or jobs 

into certain number of limited resources, which are machines, 

people, and so on; vendor or supplier selection, raw materials 

purchasing problem, and so on. In transportation sector, there 

are several new practical optimization problems, such as 

passenger and freight co-transportation problem [42], vehicle 

scheduling for refined oil product [43], collaborative system 

between urban rail passenger and freight [44], and so on. 

Moreover, the future studies can also be conducted by 

confronting TSO with a lot of new metaheuristics. These new 

metaheuristics can be the branded new ones or the modified 

versions of older metaheuristics. This assessment is important 

to investigate the superiority or competitiveness of TSO 

compared with new metaheuristics. 

VI. CONCLUSION 

This paper has provided the construction of new a novel 

metaheuristic called time-shift optimizer (TSO). This 

presentation includes the fundamental concept, 

formalization, and the assessment to investigate its 

performance. Through the assessment, it is proven the 

supremacy of TSO compared to its confronters in handling 

the standard unconstrained problem where the set of 23 

traditional functions is taken as the case. In this assessment, 

TSO is superior to PEOA, AOA, DOA, GSO, and SMA in 

12, 13, 12, 18, and 19 functions out of 23 functions. Its 

supremacy comes mainly from the high dimension functions 

from where it proves the supreme exploration and 

exploitation capabilities of TSO. The assessment result also 

proves the competitiveness of TSO in handling the 
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constrained multi-objective problem where EED problem is 

taken, and the use-case is the Java-Bali power grid system.  

In the future, more assessments in handling various 

constrained practical problems are needed. These problems 

can be numerical problems or combinatorial problems. 

Moreover, the basic form of TSO is still open for 

improvement or hybridization. 
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