
 

  
Abstract—This study explores population growth prediction 

as an important element in planning and managing regional 
development, which is always governments’ concern. Stability 
and prediction of population growth play an important role in 
decision-making related to infrastructure, education, health, 
and the economy. In this study, the logistic equation is used as a 
general model to describe the dynamics of population growth 
by taking into account factors such as intrinsic growth rate, 
environmental capacity, and initial population. The modeling 
and prediction process is solved using numerical methods, 
including the fourth-order Runge-Kutta (RK4) method and the 
fourth-order Adam-Bashfort-Moulton (ABM4) method. The 
RK4 method is a simple but accurate method that is used to 
obtain solutions to differential equations at several points in 
time, whereas the ABM4 method obtains solutions through a 
pairing of predictor-corrector methods that offer stability and 
a low truncation error. We apply both methods to solve the 
logistical model of predicting population growth in South 
Sulawesi, Indonesia. The results show that the predictions 
obtained using the RK4 method are more closely aligned with 
the actual data compared to the ABM4 method. This is 
demonstrated by the lower errors resulting from the RK4 
method than those resulting from the ABM4 method. In 
addition, rounding the results obtained from the calculation of 
the growth rate (k) and the specification of the population 
carrying capacity (K) is also found to have a significant impact 
on the accuracy of the prediction results using the logistic 
model. In this case, specifying k=0.014991 and K=30,000,000 
led to the best result in this study. 
 

Index Terms: Runge-Kutta method, Adams-Bashforth-
Moulton method, logistical equation, population growth 
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I. INTRODUCTION 
OPULATION growth is an essential element in the 
planning and management of an area’s development. The 

stability and forecasting of population growth play an 
important role in decision-making regarding infrastructure, 
education, health, and the economy of a particular area [1]. 
Therefore, the process of modeling and predicting population 
growth is an indispensable part of regional development 
planning [2]. Population growth is a continuous process and 
falls into the exponential and logistical categories.  

The logistic equation is a general model used in population 
growth modeling, formulated as a nonlinear differential 
equation that describes the dynamics of population growth 
[3]. The logistic growth model has a solid application base 
and significant practical impact [4]. This equation provides 
an overview of the evolution of population growth over time, 
taking into account factors such as the intrinsic growth rate, 
environmental capacity, and the initial value of the 
population [5], [6]. 
 Numerical methods are the main tool in the prediction of 
population growth models [7]. Typically, numerical 
integration for a rigid system of n ordinary differential 
equations is carried out using implicit numerical methods [8]. 
Numerical methods can help integrate differential equations 
to produce estimates of population growth at various points 
in time. Two such numerical methods that are often used 
include the fourth-order Runge-Kutta (RK4) method and the 
fourth-order Adam-Bashfort-Moulton (ABM4) method. 
 RK4 is a simple numerical approximation, but it provides a 
high degree of accuracy [9], [10]. This method is used to 
calculate the approximate solution of an ordinary differential 
equation (ODE) at certain points in time in an interval [11]. 
With its combination of precise results and calculation 
efficiency, the RK4 method is often aptly used in a variety of 
scientific and engineering applications that involve modeling 
and the simulation of dynamic systems using differential 
equations [12]. Some studies have used both the RK4 [13] 
and the ABM4 [14] methods as numerical methods for 
solving differential problems. 
 The ABM4 is a numerical approximation used to solve 
ordinary differential equations or systems of differential 
equations. The ABM4 belongs to the category of the multi-
step methods or what is often referred to as the predictor-
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corrector method [15]. This approach entails the use of the 
Adams-Bashforth prediction method as an initial predictor 
step, followed by the Adams-Moulton correction method 
[16]. Using the ABM predictor-corrector method to solve 
first-order ordinary differential equations numerically 
provides stable results. 
 Several researchers have conducted studies related to this 
issue, such as [17]. This is a study that uses exponential 
growth models and logistic models, along with generalized 
logistic models, to forecast Turkey’s population, 
international investment, and national income per capita in 
2025. In addition, it reviews trends in home sales and the 
number of mobile phone subscribers in Turkey. Furthermore, 
[18] predicts China’s population growth for 2016 and 
beyond using actual data from 1985 to 2015 by employing a 
logistic model approach. In [19], population growth in 
Bangladesh is modeled and designed to predict the 
population in Bangladesh from 2000 to 2050 using 
exponential growth models, logistic growth models, and 
actual data from 2000 to 2019. 
 Moreover, several other studies have been conducted, 
such as [20], which is a study that uses hybrid numerical 
methods for exponential growth models. In [21], complex 
dynamics in predictor-corrector systems are discussed in 
terms of Watt-type functional responses and impulsive 
control strategies. However, based on these studies, no 
research has been conducted on the application of both the 
RK4 and ABM4 methods to predict population growth in 
South Sulawesi using logistic equations. Therefore, based on 
the advantages of the two methods and some of the research 
that has been discussed, this study was conducted. 
 This study analyzes the efficacy of the RK4 and ABM4 
methods in predicting population growth using logistic 
equations, as well as the impact of parameter variations. The 
results from the application of these two methods are 
expected to provide valuable insights that can be used to 
support development planning and management in South 
Sulawesi. 
 

II. MATERIALS AND METHODS 
This subsection details the population data for the 

province of South Sulawesi, in addition to explaining the 
population growth rate, population carrying capacity, logistic 
equations, and the RK4 and ABM4 methods. 

 

A.  Population Data 
Population is the total number of individuals living in a 

region or country at a certain time, both on a local, national, 
and global scale. These populations consist of diverse age 
groups, ethnic backgrounds, religions, and social statuses, as 
well as diverse social and economic dynamics. Population is 
one of the important aspects of population studies, as it 
influences a country’s governmental policies, economy, and 
infrastructure. Therefore, predicting population growth is 
essential for ascertaining an in-depth understanding of 
population change and its associated challenges, including 
sustainable development planning and resource equity. The 

population data of South Sulawesi is delineated in Table I. 
 

B.  Population Growth Rate 
Population growth rate is a measure that describes how 

quickly or slowly a population in a region or group grows 
over a period of time. To predict the rate of population 
growth, we can use the following basic formula: 

 

0

1 ln Pk
t P

 
=  

 
 

 
where k is the rate of population growth; t is the period of 
time taken for the measurement of growth rate in years, 
months, or other time periods (which is dependent on the 
available data); P0 is the number of initial inhabitants at the 
beginning of the period under study; and P is the number of 
inhabitants at a specified time. 
 A positive k value indicates population growth, while a 
negative k value denotes population decline. The estimation of 
population growth rate is based on a comparison of population 
numbers at two different times. The growth rate used in this 
study is as follows: 
 

1 8,156,129ln 0.014991 0.01
1 8,034,776

k  = ≈ ≈ 
 

 

 

C.  The Population Capacity of South Sulawesi 
Population capacity in the context of population growth is 

the maximum number of individuals that can be 
accommodated in an area or environment in a given period 
of time without experiencing environmental deterioration or 
lack of resources. In some cases, trial and error can be used 
to estimate parameter values, including the capacity 
parameter of the population K. 

The capacity of the population in this study was determined using 
trial and error that was based on assumption. The assumed value of 
the population capacity is typically determined to be greater than the 
population in the latest data available. Based on the data obtained in 
this study, the following assumptions are made: the population 
capacity values are K1 = 20,000,000 and K2 = 30,000,000; the 

TABLE I 
POPULATION OF SOUTH SULAWESI PROVINCE 

Year Population 

2010 8,034,776 
2011 8,156,129 
2012 8,250,018 
2013 8,342,047 

2014 8,432,163 
2015 8,512,608 
2016 8,598,604 
2017 8,674,372 
2018 8,748,052 
2019 8,819,549 
2020 9,073,509 
2021 9,139,531 
2022 9,225,747 
2023 9,312,019 
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growth rates are k1 = 0.01 and k2 = 0.014991; the initial population 
number is P0 = 8,034,776; with the interval being [0,13], the step 
numbers being n = 13, and the step length being h = (b-a)/n=1. 
 

D.  Logistics Equation 
Population growth refers to changes in the population of a 

region over a certain period of time. This process is 
influenced by three main factors: birth, death, and migration. 
Population growth can be modeled using a variety of 
mathematical methods, one of which is a logistic equation. 

A logistic equation is a mathematical model used to 
describe population or population growth by accounting for 
the carrying capacity constraints of the population. The 
model was first introduced by Pierre-François Verhulst in 
1838, and it is often used in the context of population 
biology and ecology. The logistic equation assumes that 
factors such as birth and death rates remain constant over the 
measurement period. The logistic equation is generally 
expressed as follows [22]: 

 

1dp PkP
dt K

 = − 
               (1) 

 
where P is the number of population at a given time t, k is the 
growth rate, K is the capacity of the population, and P0 is the initial 
population at the beginning of the period under study t0. By 
substituting the values of k and K herein, the logistical equation for 
this research is as follows: 
 

1 , 1, 2.
20,000,000i

dp Pk P i
dt

 = − = 
 

      (2) 

1 , 1, 2.
30,000,000i

dp Pk P i
dt

 = − = 
 

     (3) 

 
 

E.  The RK4 Method 
The RK4 method is one of the most popular numerical 

methods for solving ODE. It strikes a good balance between 
computational accuracy and efficiency, making it a common 
choice in numerical simulations. Its advantage lies in its 
ability to achieve a fourth-order method without having to 
involve high derivatives. This method is a valuable tool in the 
modeling and simulation of various dynamical systems that 
involve differential equations. The general equation for the 
RK4 method is as described in the following equation (4) 
[23]: 

 

 1 1 2 3 4
1 ( 2 2 )
6r ry y k k k k+ = + + + +      (4) 

where 
 

1

2 1

3 2

4 3
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2 2
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r r

r r

r r
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= + +

= + +

= + +

 

F.  The ABM4 Method 
The ABM4 method is a numerical approximation employed 

to solve ODE. This method is a combination of the Adams-
Bashforth method, which is used as a predictor, and the 
Adams-Moulton method, which is used as a corrector. 

The ABM4 method is one that can be implemented to 
improve the accuracy and stability of solutions, making it a 
common choice in the simulation of population dynamics and 
its related mathematical problems. In this study, the ABM4 
method uses numerical solutions obtained from the RK4 
method as initial values [24]. The formula of the ABM4 
method that is used as the predictor is as follows: 

 

( )1 1 2 355 59 37 9
24

p
n n n n n n

hy y f f f f+ − − −= + − + −  

 
The predictor value is then corrected using the corrector AM 
method of fourth-order as follows: 
 

( )1 1 1 29 19 5
24

c
n n n n n n

hy y f f f f+ + − −= + + − +  

 
Therefore this combination is called the predictor-corrector 
ABM4. 
 

III. RESULTS AND DISCUSSION 
Based on the methods described above, the following 

numerical solution using the RK4 method and the ABM4 
method, as well as error calculation to predict population 
growth in South Sulawesi, are presented in the form of tables 
and graphs. The error is represented as a relative error, 
which is the ratio of absolute errors to actual data. 

 

A.  Solutions from the RK4 and ABM4 Methods (k = 0.01and 
K = 20,000,000) 

Table II details the prediction results using the RK4 and 
ABM4 methods from 2014 to 2023, which shows that both 
provide fairly accurate estimates with relatively small relative 
errors. For example, in 2014, the actual population was 
8,432,163. Thus, the predictions using the RK4 method have 
a relative error of about 0.024, while the results from the 
ABM4 method have a relative error of approximately 0.026. 

 

 
Fig. 1.  Plots of population growth using RK4 and ABM4 (k=0.01 and 

). 
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Although there is a small variation in the degree of accuracy 
between the two methods, both show good ability in 
modeling population growth. 

However, it can be seen that from 2019 to 2023, there is an 
increase in relative error values for both methods. In 
addition, the relative error difference between the two 
methods became more noticeable over time. In 2023, the 
ABM4 method shows a relative error of about 0.089, while 
it is approximately 0.069 using the RK4 method. Figure 1 
shows plots of the solutions derived from both methods. 

Figure 1 compares the actual population data and the 
prediction results obtained using the RK4 and ABM4 
methods, which shows that the prediction results tend to 
follow the increase in the overall population. At the 
beginning of the period, the predictions were relatively close 
to the actual data, but there were significant differences over 
time. For example, from 2019 to 2020, there was a 
significant increase in the actual data, which caused errors in 
the prediction results. This is due to these methods no longer 
aligning with the actual data. There results from these two 
methods also differ. 
 

B. The Solutions from the RK4 and ABM4 Methods (k = 
0.01499 and K = 20,000,000) 

From 2014 to 2023, the prediction of the population using 
the RK4 method is fairly accurate compared to the actual 

data (see Table III). Despite slight deviations or errors, the 
relative errors for each year remain within an acceptable 
range, ranging from 0.012752 to 0.034927. However, in 
2020, there was a significant increase in relative errors, 
reaching 0.034027, which indicates greater inaccuracies in 
the year’s predictions. 

The ABM4 method provides results that are comparable 
to the RK4 method, with the relative errors ranging from 
0.015982 to 0.064508. This method also provides an 
estimate of the number of inhabitants that closely aligns with 
the actual data. However, it should be noted that in 2020 and 

TABLE II 
SOLUTIONS AND ERRORS OF RK4 AND ABM4 (K=0.01AND K=20,000,000)S 

Year Population 4th order RK 
Solution 

4th order RK 
Error 

4th order ABM 
Solution 

4th order RK 
Error 

2010 8,034,776 8,034,776 0.000000 8,034,776 0.000000 
2011 8,156,129 8,082,892 0.008979 8,082,892 0.008979 
2012 8,250,018 8,131,100 0.014414 8,131,100 0.014414 
2013 8,342,047 8,179,398 0.019497 8,179,398 0.019497 
2014 8,432,163 8,227,785 0.024238 8,209,662 0.026387 
2015 8,512,608 8,276,257 0.027765 8,239,973 0.032027 
2016 8,598,604 8,324,813 0.031841 8,270,330 0.038178 
2017 8,674,372 8,373,450 0.034691 8,300,731 0.043074 
2018 8,748,052 8,422,166 0.037252 8,331,176 0.047654 
2019 8,819,549 8,470,960 0.039525 8,361,664 0.051917 
2020 9,073,509 8,519,828 0.061022 8,392,193 0.075088 
2021 9,139,531 8,568,768 0.062450 8,422,764 0.078425 
2022 9,225,747 8,617,778 0.065899 8,453,376 0.083719 
2023 9,312,019 8,666,857 0.069283 8,484,028 0.088916 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
TABLE III 

SOLUTIONS AND ERRORS OF RK4 AND ABM4 (K=0,01499 AND K=20,000,000)S 

Year Population 4th order RK 
Solution 

4th order RK 
Error 

4th order ABM 
Solution 

4th order RK 
Error 

2010 8,034,776 8,034,776 0.000000 8,034,776 0.000000 
2011 8,156,129 8,106,941 0.006031 8,106,941 0.006031 
2012 8,250,018 8,179,311 0.008570 8,179,311 0.008570 
2013 8,342,047 8,251,879 0.010809 8,251,879 0.010809 
2014 8,432,163 8,324,638 0.012752 8,297,404 0.015982 
2015 8,512,608 8,397,579 0.013513 8,343,030 0.019921 
2016 8,598,604 8,470,696 0.014875 8,388,756 0.024405 
2017 8,674,372 8,543,980 0.015032 8,434,575 0.027644 
2018 8,748,052 8,617,425 0.014932 8,480,485 0.030586 
2019 8,819,549 8,691,022 0.014573 8,526,483 0.033229 
2020 9,073,509 8,764,764 0.034027 8,572,568 0.055209 
2021 9,139,531 8,838,642 0.032922 8,618,737 0.056983 
2022 9,225,747 8,912,649 0.033937 8,664,987 0.060782 
2023 9,312,019 8,986,777 0.034927 8,711,316 0.064508 

 
 
 
 
 
 
 

 
Fig. 2.  Plots of population growth using RK4 and ABM4 (k=0,01499 and 

). 
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2021, the ABM4 method shows a higher relative error 
increase compared to the RK4 method. 

Based on the prediction results obtained using the RK4 
and ABM4 methods (see Figure 2), both methods provide 
estimates of population numbers that closely match the 
actual data from 2014 to 2018. However, from 2019 to 
2020, there was a significant increase in population, and the 
differences between the predictions and the actual data 
become more striking. 

In 2019, the actual population reached 8,819,549, while 
the prediction provided by the RK4 method is 8,691,022.31, 
and the prediction from the ABM4 method is 8,526,483.36. 
Therefore, both methods produced lower predictions 
compared to the actual data. In addition, 2020 marked a 
significant increase in the number of residents to 9,073,509, 
but the RK4 method’s prediction of 8,764,763.98 and the 
ABM4 method’s prediction of 8,572,568.39 do not capture 
this sharp increase. 
 

C.  The Solutions from the RK4 and ABM4 Methods (k = 
0,01499 and K = 30,000,000) 

Table IV delineates the population data and prediction 
results obtained using the RK4 and ABM4 methods. It 
shows that both methods provide results that are relatively 
similar to the actual population values in certain years. 
Despite the differences, the errors produced by these two 

methods are relatively small and practically acceptable. For 
2014, the RK4 method results in an approximate error of 
0.0047, while the ABM4 method’s error is approximately 
0.0087. Furthermore, an analysis of the errors in subsequent 
years was similar.  

Figure 3 compares the prediction results from the RK4 
and ABM4 methods to the actual population data. It 
demonstrates that both methods provide relatively accurate 
predictions compared to the actual data. However, there are 
differences between the predictions and actual data in certain 
years. 

A significant increase in the population from 2019 to 2020 
in the actual data is the focus of this analysis. The RK4 
method gives higher predictions than the actual data, while 
the ABM4 method provides lower predictions. Therefore, 
neither method fully captured the actual population spike 
that occurred in that period. 

 

D.  Comparison of the Errors in the RK4 and ABM4 
Methods with Three Parameter Variations 

 Using the RK4 method and the population growth error 
calculation data with the parameter of k = 0.01 or 0.014991, 
K remains 20,000,000 or 30,000,000 (see Table V). 
Therefore, the prediction results have varying error rates. 

 

 
Fig. 3.  Plots of population growth using RK4 and ABM4 (k=0,01499 and 

). 
  

 
TABLE V 

ERRORS COMPARISON OF RK4 WITH 3 PARAMETER VARIATIONS 

Year 
k=0.01and 

K=20,000,000 
k=0,01499 and 
K=20,000,000 

k=0,01499 and 
K=30,000,000 

2010 0.000000 0.000000 0.000000 
2011 0.008979 0.006031 0.004028 
2012 0.014414 0.008570 0.004562 
2013 0.019497 0.010809 0.004790 
2014 0.024238 0.012752 0.004715 
2015 0.027765 0.013513 0.003440 
2016 0.031841 0.014875 0.002765 
2017 0.034691 0.015032 0.000858 
2018 0.037252 0.014932 0.001321 
2019 0.039525 0.014573 0.003778 
2020 0.061022 0.034027 0.013975 
2021 0.062450 0.032922 0.010768 
2022 0.065899 0.033937 0.009719 
2023 0.069283 0.034927 

0.008635 

 

TABLE IV 
SOLUTIONS AND ERRORS OF RK4 AND ABM4 (K=0,01499 AND K=30,000,000)S 

Year Population 4th order RK 
Solution 

4th order RK 
Error 

4th order ABM 
Solution 

4th order RK 
Error 

2010 8,034,776 8,034,776 0.000000 8,034,776 0.000000 
2011 8,156,129 8,123,272 0.004028 8,123,272 0.004028 
2012 8,250,018 8,212,379 0.004562 8,212,379 0.004562 
2013 8,342,047 8,302,092 0.004790 8,302,092 0.004790 
2014 8,432,163 8,392,407 0.004715 8,358,681 0.008715 
2015 8,512,608 8,483,321 0.003440 8,415,594 0.011397 
2016 8,598,604 8,574,829 0.002765 8,472,830 0.014627 
2017 8,674,372 8,666,927 0.000858 8,530,378 0.016600 
2018 8,748,052 8,759,609 0.001321 8,588,239 0.018268 
2019 8,819,549 8,852,871 0.003778 8,646,409 0.019631 
2020 9,073,509 8,946,708 0.013975 8,704,889 0.040626 
2021 9,139,531 9,041,114 0.010768 8,763,677 0.041124 
2022 9,225,747 9,136,084 0.009719 8,822,772 0.043679 
2023 9,312,019 9,231,612 0.008635 8,882,173 0.046160 
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Where the values of k and K are 0.01 and 20,000,000, 
respectively, the lowest error occurred in 2014, with a value 
of 0.024238. However, the error increases with each 
subsequent year. Meanwhile, when k and K have the values 
of 0.014991 and 20,000,000 and 0.014991 and 30,000,000, 
respectively, the initial error in 2014 is higher. However, the 
error growth was more stable until 2023. 

 Using the ABM4 method and the population growth error 
calculation data with the parameter of k between 0.01 and 
0.014991, K remains 20,000,000 or 30,000,000 (see Table 
VI). This demonstrates that the prediction results have 
varying error rates. In the case of a k and K of 0.01 and 
20,000,000, respectively, the lowest error occurred in 2014, 
with a value of 0.026387. However, for each year after this, 
the error increases. Meanwhile, for a k and K with values of 
0.014991 and 20,000,000 and 0.014991 and 30,000,000, 
respectively, the initial error in 2014 is higher. However, the 
error growth was more stable until 2023. 

Table VII details the error calculation data for population 
growth using the RK4 and ABM4 methods from 2014 to 
2023. It shows that the RK4 method has a lower error rate 

than that of the ABM4 method. For example, in 2023, the 
error value of the RK4 method when k = 0.014991 and K = 
30,000,000 is 0.008635. Moreover, when k = 0.014991 and 
K = 20,000,000, the error value is 0.034927. Conversely, the 
ABM4 has a slightly higher error, in that when k = 0.014991 

 
TABLE VI 

ERRORS COMPARISON OF ABM4 WITH 3 PARAMETER VARIATIONS 

Year 
k=0.01and 

K=20,000,000 
k=0,01499 and 
K=20,000,000 

k=0,01499 and 
K=30,000,000 

2010 0.000000 0.000000 0.000000 
2011 0.008979 0.006031 0.004028 
2012 0.014414 0.008570 0.004562 
2013 0.019497 0.010809 0.004790 
2014 0.026387 0.015982 0.008715 
2015 0.032027 0.019921 0.011397 
2016 0.038178 0.024405 0.014627 
2017 0.043074 0.027644 0.016600 
2018 0.047654 0.030586 0.018268 
2019 0.051917 0.033229 0.019631 
2020 0.075088 0.055209 0.040626 
2021 0.078425 0.056983 0.041124 
2022 0.083719 0.060782 0.043679 
2023 0.088916 0.064508 

0.046160 

 

 
Fig. 4.  Error Comparison of RK4 and ABM4 with parameter variations (k=0,01499;  and  
  

 
 

TABLE VII 
ERRORS COMPARISON OF RK4 AND ABM4 WITH 2 PARAMETER VARIATIONS 

 (K=0.014991 AND (K=20,000,000 OR K=30,000,000)) 

Year Population 
RK4  

k=0.014991 and 
K=20,000,000 

ABM4 
k=0.014991 and 
K=20,000,000 

RK4  
k=0.014991 and 
K=30,000,000 

ABM4 
k=0.014991 and 
K=30,000,000 

2010 8,034,776 0.000000 0.000000 0.000000 0.000000 
2011 8,156,129 0.006031 0.006031 0.004028 0.004028 
2012 8,250,018 0.008570 0.008570 0.004562 0.004562 
2013 8,342,047 0.010809 0.010809 0.004790 0.004790 
2014 8,432,163 0.012752 0.015982 0.004715 0.008715 
2015 8,512,608 0.013513 0.019921 0.003440 0.011397 
2016 8,598,604 0.014875 0.024405 0.002765 0.014627 
2017 8,674,372 0.015032 0.027644 0.000858 0.016600 
2018 8,748,052 0.014932 0.030586 0.001321 0.018268 
2019 8,819,549 0.014573 0.033229 0.003778 0.019631 
2020 9,073,509 0.034027 0.055209 0.013975 0.040626 
2021 9,139,531 0.032922 0.056983 0.010768 0.041124 
2022 9,225,747 0.033937 0.060782 0.009719 0.043679 
2023 9,312,019 0.034927 0.064508 0.008635 0.046160 
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and K = 30,000,000 the error value is 0.046160, and when k 
= 0.014991 and K = 20,000,000, the error value is 0.064508. 
Thus, the RK4 method is more stable and accurate in the 
modeling of population growth compared to the ABM4. 
However, these results must be interpreted by considering 
the assumptions and parameters used in both methods. 

Figure 4 shows the results of the error calculations in the 
population growth predictions derived from the RK4 and 
ABM4 methods from 2014 to 2023. These two numerical 
methods are used to estimate population growth by 
comparing the prediction results with the actual data. The 
figure indicates that, in each year, the error for the RK4 
method is lower than that for the ABM4 method. This 
indicates that the RK4 method provides more accurate 
predictions in this case. Even though there are fluctuations in 
the error rates over several years, the overall trend is 
consistent, in that the RK4 method provides results that are 
more closely aligned to the actual data compared to the 
ABM4 method. An analysis of these error differences can be 
the basis for choosing a more effective numerical method for 
modeling population growth in this study. In addition to 
method selection, parameter selection is also very influential 
and important in this case. The results obtained also remain 
dependent on the selection of parameters that are appropriate 
to the characteristics of the observed population growth. 

 

IV. CONCLUSION 
The results of this study on the prediction of population 

growth using logistic equations demonstrate that the ABM4 
method has a fairly good level of stability compared to the 
RK4 method. However, in terms of the equations’ levels of 
accuracy, the RK4 method shows better performance than 
the ABM4 method. 

In addition, based on the parameter variations, namely the 
growth rate k and population carrying capacity K, the 
prediction results using the RK4 and ABM4 methods 
produce different numerical solutions. In the first case, when 
k = 0.01 and K = 20,000,000, both models give predictions 
that are relatively similar to the actual data, but they both 
have considerable errors. In the second case, when k = 
0.014991 and K = 20,000,000, the prediction results from 
both methods are more similar to the actual data than the 
results in the first case. In addition, in the third case, when k 
= 0.014991 and K = 30,000,000, the prediction results are 
the most similar to the actual data. Therefore, the selection 
of parameters such as k and K plays an important role in the 
accuracy of the prediction results using logistic models.  

This study successfully shows that the RK4 and ABM4 
methods can be used to forecast future population numbers 
effectively. However, it is important to closely pay attention 
to the selection of appropriate parameters, as this will have 
an impact on the accuracy of the prediction results. In 
addition, the RK4 method was proven to be more effective 
than the ABM4 method in predicting population growth in 
South Sulawesi. Therefore, in the same order, the Runge-
Kutta method performs better than the Adam-Bashfort-
Moulton method in solving differential equations [23]. 
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