
 

 

Abstract—The traditional multi-period soliton method takes 

too long to solve and the solution results are not satisfactory. To 

address the above problems, this study proposes a multi-period 

soliton method for the discrete Riccati equation. In this method, 

the multi-period soliton solution index of the discrete Riccati 

equation is firstly selected, and the multi-period soliton solution 

of the discrete Riccati equation is determined according to the 

index. The correlation matrix is solved and a positive 

semi-definite matrix is established. Next, the lower bound and 

eigenvalues of the matrix are solved using the matrix inequality 

property inequality and the perturbation parameter. The 

boundary estimation and eigenvalue properties of the reference 

matrix and the solution matrix are obtained. Another positive 

semi-definite matrix is defined. Finally, the soliton solution is 

constructed to complete the multi-period soliton solution of the 

discrete Riccati equation. The simulation results showed that the 

traditional method took more than 5 minutes, while the 

multi-period soliton solution of the discrete Riccati equation 

designed in the research only took 2.5 minutes. The solution time 

of the proposed method was shorter than the traditional method. 

The optimal solution could be obtained. It showed that the 

multi-period soliton discrete Riccati equation solution could 

deepen the understanding for multi-period soliton and nonlinear 

fluctuation phenomenon, providing important mathematical 

models and tools for practical application and basic research. 

These instructions provide guidelines for preparing papers. The 

multi-periodic soliton method for the discrete Riccati equation 

proposed in the study can effectively improve the solution time 

and efficiency, and has certain applications in controller 

optimization and other aspects. 

 
Index Terms—Discrete Riccati equation; Multi-period soliton 

solution; Matrix equation; Eigenvalue; Linear system; Positive 

semi-definite matrix 

 

I. INTRODUCTION 

In recent years, the research on the stability of linear 

systems has become very active. There have been research 

methods about the stability of continuous systems in the left 

half plane of the complex plane and discrete systems in the 

unit circle. However, the existing methods have some 

limitations in practical engineering applications. Firstly, it is 

often difficult to describe the dynamic characteristics of 

industrial production processes, production equipment and 

other controlled objects with accurate mathematical models. 

Even after obtaining an accurate model, it is hard to obtain 

timely due to its complexity, analysis and application 
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efficiency [1]. In addition, due to the changing working 

environment and conditions, the loss of components and the 

error between the mathematical model and the actual 

controlled object, there are often many uncertainties in the 

control system. Meanwhile, in the actual production, time 

delay phenomenon is also common, such as long pipeline 

feeding, belt drive, slow chemical reaction process and 

network control system signal transmission. The uncertainty 

and time delay make the control system face many special 

difficulties in theoretical research and practical engineering 

production. These uncertainties and time delays often lead to 

system performance degradation and instability. However, 

the existing methods cannot effectively solve these problems. 

The solution time is too long and the results are inaccurate in 

solving multi-period solitons [2-3]. To realize the 

performance optimization, robustness analysis, filter design 

and system identification of the control system, and improve 

the efficiency, stability and accuracy of the engineering 

process, the multi-period soliton solution of discrete Riccati 

equation is studied. Discrete Riccati equation plays an 

important role in many fields of engineering theory, 

especially in the control system. In addition, the matrix 

constraint estimation of matrix equation solution also plays an 

indispensable role in system stability analysis, controller 

design of time-delay system, maximum cost estimation, 

numerical algorithm convergence and Riccati differential 

equation behavior [4-6]. However, as the dimensionality of 

the matrix equation increases, it is very difficult to solve the 

solution matrix [7]. Therefore, estimating the solution matrix 

of matrix equations has important theoretical significance and 

practical value [8]. In recent years, many scholars have made 

contributions to solving matrices. Li et al. obtained an 

exponentially separated variable solution based on the 

projected Riccati equation. It analyzed the frontal collision 

and chasing collision between folded solitary waves. The 

phase shift and the difference during the interaction were 

obtained. Then the fluctuations were systematically analyzed 

[9]. Dong et al. analyzed soliton molecules with higher-order 

corrections for KdV equations using the velocity resonance 

mechanism and multi-soliton solution. The interaction 

between solitons and solitons in KdV equations with high 

order correction was studied based on the analytical and 

graphical method. The results showed that the KdV equation 

with higher order correction was a consistent Riccati 

expansion solvable system [10]. 

The innovation of the multi-period soliton discrete Riccati 

equation solution proposed in this study mainly includes the 

following aspects. The first is to select multi-period soliton 

solution index. This method introduces the multi-period 
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soliton solution as an index to solve the discrete Riccati 

equation. By selecting the appropriate solution index, the 

dynamic characteristics and stability requirements of the 

system can be better reflected. The second is to establish a 

positive semi-definite matrix. The selected solution index is 

used to construct a positive semi-definite matrix. The 

multi-period characteristics of discrete Riccati equation are 

considered in matrix construction, which makes the solution 

results more accurate and practical. The third is to adopt 

matrix inequalities and perturbation parameters. Based on the 

properties of matrix inequalities and perturbed parameters, 

the correlation matrix and its eigenvalues are solved. The 

lower bound estimations are obtained, so that the boundary 

estimation and eigenvalue properties of the reference matrix 

and the solution matrix are obtained. The fourth is to construct 

multi-period soliton solutions. 

This research is divided into four parts. The first part 

provides an introduction of multi-period soliton solutions as 

well as the discrete Riccati equation. The second part 

summarizes the research status of solving discrete Riccati 

equation of multi-period solitons. In the third part, the 

multi-period soliton solution index of discrete Riccati 

equation is selected to establish a positive semi-definite 

matrix. Then, another positive semi-definite matrix is 

constructed based on the the boundary estimation and the 

eigenvalue properties of obtained reference matrix and 

solution matrix. Finally, the soliton solution is constructed to 

complete the multi-period soliton solution of the discrete 

Riccati equation. In the fourth part, the multi-period soliton 

solution of discrete Riccati equation is experimentally 

verified and the experimental results are analyzed. 

 

II. INDEX SELECTION FOR SOLVING DISCRETE RICCATI 

EQUATION WITH MULTI-PERIOD SOLITON SOLUTION 

Soliton (solitary wave) is an energy limited local solution in 

wave problems. The energy is usually concentrated in a 

relatively narrow region (or can exist stably in a given region). 

When two solitons interact with each other, elastic scattering 

phenomenon will appear (that is, the wave form and wave 

velocity can quickly recover to the initial state). Solitons can 

be divided into two categories, topological solitons and 

non-topological solitons [11]. The necessary condition for the 

stable existence of topological solitons is the vacuum state, 

which means that there are different vacuum states or 

boundary conditions at infinity. When there is a soliton 

solution, the boundary condition at infinity is different from 

those without soliton solution. No vacuum state is needed for 

non-topological solitons. No matter whether there are solitons 

or not, they all have the same boundary conditions at infinity. 

Generally speaking, the positive and negative solitons and 

their sequences of Bell type distribution are non-topological, 

but the torsional solitons are topological solitons. By 

simplifying the assumptions of the Riccati equation 

coefficient, it has a polynomial solution composed of Bell and 

torsion functions. It contains many solitons solutions with 

physical meaning. The discrete Riccati equation is shown in 

equation (1): 

           * 1 * * 0A K X K B K U K C K X K     (1) 

In equation (1),      , ,A K B K C K  represent the 

constant matrices at K .    ,X K U K  represent the input 

and output of the system at K . If this simplified assumption 

is not used, more solutions can be found. Some generalized 

solutions of ordinary differential equations even can be 

obtained. An appropriate solution index is very powerful for 

finding accurate solutions to multi-period soliton solutions 

[12]. Therefore, the nonlinear transformation of the nonlinear 

coupled field equation should be determined to simplify the 

problem. For the discrete control system, the following 

equation (2) should be defined: 

e
sf

G df f



                                  (2) 

In equation (2), s  represents the initial state of the system. 

*  represents multiplication. e  represents the state variable. 

d  represents the control variable. f  represents the output 

variable. G  represents the characteristic function of a 2 * 2 

matrix [13-14], which is shown in equation (3): 

u

Q q xt
G

qq fh

  
 



                                  (3) 

In equation (3), Q  represents the initial state variable of 

the system. q  represents the perturbation term. h  represents 

a constant. x  represents the spatial variable. t  represents the 

time variable. If fh  satisfies the symmetry condition, then 

the coefficient of Q  is shown in equation (4): 

 *
w

Q fq b k
d

                               (4) 

In equation (4), w  represents the state variable under that 

condition. k  represents the constant positive. b  represents 

the non-zero parameter. Although the above equation is a 

simple nonlinear partial differential equation, it is an equation 

of the same rank. The so-called same rank equation refers to 

the unknown function appearing in each term of the equation. 

The sum of the derivatives for each order and the product of 

times is the same odd number or the same even number. 

Therefore, a traveling wave transform is required for equation 

[15], as shown in equation (5): 

2

td
RU C u Q                              (5) 

In equation (5), tu  is the superposition of Riemann wave 

and long wave. RU  represents the traveling wave 

transformation. 

At present, the back scattering method to solve the initial 

value of the equation is an unsolved problem in soliton theory, 

because the premise of using the back scattering method is to 

find the laxness corresponding to the method. Therefore, a 

nonlinear evolution equation is set up. On the basis of the 

solution of the nonlinear evolution equation and its 

corresponding solution for the loose pair, new solutions are 

obtained using algebraic algorithms and differential 

operations [16]. At the same time, the integer is determined 

according to the balance principle, which is shown in equation 

(6): 

/
a s

F df o
df f

                            (6) 
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In equation (6), F  represents positive definite matrix. a  

represents symmetric positive definite solution. o  represents 

the product of eigenvalues of positive definite solutions. 

According to the above equations, the traveling wave 

solution of nonlinear differential difference equation is 

obtained, which is shown in equation (7): 

  0
/

h

d

d s

i h

i

vdvs

n e a tru
er o

gdg

    
 



                    (7) 

When the same power coefficients of the equations are zero, 

the deterministic nonlinear algebraic equations can be further 

obtained, as shown in equation (8): 

 
j

hj

p g
x t ydy

nf s


 


                          (8) 

On this basis, the multi-period soliton solution index of the 

discrete Riccati equation can be further determined. 

 

III. DETERMINATION OF THE CORRELATION MATRIX FOR 

SOLVING THE DISCRETE RICCATI EQUATION WITH 

MULTI-PERIOD SOLITON SOLUTION 

Applying matrix method to analyze the network topology is 

to use the correlation matrix formed by the correlation 

between nodes and branches, or the relationship between 

node pairs to form the adjacency matrix. After operation, a 

fully connected matrix reflecting the connectivity between 

any two nodes in all solutions is obtained. Finally, the network 

topology analysis result is obtained by analyzing the fully 

connected matrix. A class of Lie algebras and zero curvature 

equations are used to derive the broad MKdV equation. To 

obtain another set of foundations of Lie algebra on the 

complex number set, the incidence matrix forms the node 

branch incidence matrix and the branch node association 

according to the node branch association relationship. 

Boolean matrix multiplication is performed on these two 

matrices [17] to get the node-to-node association matrix, that 

is, the adjacency matrix, as shown in equation (9): 

1

2

s

q

o

s

f
s

ds f
v

fdf g h j









 

   



                     (9) 

It satisfies the following relationship [18], which is shown 

in equation (10): 

   0 2

0 2 3

t

t

w

s

f

d ry fd a d f y

a a d fg sd fh

s
vs f f g

v


    



  

   



             (10) 

In equation (10), y  is a real constant. 0a  is an integral 

constant. Therefore, the following development equation can 

be obtained, which is shown in equation (11): 

   0 2

0 2 3

t

t

w

s

f

d ry fd a d f y

a a d fg sd fh

s
vs f f g

v


    



  

   



             (11) 

Based on the above calculations, is spectral pairs are 

constructed to establish canonical transformations between 

spectral problems. The search method is one of the most 

widely used methods in the current topological analysis of 

equation solutions. This method is to carry out the network 

topological analysis by searching the adjacent nodes. 

Topology analysis starts from a certain node, searches the 

nodes connected with the node through closed switches, and 

divides them into a group of indicators. Usually, the above 

conversion depends on the parameters of the search method. 

Therefore, to write canonical conversion expressions, the 

study analyzed the problem from the perspective of 

eigenvalues, as shown in equation (12): 

  0

h

h

f
U n sg o a

y
                       (12) 

A standard variation based on equation (12) further yields 

equation (13): 

 

1

1

t

i

e

y

h

i

i

d g U d k

rdr f d g f j

g h x h



 



   



   

   

                  (13) 

According to the standard change results, the breadth-first 

search method is used to search nodes. The breadth-first 

search method is to take the starting node as the center and 

search outwards in a radial way until all nodes are searched. 

This method only accesses each node once. Therefore, it has 

fewer visits to nodes than the depth first search method. The 

relationship between the breadth-first search method and the 

nonlinear evolution equation corresponding to the 

eigenvalues is shown in equation (14): 

 

 1( )

q

i

t o

f u

s B f

s f b

N g h

 







   


 


 


 

                         (14) 

In equation (14),   denotes the matrix and the expression 

equation is shown in equation (15): 
1

0

0

0

0

1
0

i

x ax

w
x

g

f s h










 
  

 
  
 
 

  
 
 
 

 
 
  

                          (15) 

The study assumes that   is a linear partial differential 

algorithm with constant coefficients, which further yields 

equation (16): 
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 

0

0

0

x

zy t

s

y x

y x










 




 


   



                           (16) 

The relationship between the two equations is established. 

The original equation solution structure is studied according 

to the solution and transformation group of another equation. 

In solving transformation groups, it is required to solve large 

linear or nonlinear differential system problems [19]. 

Therefore, some relations of unknown variables are 

introduced. If these variables can be determined from them, 

then the equation has this type of solution. Next, based on an 

example, a more detailed explanation is provided, which is 

shown in equation (17): 

 
 

   

2

exp

f ee g

d r df h
 

  


 


                    (17) 

Step 1: The homogeneous balance method is used to 

balance the highest derivative term and the highest nonlinear 

term. The value of the balance constant is determined by 

equation (18): 

 , , 0i od u u u                             (18) 

Step 2: Assuming that the solution of the equation has the 

following form, as shown in equation (19): 

1 0

0 0

0

i

u

i

n s g a

n n f
u

t i

g s g


 



                           (19) 

In equation (19),   represents the absolute value of the 

determinant. Step 3: With the help of the symbolic operation 

software Maple, the algebraic equations obtained above are 

used to solve the correlation matrix of the equation, which is 

shown in equation (20): 

 
 
 

 
 

 

1

1

fg r

sd s

G g r

f RT





 
 
 


 
 



                      (20) 

In equation (20),   represents a known non-negative 

matrix. It means that each element is a negative number. 

According to the above steps, the correlation matrix for 

solving the multi-period soliton solution of the discrete 

Riccati equation is obtained. 

 

IV. THE REALIZATION OF MULTI-PERIOD SOLITON SOLUTION 

TO DISCRETE RICCATI EQUATION 

According to the multi-period soliton solution index and 

correlation matrix of the discrete Riccati equation, the 

continuous Riccati matrix equation is introduced to solve the 

linear quadratic optimal control problem of the continuous 

linear time invariant system. It plays a very important role in 

the the control system. Where the control system expression is 

as in equation (21): 

 
 

 0
iu

ax B t
x t

xt x


 



                             (21) 

In equation (21),  B t  represents the system dimension 

variable.  0x  represents the system input dimension 

variable.  x t  represents the system matrix. 

Solving node equations requires a large amount of 

computation. Traditional methods only care about which 

index value is non-zero after solving, but does not concern 

about the specific value. Therefore, the index is selected to 

obtain the solution of the optimal control problem, which is 

shown in equation (22): 
tat gf f

ap asf h

y k

  


 
 

                          (22) 

The above equation must meet one of the following 

conditions: 

Firstly, if norm is bounded, then y  can be expressed in 

equation (23): 

/

f
y

df i
                                  (23) 

In equation (23), df  represents a constant matrix of 

known appropriate dimensions. i  represents an uncertain 

parameter. 

Secondly, if the non-structure has uncertainty, then y  can 

be expressed in equation (24): 

/

c

u
y q

sds
 


                              (24) 

In equation (24), u  represents the maximum singular value. 

c

sds  represents the norm. 

Thirdly, strong structure has uncertainty. y D  . D  

represents the relationship between the corresponding 

elements of two matrices. 

To save storage space, improve the operation speed, and 

adapt to large-scale network operations, sparse technology is 

introduced in the operation process. There are two key points 

to implementing sparse technology. One is zero storage and 

zero operation. The other is node number optimization. Zero 

storage and zero operation can effectively avoid storing and 

calculating elements that do not affect the calculation results, 

greatly improving the calculation efficiency of the program. 

There are different storage methods for sparse matrix, such as 

scattered format, row and column storage format and triangle 

retrieval storage format. In this paper, Gauss row elimination 

method is used. Therefore, row by row storage format is used. 

The structure body is used to store the non-zero elements in 

the matrix [20]. The members of the structure body record the 

position of the first non-zero element in each row of the 

adjacency matrix, and record the column of the non-zero 

element in the adjacency matrix. The structure body array is 

used to store the non-zero elements in the adjacency matrix in 

row order. The specific calculation matrix is shown in 

equation (25): 
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T f l
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s
F k h g

o

a f g


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


  

 



                                  (25) 

Aiming at the stability analysis of multi-period soliton 

solutions, the continuous Lyapunov matrix equation is 

introduced. It can reduce the difficulty of solving the control 

system and shorten the solution time. The control matrix is 

shown in equation (26): 

1 2

21 22 2

1 2

n

n

m m mn

x x x

x x x
D

x x x

 
 
 
 
 
 

K

K

K K K K

K

                     (26) 

The above matrix is a necessary and sufficient condition for 

asymptotic stability. Given a matrix Q  arbitrarily, it 

satisfies [18], which is shown in equation (27): 

 

/

q

i

rt Em

Q w yn

f t h

 



 

 

                                 (27) 

The matrix equation generalization is considered from the 

real number field to the special region of the complex number 

field. The special region   of the complex plane region is 

defined, which is shown in equation (28): 

g
Q

f

f
f

s

dg gj



 




 





                             (28) 

The above matrix is a positive definite symmetric matrix, 

then [18], which is shown in equation (29): 

 

s gj
R

d r





  
                             (29) 

Then the solution matrix of the equation satisfies the 

following inequality, which is shown in equation (30) [18]: 

1

t

i

G
R

i r





                               (30) 

In equation (30), ,i r  represent any positive numbers. 

Assuming that the control matrix obtained from the above 

unique symmetric positive definite solution matrix needs to 

satisfy the following equation, as shown in equation (31): 

 

/

Fo xi i

A D d
o

cxg




 



                         (31) 

By constructing a positive semi-definite matrix, and 

utilizing the properties of matrix inequality and perturbation 

parameters, the lower bounds of the solution matrix and its 

eigenvalues are obtained. However, due to the arbitrariness of 

matrix selection and some restrictions, the final calculation 

result may not be optimal. How to select it to achieve the 

optimal result needs to be further discussed. 

Therefore, the properties of the matrix [21], the properties 

of the matrix inequality, etc. are used to estimate the bounds 

of the solution matrix and its eigenvalues. Another 

semi-definite matrix is defined, which is shown in equation 

(32): 

' q

iu

e
fh A D

R

uu W

G r




 


 
 



                        (32) 

It needs to meet equation (33): 

 

1

2

'
e

et R
                                   (33) 

The extended hyperbolic tangent function method is used 

to solve the soliton solution of the nonlinear evolution 

equation according to the Riccati equation. The nonlinear 

evolution equation solution is constructed based on the 

Riccati equation solution. However, the assumed form of the 

solution is more extensive in this process. Several new exact 

solutions to the nonlinear evolution equation are obtained. It 

has the following form, which is shown in equation (34): 

 
1

'
y

i

su r ft g oy l dr R


             (34) 

The elimination process is to perform the elimination 

operation on the lower triangular nodes in the matrix. When 

performing the elimination, the sparse matrix technology is 

used. The zero-row operation is used. In the Gaussian 

elimination process, each row is generally operated multiple 

times, and each operation may have an injection. For the 

generated elements, a length node array is created to store the 

results of temporary operations. After the elimination 

operation of each row is finished, the operation result is stored 

in zero rows and the Gaussian elimination result array. The 

calculation matrix is shown in equation (35): 

 

1

/

t

i

i

bmf y g ol

e
re Gh su

fG I

F hk

f ry


 



  
 
 






                     (35) 

When Gaussian elimination is used to eliminate the 

columns of the adjacency matrix, it is equivalent to eliminate 

nodes in the network. Therefore, the solution nodes need to be 

re-encoded. When using dynamic stability optimization 

methods for continuous systems located in the left half plane 

of the complex plane and discrete systems located in the unit 

circle, the number of new nodes can only be reduced during 

the elimination process. But when these nodes are eliminated, 

new branches may not necessarily appear. In addition, the 

above two methods count the number of outgoing lines that 

will be added when the node is eliminated. Then the canceled 

node that has the least number of outgoing lines for priority 

numbering is selected, so as to realize the renumbering of 

dynamic nodes. Obviously, the above numbering method has 

a large workload, which consumes much time. Therefore, 

according to the complexity and final numbering effect of 

different optimal numbering methods, this study combines the 
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topology analysis algorithm and static node optimal 

numbering method to realize the recoding of dynamic nodes 

[22]. The specific expression is shown in equation (36): 
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               (36) 

On this basis, the main steps to construct a soliton solution 

are as follows: 

To reduce the amount of injected elements, increase the 

operation speed, and save storage space, the nodes in the 

sparse matrix are optimized and numbered. The so-called 

node optimization numbering is to seek a node numbering 

method that minimizes the number of injected elements. The 

optimized coding method is shown in equation (37): 

d sh p

H G g s g

gd i

 


 




                           (37) 

The solution is determined according to the principle that 

the highest derivative term of the equation is balanced with 

the highest power nonlinear term, which is shown in equation 

(38): 

/
a

d h sd
sg

                           (38) 

Among them, the h  matrix is shown in equation (39): 
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                   (39) 

The above calculation describes the interaction between 

the Riemann wave propagating along the y  axis and the long 

wave propagating along the x  axis. A new multi-period 

soliton solution is obtained based on the Hirota bi-linear 

method, which satisfies the following matrix conditions, 

which is shown in equation (40): 
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                   (40) 

The corresponding solutions of cotangent, cosecant, 

hyperbolic cotangent, hyperbolic cosecant, and combinations 

are omitted. The exact solution of the equation can be 

obtained, which is shown in equation (41): 

1

/

'

i

i

e
r dgt

d

G i sd o sd g

s
d h

vd









   

  




                  (41) 

According to the above calculations, the exact value for the 

multi-period soliton solution of the discrete Riccati equation 

is obtained. 

 

V. EXPERIMENTAL RESULTS AND ANALYSIS OF THE 

MULTI-PERIOD SOLITON SOLUTION METHOD 

To verify the validity of the multi-period soliton solution 

method for the discrete Riccati equation, experiments were 

carried out. The methods, including the continuous system 

located in the left half plane of the complex plane and the 

discrete system located in the unit circle were compared with 

the proposed method. The solution time and accuracy of 

different methods were compared. 

 

A. Experimental Platform Construction 

The simulation experiment was built on the ISO RFF ++ 

4.5 platform. The monitoring performance of the software 

was debugged using a debugger to maximize the accuracy of 

the experimental results. The ISO RFF ++ 4.5 simulation 

platform consisted of a display, a controller, a monitoring 

terminal, a computer and an antenna. The specific parameters 

of the hardware configuration are shown in Table 1. 

In the experiment, the monitoring effect of the computer 

and the controller were transmitted to the display. The reader 

was responsible for collecting the experimental data. The 

sampling rate of the reader was set to 250 /Msample s . The 

monitoring process was realized through wireless network 

connection. The antenna was selected to connect with 13.56m 

external coils. During the experiment, the relative position of 

the reader and display remained unchanged. The experimental 

environment was temperature controlled to avoid other 

factors affecting the experimental results. At the same time, 

the data was collected by computer. The data collection task 

was to collect the experimental system data in real time, 

monitor and control its status. The control terminal was used 

to manage the energy. Energy management utilized the 

overall information, frequency, time difference, unit power, 

and interconnection line power of the experimental system to 

make scheduling decisions. The main goal was to improve the 

quality of experimental control. The controller analyzed the 

network. The characteristic of network analysis was to 

analyze and determine the experimental content based on the 

experimental system. The aim was to improve the security of 

the experiment. 

In the experiment, professional data analysis software was 

used to process the experimental data. The analysis software 

was CIPS_Dview, which can be used to process data from 

experimental recorder. The experimental data mainly came 

from two instruments, CIPS/DCVG instrument and Jiaxin 

stray current detector. The data were stored in excel and txt. 

The software could intelligently screen the raw data for 

dynamic detection and remove invalid data from it to reduce 

data errors during the measurement process. The software 

presented tedious and abstract static detection data and 

dynamic detection data to users through graphical comparison 

analysis, providing them with intuitive and overall data 

analysis services. The software parameters are shown in Table 

2. 
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TABLE I 

EXPERIMENTAL PLATFORM HARDWARE PARAMETERS 

Configuration Specifications and parameters Quantity 

CPU INTEL Xeon E5620 New official version 2 

Motherboard Supermicro X8DTL-I server motherboard 1 

Memory hard drive 8G DDR3 ECC Server memory 2 

SSD solid state hard disk 1 

2.5-inch hard disk (for system backup) 1 

Seagate 2TB Enterprise 64 (Do RAID 1) 2 

Power supply Supermicro 2U standard case 1 

Heat sink 2U copper tube radiator 1 

Expansion card Rr2760 / 

Case Super 4U24 bit standard memory / 

RAM 4G DDR3 ECC server memory / 

RAM 8GB / 

Sampling frequency 1 Hz  Keep in experiment 

 
TABLE II 

CIPS_DVIEW SOFTWARE PARAMETERS 

Serial number Parameter Details    

1 RAM 32MB    
2 Sampling time 1.2 seconds    

3 Screen 
Display instrument 

operating status 
   

4 Aisle 
Record label, pattern, time, 

date 
   

5 Operating hours 

Powered by lithium 

battery, power supply time 

is more than 22 hours 

   

6 Backpack battery 
Long-term continuous 

monitoring 
   

7 
Chinese and English 

operation 
Software analysis package    

 

Meanwhile, the software provided protection time ratio, 

protection distance ratio, dynamic data correction and other 

functions, providing strong support for users to deeply mining 

information. In CIPS_Dview, the MVC design pattern was 

used. A large number of GDI + drawing technologies were 

used to display the lines. To improve the operability and 

interaction ability of the data, the C1Chart control in 

Component One products was selected to present graphic 

images. The software was used to record and analyze 

experimental data, and output the experimental results in the 

form of curves. 

The experiments used different methods to solve the 

equations. The solution results are shown in Table 3. 

 
TABLE III 

EXPERIMENTAL DATA 

Serial number Correct solution Serial number Correct solution 

1 52 6 56 

2 46 7 146 

3 89 8 33 

4 32 9 37 

5 5 10 59 

 

The stability research methods of continuous systems 

located in the left half plane of the complex plane and discrete 

systems located in the unit circle were compared with the 

method designed in the research. The solution time of 

different methods was compared. In the experiment, the 

solution results of different methods were compared with the 

correct values. If the calculation results were correct, the 

correct calculation time was recorded. If the calculation was 

incorrect, the calculation was returned. The error time was 

accumulated into the experimental time. 

In this experiment, the solution time cost was used as a test 

index. The distributed time algorithm was used to calculate 

the solution time cost. The function equation is shown in 

equation (42): 

i

i

T
H U

A



                              (42) 

Among them, H U  represents the time cost of solving the 

experiment. T  represents the total time spent in solving. 

i

i

A  represents the pulse coefficient, which is only 

introduced as a parameter. It has no practical calculation 

significance. 

From equation (42), if the H U  value is low, the T  value 

is small. Therefore, this solution method has a short solving 

time, indicating high solving ability. The calculation effect of 

this method is better. 

 

B. Analysis of the Experimental Comparison Results for 

Different Solution Methods 

To verify the effectiveness of the multi-period soliton 

solution method of discrete Riccati equation, the stability 

research method [10] for the continuous system located in the 

left half plane of the complex plane, and the design method 

[23] for the discrete system located in the unit circle, were 

compared with the multi-period soliton solution method of 

discrete Riccati equation. The solution time comparison 

results for different methods are shown in Figure 1. 

After analyzing the above comparison results, the 

continuous systems located in the left half plane of the 

complex plane and the discrete systems located in the unit 

circle took more than 5 min to solve. The maximum required 

time was approximately 10 min. The overall calculation time 

for the multi-period soliton solution of the discrete Riccati 

equation designed in the research was significantly lower than 

the other two methods. It only took 2.5 min. From the 

comparison, the overall solution time for multi-period soliton 

solutions of the discrete Riccati equation was shorter than that 

of traditional methods. Therefore, the effectiveness of this 

method can be proved by the above experiments. It can meet 

the needs of solving. This is because the method solves the 
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Fig. 2. The comparison of iterations to obtain the corresponding iteration solution. 

 

stability analysis problem for multi-period soliton solutions. 

A continuous Lyapunov matrix equation was introduced, 

which can reduce the difficulty of solving the control system, 

thereby shortening the solution time.  
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Fig. 1. Comparison of solution time. 

 

 
TABLE IV 

THE UPPER LIMIT OF TIME DELAY OBTAINED UNDER DIFFERENT TIME DELAY 

VALUES 

Method\Time delay value 0.00 0.30 0.70 1.00 

This study 2.52 2.90 3.26 3.49 

Reference [10] 2.48 2.85 3.19 3.43 

Reference [23] 2.40 2.51 3.17 3.42 

 

In control systems, time delay played an important role. 

The control system used sensors and other devices to perceive 

and control the state of the physical system. However, there 

may be time delays between sensors or controllers due to 

complex factors such as distance, transmission delay, and 

sampling period, which have a significant impact on the 

stability and accuracy of the control system. The appropriate 

upper limit of time delay had a great impact on the stability of 

controllers, etc. Therefore, the study further compared the 

upper limit of time delay obtained by three methods under 

different time delay values, and the comparison results are 

shown in Table 4. 

Table 4 shows the upper limit of time delay obtained by 

three methods under different time delay values. It can be seen 

that the proposed method in the study took into account more 

information about time delay and system state, resulting in a 

higher upper bound on time delay for the control system. This 

indicated that the proposed method ensures the stability of the 

controller, further confirming the effectiveness and 

superiority of the solution of discrete Riccati equation with 

multi-period solution. 

To further validate the number of iterations required to 

obtain the corresponding iterative solution after applying this 

method to the system, the simulation experiment was 

performed. The results are shown in Figure 2. 

From Figure 2, for the same iterative error, the continuous 

systems in the left half plane of the complex plane and the 

discrete systems in the unit circle had more than 40 iterations 

to obtain the corresponding iterative solutions. The number of 

iterations for solving the discrete Riccati equation with 

multi-period soliton was 21. Therefore, in some cases, the 

multi-period soliton solution of the discrete Riccati equation 

designed in this study had fewer iterations. The iteration 

dropped faster under the same iteration error.  

After comparing the number of iterations, to ensure the 

stability and performance of the computer system, the 

multi-period soliton solution method was used to verify the 

discrete Riccati equation and other methods. The CPU usage 

of the system was tested under high loads. The results are 

shown in Figure 3. 

From Figure 3(a), with the increase of the usage time, the 

CPU utilization rate of the system tested by the three methods 

gradually increased. In the early stage, the CPU utilization 

rate of the continuous system in the left half plane of the 

complex plane was relatively low. Compared with the 

continuous system in the left half plane of the complex plane 

and the discrete system in the unit circle, the CPU utilization 

rate of the multi-period soliton solution method of the discrete 

Riccati equation was lower. Combining Figure 2 and Figure 3 
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as a whole, the multi-period soliton solution of discrete 

Riccati equation designed in this study not only had fewer 

iterations to obtain the corresponding iterative solution, but 

also had lower CPU utilization. 
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Fig. 3 CPU usage of different methods system 

 

To further verify the validity of the multi-period soliton 

solution method of the discrete Riccati equation designed in 

this study, the accuracy of the calculation results was used as a 

comparison index. The method designed in this study was 

compared to the the continuous systems in the left half plane 

of the complex plane and the discrete systems in the unit circle. 

The results are shown in Figure 4. 

 

From Figure 4, the difference between the solution 

obtained by the multi-period soliton solution method and the 

correct solution of the discrete Riccati equation designed in 

this paper was small. The difference between the solution 

obtained by the continuous system stability research method 

located in the left half plane of the complex plane and the 

1 3 4 52 6 7 8

C
a
lc

u
la

te
d

 v
a
lu

e

Experimental equations / a

0

2.0

1.6

1.2

0.8

0.4

Correct value

This study

Reference [10]

Reference [23]

 
 
Fig. 4. Comparison of the accuracy of different methods. 

 

discrete system stability research method located in the unit 

circle and the correct value was large. It showed that the 

design method could achieve more reliable results, which 

plays an important role in the stability control of the system. 

Meanwhile, the study further compared the tracking profiles 

of the controller system under the action of the three methods. 

 

From Figure 5, the proposed method of the study 

simultaneously offset the tracking error of the system while 

ensuring a reduced data sending rate of the system as 

compared to the other two methods. This indicated that the 

multi-period soliton method based on the discrete Riccati 

equation designed by the study was not only able to reduce the 

tracking error of the controller, but also improved the control 

accuracy with certain robustness. Finally, the study further 

compared the curves of the controller in the closed-loop 

system state under the three methods, as shown in Figure 6. 

The closed-loop system curve variations of the three 

methods under four controller perturbation states are shown in 

Fig. 6. All the three methods showed curve jitter after the 

controller perturbations. Whereas, the proposed method of 

the study was able to become stable quickly after the 

perturbation. Compared with the literature [10] and [23], the 

proposed method was less affected by the perturbation. This 

indicates the superior performance of the controller under this 

method. 

 

VI. CONCLUDING REMARKS 

Aiming at many control problems in the control system, 

this study transformed some control problems into solutions 

of some matrix equations. Therefore, a method for solving 

discrete Riccati equations with multi-period solitons was 

proposed. Through the index of multi-period soliton solution 

of discrete Riccati equation, the multi-period soliton solution 

of discrete Riccati equation was obtained. The positive 

semi-definite matrix was constructed. Based on the properties 

of matrix inequality and disturbance parameters, the lower 

bound of the solution matrix and its eigenvalue was calculated. 

The boundary estimation values and eigenvalue of the 

reference matrix and the solution matrix were obtained. 

According to these values, the soliton solution was 

constructed and the multi-period soliton solution of discrete 

Riccati equation was completed. The experimental results 

showed that the solution time of the continuous systems in the 

left half plane of the complex plane and the discrete systems 

in the unit circle was more than 5 minutes. However, the 

overall calculation time for solving the discrete Riccati 

equation with multi-period solitons was only 2.5 minutes. In 

addition, the number of iterations for solving the discrete 

Riccati equation with multi-period solitons in this study was 

21 times, while other methods were more than 40 times. 

Under the same iterative error, the iteration dropped faster. In 

terms of accuracy, the multi-period soliton solution of 

discrete Riccati equation designed in this paper had little 

difference from the correct solution, while the solutions 

obtained by other methods had great difference from the 

correct value. This shows that the method can solve the 

stability analysis problem of multi-period soliton solution, 

which can reduce the difficulty of solving the control system. 

It shortens the solving time and obtains more reliable results, 

which plays an important role in the stability control of the 

system. The deficiency of this study is that the estimation of 

the Riccati equation solution in discrete-time algebra is 

conservative. The solutions of these two equations can be 

further improved in the future. 
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Fig. 5. Comparison of controller system tracking curves under different methods. 
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Fig. 6. Comparison of closed-loop system curves under controller interference for different methods 
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