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Abstract—This study explores the identical synchronization
of drive-response neural networks consisting of n different
reaction-diffusion systems with arbitrary structures. Specifi-
cally, the drive network is made up of n reaction-diffusion
systems of FitzHugh-Nagumo type, while the response network
contains n reaction-diffusion systems of Hindmarsh-Rose type.
Despite the arbitrary topological structures of these two com-
plex networks, we develop a nonlinear adaptive controller to
achieve the desired synchronization. Additionally, the paper
presents numerical results to validate the effectiveness of the
proposed method.

Index Terms—drive-response neural networks, identical syn-
chronization, synchronous controller, reaction-diffusion system.

I. INTRODUCTION

SYNCHRONIZATION is one of the most important dy-
namical properties of dynamical systems and has been

extensively studied in various domains and natural phenom-
ena, particularly in complex networks. There are various
complex networks in nature and human society, including
transportation networks, biological networks, social rela-
tionship networks, and neural networks, among others [5],
[6], [8]. In recent years, complex networks have garnered
significant interest in fields such as biology, engineering,
economics, neuroscience, mathematics, and physics, and they
have become a focal point of research in academic circles.
Numerous valuable results have been obtained [1], [2], [3],
[7], [15], [16]. Many studies delve into the synchronization
of complex networks and its real-world applications [11],
[12], [13], [14], [21]. The term ”synchronization” typically
refers to having the same behavior at the same time [5].
This principle is evident in various applications, including
social production and human activities, such as ensuring
communication security, developing laser equipment, and
creating nuclear magnetic resonance instruments [12], [21].

The synchronization of complex networks has profound
practical implications and has been extensively studied. Inter-
nal synchronization in complex networks has been explored
in numerous papers, including references such as [1], [2].
Synchronization between two networks with distinct cell
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groups and structures is also achievable. This paper delves
into the study of identical synchronization of drive-response
neural networks with varying node dynamics. For exam-
ple, in Fig. 1, the left graph illustrates the drive network,
composed of n reaction-diffusion systems of FitzHugh-
Nagumo type, while the right graph represents the response
network with n reaction-diffusion systems of Hindmarsh-
Rose type. Synchronizing networks with different structures
and connections presents a formidable challenge, driving
the investigation of a nonlinear controller design to realize
identical synchronization of networks with differing node
dynamics and topological structures.

In our research, we are exploring the concept of identical
synchronization in neural networks. A neural network is
a collection of neurons that are connected through phys-
iological means, predominantly electrochemical processes
[7]. This type of network is well-known in fields such as
neurophysiology, automatic control, and image processing.

Our focus is on studying the synchronization of two or
three reaction-diffusion systems of the FizHugh-Nagumo
type [1], [2], as well as the synchronization of n dynamical
systems of FitzHugh-Nagumo type in complete networks
[18], [19], [20]. We have also conducted research on iden-
tical synchronization in a complete network of n reaction-
diffusion systems of Hindmarsh-Rose type with both linear
and nonlinear coupling [16], [15].

A significant gap in the existing literature is the lack
of studies on the identical synchronization of two neural
networks consisting of n distinct reaction-diffusion systems.
This prompted us to select this topic, which specifically in-
vestigates the problem of identical synchronization for drive-
response neural networks of n different reaction-diffusion
systems. In this scenario, the drive network comprises n
reaction-diffusion systems of FitzHugh-Nagumo type, while
the response network contains n reaction-diffusion systems
of Hindmarsh-Rose type.

Synchronizing two different systems is challenging, and
synchronizing two networks with distinct dynamic nodes
presents an even greater challenge. Our objective is to
develop a controller that facilitates synchronization in such
cases. In situations where the topological structures of the
drive-response neural networks are known, we plan to de-
sign an appropriate nonlinear adaptive controller to achieve
identical synchronization of these two networks. This will be
based on Lyapunov stability theory and LaSalle’s invariance

IAENG International Journal of Applied Mathematics

Volume 54, Issue 10, October 2024, Pages 2049-2059

 
______________________________________________________________________________________ 



Fig. 1. This figure is an example of the drive-response networks of reaction-diffusion systems. On the left-hand side, there are n reaction-diffusion
systems of FitzHugh-Nagumo type forming the drive network, and on the right-hand side, there are n reaction-diffusion systems of Hindmarsh-Rose type
forming the response network.

principle. Additionally, we will present numerical results to
validate the effectiveness of the proposed method.

This paper is structured as follows: In Section 2, we
provide the definition of identical synchronization between
the drive-response complex networks of n different reaction-
diffusion systems and some preliminary knowledge. We
also utilize the Lyapunov theory and LaSalle’s invariance
principle to design schemes for constructing the synchronous
controller to achieve identical synchronization. In Section
3, we present two numerical examples to demonstrate the
effectiveness of the method proposed in Section 2. Finally,
in Section 4, we offer our conclusions.

II. SYNCHRONOUS CONTROLLER BETWEEN DRIVE
NETWORK OF n REACTION-DIFFUSION SYSTEMS OF

FITZHUGH - NAGUMO TYPE AND RESPONSE NETWORK
OF n REACTION-DIFFUSION SYSTEMS OF

HINDMARSH-ROSE TYPE

In 1952, A. L. Hodgkin and A. F. Huxley revolutionized
the field by introducing a groundbreaking four-dimensional
mathematical system that accurately approximated neural
membrane potential properties [7], [8], [10]. This led to
the development of simpler models by numerous scien-
tists to describe neuron voltage dynamics. Following suit,
in 1962, R. FitzHugh and J. Nagumo unveiled the sim-
plified two-dimensional FitzHugh-Nagumo model, derived
from Hodgkin-Huxley’s renowned model [11]. Despite its
simplicity, this model yields incredible analytical results and
preserves the energizing properties and biological signifi-
cance of cells. The system comprises two equations in the
variables u and v, where u = u(t) represents the fast, ex-
citatory transmembrane voltage and v = v(t) represents the
slow recovery variable, reflecting physical quantities like the
electrical conductivity of ion currents across the membrane.
The ordinary differential equations of the FitzHugh-Nagumo
type are given by [1], [2]:


ε
du

dt
= εut = f(u)− v + I,

dv

dt
= vt = au− bv + c,

(1)

where a, b, c are constants (a, b are strictly positive); 0 <
ε < 1; f(u) = −u3 + 3u; I presents the external current; t
presents the time.

In 1982, J. L. Hindmarsh and R. M. Rose introduced a
new, simpler model called the Hindmarsh-Rose model [9].
This model is as simple as the FitzHugh-Nagumo model,
and consists of two equations in two variables, u and v.
The first variable represents the transmembrane voltage, and
the second represents some physical quantities, such as the
electrical conductivity of ion currents across the membrane.
The ordinary differential equations of Hindmarsh-Rose type
are given by [7].

du

dt
= ut = g(u) + v + I,

dv

dt
= vt = 1− bu2 − v,

(2)

where u = u(t), v = v(t); g(u) = −u3 + a.u2; the
parameters a, b are positive constants determined by practical
experience; I presents the external current; t presents the
time.

The systems (1) and (2) are insufficient in describing the
propagation of action potential along the axon. To address
this limitation, we have investigated the cable equation,
which involves adding the Laplace operator of transmem-
brane voltage to the first equation of systems (1) and (2).
This approach yields models that not only describe the
propagation of action potential, but also provide insights
into quantitative and qualitative cell functioning. Conse-
quently, we are considering the reaction-diffusion system of
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FitzHugh-Nagumo type (FHN) as follows: εut = f(u)− v + I + d∆u,

vt = au− bv + c,
(3)

where u = u(x, t), v = v(x, t), (x, t) ∈ Ω × R+; d is a
positive constant; ∆u is the Laplace operator of u; Ω ⊂ RN

is a regular bounded open set and with Neumann zero flux
boundary conditions, and N is a positive integer.

The reaction-diffusion system of Hindmarsh-Rose type
(HR) is as follows: ut = g(u) + v + I + d∆u,

vt = 1− bu2 − v,
(4)

where u = u(x, t), v = v(x, t), (x, t) ∈ Ω × R+; d is a
positive constant; ∆u is the Laplace operator of u; Ω and N
are defined as in system (3).

These models offer a comprehensive representation of
various physiological patterns and phenomena. They com-
prise two nonlinear partial differential equations, with the
first equation capturing the action potential and the second
one introducing the recovery variable to describe essential
physical quantities. Notably, the first equation closely re-
sembles the cable equation, portraying the distribution of
membrane potential along the axon of a single cell [8], [11].
Additionally, systems (3) and (4) are effectively treated as
a neural model, and networks of n coupled systems (3) and
(4) are thoughtfully constructed as follows:

εuit = f(ui)− vi + Ii + di∆ui +
n∑

j=1

cijh(ui, uj),

vit = aui − bvi + c,
i = 1, 2, ..., n,

(5)
and

uit = g(ui) + vi + Ii + di∆ui +
n∑

j=1

cijh(ui, uj) + wi,

vit = 1− bu2
i − vi + wi,

i = 1, 2, ..., n,
(6)

where (ui, vi), (ui, vi), Ii, Ii, di, di, i = 1, 2, ..., n are de-
fined as (3) and (4), respectively. The coefficients cij are the
elements of the connectivity matrix Cn = (cij)n×n, defined
by: cij > 0 if neuron ith and jth are coupled, cij = 0 if
neuron ith and jth are not coupled. This matrix also presents
the network topology. The function h presents the coupling
function describing the type of connection between cell ith
and jth. It is known that neurons connect through synapses,
then it leads to two types of connections between cells such
as chemical connections and electrical ones. The coefficients
cij and the function h are defined as cij and h in system
(5), respectively; wi, wi, i = 1, 2, ..., n are the synchronous
controllers to be designed.

If the neurons are connected through a chemical synapse,
then the coupling function is nonlinear [1], [2], [7] and is
defined by the following formula:

h(ui, uj) = −(ui − Vsyn)gsyn
1

1 + exp(−λ(uj − θsyn))
,

(7)

for all i, j = 1, 2, ..., n, j 6= i, where gsyn represents a
positive number that is called the coupling strength [6], [7],
[8]; the variable Vsyn represents the reversal potential, and it
must have a value larger than ui(x, t), for all i = 1, 2, ..., n,
x ∈ Ω, t ≥ 0 since synapses are considered to be excitatory;
the symbol θsyn indicates the threshold value that is reached
by every action potential; λ is a positive number that can be
large enough to approximate the Heaviside function [6], [7].

If neurons are connected through an electrical synapse,
the coupling function is linear [7], [15]. It is given by the
following formula:

h(ui, uj) = −gsyn(ui − uj), (8)

for all i, j = 1, 2, ..., n, j 6= i.
The network represented by (5) is the drive network, while

the network represented by (6) is the response network. From
the model of drive-response neural networks, it is evident
that the topologies of the two networks can differ, and the
node dynamics are also distinct. Due to these differences,
achieving identical synchronization of the two networks
without adding any controllers is impossible. Therefore,
designing adaptive controllers is necessary to achieve the
desired synchronization.

Before we delve into the main results, it’s crucial to
consider the following remarks to substantiate our desired
outcomes.

Remark 1. The function f satisfies the following condition:

|f(ui)− f(uj)| ≤ α1 |ui − uj | , i, j = 1, 2, ..., n, (9)

where ui, uj present the transmembrane voltages, and α1 is
a positive number.

Proof: For all ui, uj , i, j = 1, 2, ..., n, we have:

f(ui)− f(uj) = −u3
i + 3ui + u3

j − 3uj

= (ui − uj)
[
3− (ui − uj)2 − uiuj

]
.

Since ui, uj , i, j = 1, 2, ..., n are bounded in [3], then we
can find a positive constant α1 such that:

|f(ui)− f(uj)| ≤ α1 |ui − uj | , i, j = 1, 2, ..., n.

Remark 2. The function g satisfies the following condition:

|g(ui)− g(uj)| ≤ α2 |ui − uj | , i, j = 1, 2, ..., n, (10)

where ui, uj present the transmembrane voltages, and α2 is
a positive number.

Proof: For all ui, uj , i, j = 1, 2, ..., n, we have:

g(ui)− g(uj) = −u3
i + a.u2

i + u3
j − a.u2

j

= (ui − uj)
[
a(ui + uj)− (u2

i + ui.uj + u2
j )
]
.

Since ui, uj , i, j = 1, 2, ..., n are bounded in [17], then we
can find a positive constant α2 such that:

|g(ui)− g(uj)| ≤ α2 |ui − uj | , i, j = 1, 2, ..., n.

Remark 3. The function h defined by (7) satisfies the
following condition:

|h(ui, uk)− h(uj , ul)| ≤ β |ui − uj | , i, j, k, l = 1, 2, ..., n,
(11)
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where ui, uj , uk, ul present the transmembrane voltages, and
β is a positive number.

Proof: For all ui, uj , i, j = 1, 2, ..., n, we have:

|h(ui, uk)− h(uj , ul)| =

=

∣∣∣∣gsyn(ui − Vsyn)
1

1 + exp(−λ(uk − θsyn))

−gsyn(uj − Vsyn)
1

1 + exp(−λ(ul − θsyn))

∣∣∣∣ ,
where k 6= i, l 6= j.

Since uk, ul, k, l = 1, 2, ..., n are bounded in [3], then we
can find a positive constant K such that:

−K ≤ 1

1 + exp(−λ(uk − θsyn))
≤ K,

and
−K ≤ 1

1 + exp(−λ(ul − θsyn))
≤ K.

Besides that ui − Vsyn < 0; uj − Vsyn < 0, for all
ui, uj , i, j = 1, 2, ..., n, since we only consider the rapid
chemical excitatory synapses [6], [7].

Thus,

|h(ui, uk)− h(uj , ul)| ≤
≤ |Kgsyn(ui − Vsyn) +Kgsyn(uj − Vsyn)|

≤ Kgsyn |ui + uj − 2Vsyn| .
Moreover, ui, uj , i, j = 1, 2, ..., n are bounded in [3], then

we can find a positive constant β such that:

|h(ui, uk)− h(uj , ul)| ≤ β |ui − uj | .

Remark 4. It is easy to see that the function h defined by
(8) satisfies the following condition:

|h(ui, uk)− h(uj , ul)| ≤ β |ui − uj | , i, j, k, l = 1, 2, ..., n,
(12)

where ui, uj , uk, ul present the transmembrane voltages, and
β is a positive number.

Remark 5. The function h in network (6) is defined as h in
network (5), then it also verifies the conditions in Remark 3
and Remark 4.

Remark 6. We can take the system (6) as the drive network
and the system (5) as the response one. Then, all proofs in
this work could be realized in the same manner.

We remind that the identical synchronization in the net-
work of n reaction-diffusion systems is expressed as follows.

Definition 1 (see [1]). Let Si = (ui, vi), i = 1, 2, ..., n
and S = (S1, S2, ..., Sn) be a network. We say that S is
identically synchronous if

lim
t→+∞

n−1∑
i=1

(
‖ui − ui+1‖L2(Ω) + ‖vi − vi+1‖L2(Ω)

)
= 0,

where L2(Ω) is function space on Ω defined using a natural
generalization of the 2-norm for finite-dimensional vector
spaces.

By applying Definition 1 to this work, we let the node
error of the identical synchronization between two systems

(5) and (6) be ei = ui − ui, ei = vi − vi, i = 1, 2, ..., n.
If there is a controller wi such that Definition 1 satisfies, it
means:

lim
t→+∞

n∑
i=1

(
‖ei‖L2(Ω) + ‖ei‖L2(Ω)

)
= 0,

then the networks (5) and (6) are said to be identical
synchronization.

To get the identical synchronization of networks (5) and
(6), the controller wi is designed as follows:

wi = uit−g(ui)−vi−Ii−di∆ui−
n∑

j=1

cijh(ui, uj)−kiei,

(13)
and

wi = vit − 1 + bu2
i + vi − ki.ei, (14)

with the updated rules defined as follows:

kit = rie
2
i , and kit = ri.e

2
i , (15)

where ri, ri are arbitrary positive constants, for i =
1, 2, ..., n.

Under the action of the controllers, the error dynamic
equations of the system is described as follows:

eit = (uit − uit)

= g(ui) + vi + Ii + di∆ui +
n∑

j=1

cijh(ui, uj)

−g(ui)− vi − Ii − di∆ui −
n∑

j=1

cijh(ui, uj)− kiei

= g(ui)− g(ui) + (vi − vi) + di∆(ui − ui)

+
n∑

j=1

cij(h(ui, uj)− h(ui, uj))− kiei,

(16)
and

eit = vit − vit = −b(u2
i − u2

i )− (vi − vi)− ki.ei, (17)

for i = 1, 2, ..., n.
Next, we explore the identical synchronization issue of

networks (5) and (6). The primary result is presented in the
following theorem.

Theorem 1. The drive-response neural networks (5) and
(6) can achieve identical synchronization under the adaptive
controllers (13), (14) and updated rules (15).

Proof: We construct the Lyapunov function as follows:

V (x, t) =
1

2

n∑
i=1

∫
Ω

[
e2
i + e2

i +
1

ri
(ki − k)

2
+

1

ri
(ki − k)

2
]
dx,

(18)
where k, k are positive constants to be determined.

Calculating the time derivative of V (x, t), we get:

∂V (x, t)

∂t
=

n∑
i=1

∫
Ω

[
eieit + ēiēit +

1

ri
(ki − k)kit

+
1

r̄i
(k̄i − k̄)k̄it

]
dx.

(19)
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By using the error systems (16) and (17), (19) becomes:

∂V (x, t)

∂t
=

n∑
i=1

∫
Ω

[ei (g(ui)− g(ui) + (vi − vi)

+di∆(ui − ui) +
n∑

j=1

cij(h(ui, uj)− h(ui, uj))− kiei)

+ei
(
b(u2

i − u2
i )− (vi − vi)− ki.ei

)
+

1

ri
(ki − k)kit +

1

ri
(ki − k)kit]dx.

(20)
By using the Green formula and Neumann zero flux

boundary conditions, (20) becomes:

∂V (x, t)

∂t
≤

n∑
i=1

∫
Ω

[ei (g(ui)− g(ui)) + eiei

+ei
n∑

j=1

cij(h(ui, uj)− h(ui, uj))− kie2
i + beiei(ui + ui)

−kie2
i − e2

i + kie
2
i − ke2

i + kie
2
i − ke2

i

]
dx

≤
n∑

i=1

∫
Ω

[ei (g(ui)− g(ui)) + eiei

+ei
n∑

j=1

cij(h(ui, uj)− h(ui, uj)) + beiei(ui + ui)

−(1 + k)e2
i − ke2

i

]
dx.

(21)
By using Remarks 1-6, it is easy to obtain:

∂V (x, t)

∂t
≤

n∑
i=1

∫
Ω

[
α2e

2
i − (1 + k)ē2

i − ke2
i

+ |ei| |ei| (1 + b(|ui|+ |ui|)) +
n∑

j=1

β |c̄ij | |ei| |ej |

]
dx.

(22)
Besides that, we can see:

n∑
i=1

n∑
j=1

β |cij | |ei| |ej | = β
n∑

i=1

|ei| n∑
j=1

|cij | |ej |


≤ β

 n∑
i=1

e2
i .

n∑
i=1

 n∑
j=1

|cij | |ej |

2


1
2

≤ β

 n∑
i=1

e2
i .

n∑
i=1

 n∑
j=1

cij
2.

n∑
j=1

e2
j

 1
2

≤ β

( n∑
i=1

e2
i

)2

.
n∑

i=1

(
n∑

j=1

cij
2

) 1
2

≤ β

( n∑
i=1

e2
i

)2

.n2 max
1≤i,j≤n

cij
2

 1
2

≤ βn max
1≤i,j≤n

|cij |
n∑

i=1

e2
i ,

(23)

and

|ei| |ēi| (1 + b̄(|ūi|+ |ui|)) ≤
1

2
(1 + b̄(|ūi|+ |ui|))(e2

i + ē2
i )

≤M(e2
i + ē2

i ),
(24)

where M is a positive constant, since ui, ui, i = 1, 2, ..., n
are bounded (see [3], [17]).

Combining (22), (23) and (24) yields:

∂V (x, t)

∂t
≤

n∑
i=1

∫
Ω

[α2e
2
i − (1 + k)e2

i − ke2
i

+Me2
i +Me2

i + βn max
1≤i,j≤n

|cij | e2
i ]dx

≤
n∑

i=1

∫
Ω

[(α2 − k +M + βn max
1≤i,j≤n

|cij |)e2
i

−(1 + k −M)e2
i ]dx

≤
n∑

i=1

∫
Ω

[−(k − α2 −M − βn max
1≤i,j≤n

|cij |)e2
i

−(1 + k −M)e2
i ]dx.

(25)
Take k > α2 + M + βn max

1≤i,j≤n
|cij | and k > M − 1, then

(25) can be estimated as:

∂V (x, t)

∂t
≤ −γ

n∑
i=1

∫
Ω

[
1

2
(e2

i + e2
i )

]
dx, (26)

where

γ = min

{
2(k − α2 −M − βn max

1≤i,j≤n
|cij |); 2(1 + k −M)

}
.

It can be found from (26) that 0 ≤ V (x, t) ≤ V (x, 0),
this together with (18) signifies V (x, t) is bounded. Based on
Lyapunov stability theory and LaSalle’s invariance principle
[4], we have:

lim
t→+∞

n∑
i=1

(
‖ei‖L2(Ω) + ‖ei‖L2(Ω)

)
= 0.

It follows from Definition 1 that the drive-response net-
works (5) and (6) achieve identical synchronization. Thus,
the proof is complete.

III. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we present two examples of drive and re-
sponse networks to illustrate the effectiveness of the method
proposed in the previous section.

We have obtained numerical results that demonstrate iden-
tical synchronization between networks of reaction-diffusion
systems of FHN and networks of reaction-diffusion systems
of HR, despite having different network topologies. The
systems were integrated using C++ and the results were
visualized using Gnuplot.

Some parameters are fixed as [1], [2], [6], [7], [15], [16]:

f(u) = −u3 + 3u, a = 1, b = 0.001, c = 0, ε = 0.1,

Ii = Ii = 0, di = di = 0.05, i = 1, 2, ..., n,

[0;T ]× Ω = [0; 500]× [0; 100]× [0; 100] ,

λ = 10, Vsyn = 2, θsyn = −0, 25,

g(u) = −u3 + au2, a = 3, b = 5.
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A. Example 1

In this example, we consider a ring network (drive net-
work) with unidirectionally linear coupling, consisting of 3
nodes based on FHN:

εu1t = f(u1)− v1 + I1 + d1∆u1 − gsyn(u1 − u2)
v1t = au1 − bv1 + c
εu2t = f(u2)− v2 + I2 + d2∆u2 − gsyn(u2 − u3)
v2t = au2 − bv2 + c
εu3t = f(u3)− v3 + I3 + d3∆u3 − gsyn(u3 − u1)
v3t = au3 − bv3 + c

(27)
and the response network consists of 3 nodes based on HR
and is structured as a complete (full) network with linear
coupling:

u1t = g(u1) + v1 + I1 + d1∆u1

−gsyn(u1 − u2)− gsyn(u1 − u3) + w1

v1t = 1− bu2
1 − v1 + w1

u2t = g(u2) + v2 + I2 + d2∆u2

−gsyn(u2 − u3)− gsyn(u2 − u1) + w2

v2t = 1− bu2
2 − v2 + w2

u3t = g(u3) + v3 + I3 + d3∆u3

−gsyn(u3 − u1)− gsyn(u3 − u2) + w3

v3t = 1− bu2
3 − v3 + w3

(28)
with the adaptive controllers defined as:

w1 = u1t − g(u1)− v1 − I1 − d1∆u1

+gsyn(u1 − u2) + gsyn(u1 − u3)− k1(ū1 − u1)

w2 = u2t − g(u2)− v2 − I2 − d2∆u2

+gsyn(u2 − u1) + gsyn(u2 − u3)− k2(ū2 − u2)

w3 = u3t − g(u3)− v3 − I3 − d3∆u3

+gsyn(u3 − u1) + gsyn(u3 − u2)− k3(ū3 − u3)

w1 = v1t − 1 + bu2
1 + v1 − k1(v1 − v1)

w2 = v2t − 1 + bu2
2 + v2 − k2(v2 − v2)

w3 = v3t − 1 + bu2
3 + v3 − k3(v3 − v3)

(29)
where 

k1t = r1(u1 − u1)2

k2t = r2(u2 − u2)2

k3t = r3(u3 − u3)2

k1t = r1(v1 − v1)2

k2t = r2(v2 − v2)2

k3t = r3(v3 − v3)2

(30)

Notice that the adaptive controllers (29) and the updated
rules (30) are defined as (13), (14), and (15), respectively.

Fig. 2 below illustrates the synchronization errors of
drive-response networks (27) and (28) without the adaptive
controllers (29) and the updated rules (30). Specifically, Fig.
2(a), 2(b), 2(c) represent the synchronization errors of the
coupled solutions, respectively:

(u1(x1, x2, t), u1(x1, x2, t)) , (u2(x1, x2, t), u2(x1, x2, t)) ,

and (u3(x1, x2, t), u3(x1, x2, t))

where t ∈ [0;T ] and for all (x1, x2) ∈ Ω, with gsyn = 0.1.
This figure illustrates that the synchronization errors do not
approach zero, indicating that the drive-response networks
are unable to achieve identical synchronization.

Fig. 3 below illustrates the synchronization errors of drive-
response networks (27) and (28) with the adaptive controllers

(29) and the updated rules (30). The simulations show that
this adaptive scheme is effective and we can get:

lim
t→+∞

3∑
i=1

(
‖ei‖L2(Ω) + ‖ei‖L2(Ω)

)
= 0,

where ei = ui − ui, ei = vi − vi, i = 1, 2, 3. Specifically,
Fig. 3(a), 3(b), 3(c) represent the synchronization errors of
the coupled solutions, respectively:

(u1(x1, x2, t), u1(x1, x2, t)) , (u2(x1, x2, t), u2(x1, x2, t)) ,

and (u3(x1, x2, t), u3(x1, x2, t))

where t ∈ [0;T ] and for all (x1, x2) ∈ Ω, with gsyn =
0.01, r1 = 0.1, r2 = 0.2, r3 = 0.3, r1 = 0.1, r2 = 0.2, r3 =
0.3. Here, we even take a smaller coupling strength than
before. This figure shows that the synchronization errors
reach zero, which means:

u1(x1, x2, t) ≈ u1(x1, x2, t), u2(x1, x2, t) ≈ u2(x1, x2, t)

and u3(x1, x2, t) ≈ u3(x1, x2, t),

for all (x1, x2) ∈ Ω.
Fig. 4(a), 4(b), 4(c) represent the solutions

ui(x1, x2, 499), i = 1, 2, 3, of the drive network (27) and
Fig. 4(d), 4(e), 4(f) perform the solutions ui(x1, x2, 499),
i = 1, 2, 3, of the response network (28). We can see
that networks (27) and (28) have the same shape, i.e, the
synchronization is performed.

B. Example 2

We are examining a 2-node drive network based on
the FHN model. The network has a structure known as a
complete (full) network with linear coupling.

εu1t = f(u1)− v1 + I1 + d1∆u1 − gsyn(u1 − u2)
v1t = au1 − bv1 + c
εu2t = f(u2)− v2 + I2 + d2∆u2 − gsyn(u2 − u1)
v2t = au2 − bv2 + c

(31)
and the response network of 2 nodes based on HR that has the
structure known as a chain network with nonlinear coupling
is described by:

u1t = g(u1) + v1 + I1 + d1∆u1

−gsyn(u1 − Vsyn)
1

1 + exp(−λ(u2 − θsyn))
+ w1

v1t = 1− bu2
1 − v1 + w1

u2t = g(u2) + v2 + I2 + d2∆u2 + w2

v2t = 1− bu2
2 − v2 + w2

(32)
with the adaptive controllers defined as:

w1 = u1t − g(u1)− v1 − I1 − d1∆u1

+gsyn(u1 − Vsyn)
1

1 + exp(−λ(u2 − θsyn))
−k1(u1 − u1)

w2 = u2t − g(u2)− v2 − I2 − d2∆u2 − k2(u2 − u2)

w1 = v1t − 1 + bu2
1 + v1 − k1(v1 − v1)

w2 = v2t − 1 + bu2
2 + v2 − k2(v2 − v2)

(33)
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Fig. 2. Synchronization errors of the drive-response networks (27) and (28) without controllers (29). We can see that the synchronization errors do not
reach zero which means there is not the synchronization.

Fig. 3. Synchronization errors of the drive-response networks (27) and (28) with controllers (29). We can see that the synchronization errors asymptotically
reaches zero which means the synchronization occurs.

where 
k1t = r1(u1 − u1)2

k2t = r1(u2 − u2)2

k1t = r1(v1 − v1)2

k2t = r2(v2 − v2)2

(34)

Notice that the adaptive controllers (33) and the updated
rules (34) are defined as (13), (14), and (15), respectively.

Fig. 5 below illustrates the synchronization errors of
drive-response networks (31) and (32) without the adaptive
controllers (33) and the updated rules (34). Specifically, Fig.
5(a), 5(b) represent the synchronization errors of the coupled
solutions, respectively:

(u1(x1, x2, t), u1(x1, x2, t)) ,

and
(u2(x1, x2, t), u2(x1, x2, t)) ,

where t ∈ [0;T ] and for all (x1, x2) ∈ Ω, with gsyn = 0.1.
This figure illustrates that the synchronization errors do not
reach zero, indicating that the drive-response networks are
unable to achieve identical synchronization.

Fig. 6 below illustrates the synchronization errors of drive-
response networks (31) and (32) with the adaptive controllers
(33) and the updated rules (34). The simulations show that
this adaptive scheme is effective and we can get:

lim
t→+∞

2∑
i=1

(
‖ei‖L2(Ω) + ‖ei‖L2(Ω)

)
= 0,

where ei = ui − ui, ei = vi − vi, i = 1, 2. Specifically, Fig.
6(a), 6(b) represent the synchronization errors of the coupled

solutions, respectively:

(u1(x1, x2, t), u1(x1, x2, t)) ,

and
(u2(x1, x2, t), u2(x1, x2, t)) ,

where t ∈ [0;T ] and for all (x1, x2) ∈ Ω, with gsyn =
0.1, r1 = 0.1, r2 = 0.2, r1 = 0.1, r2 = 0.2. This figure
shows that the synchronization errors reach zero, which
means:

u1(x1, x2, t) ≈ u1(x1, x2, t),

and
u2(x1, x2, t) ≈ u2(x1, x2, t),

for all (x1, x2) ∈ Ω.
Fig. 7(a), 7(b) represent the solutions ui(x1, x2, 499), i =

1, 2, of the drive network (31) and Fig. 7(c), 7(d) perform the
solutions ui(x1, x2, 499), i = 1, 2, of the response network
(32). We can see that networks (31) and (32) have the same
shape, i.e., the synchronization is performed.

Remark 7. Notice that the synchronization described above
refers to the identical synchronization between two networks
of cells. This means that the ith cell of the first network will
exhibit the same pattern as the ith cell of the second network.
In simpler terms, one network will mirror the behavior of
the other. It is important to note that the behavior of cells
within the same network can vary (refer to Fig. 4 and Fig. 7).
However, if we aim for all cells in both networks to display
the same pattern, we must increase the coupling strength so
that it exceeds the necessary threshold value [6]. This way,
all cells in both networks will exhibit the same pattern (as
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Fig. 4. Synchronization patterns of the drive-response networks (27) and (28) with controllers (29). Fig. 4(a), 4(b), 4(c) represent the solutions
ui(x1, x2, 499), i = 1, 2, 3, of the drive network (27), and Fig. 4(d), 4(e), 4(f), perform the solutions ui(x1, x2, 499), i = 1, 2, 3, of the response
network (28). We can observe that the patterns in the second column have the same shape as the patterns in the first column, respectively. In other words,
the response network (27) synchronizes with the drive network (28).

depicted in Fig. 9). In Fig. 9, when we set gsyn = 2, this
value is sufficiently large to ensure uniform behavior for all
cells of networks (31) and (32).

Fig. 8(a), 8(b), 8(c), and 8(d) represent the synchronization
errors of the coupled solutions, respectively:

(u1(x1, x2, t), u1(x1, x2, t)) , (u2(x1, x2, t), u2(x1, x2, t)) ,

and

(u1(x1, x2, t), u2(x1, x2, t)) , (u1(x1, x2, t), u2(x1, x2, t)) ,

where t ∈ [0;T ] and for all (x1, x2) ∈ Ω, with gsyn =
2, r1 = 0.1, r2 = 0.2. This figure shows that the synchro-
nization errors reach zero, which means:

u1(x1, x2, t) ≈ u1(x1, x2, t), u2(x1, x2, t) ≈ u2(x1, x2, t)

and

u1(x1, x2, t) ≈ u2(x1, x2, t), u1(x1, x2, t) ≈ u2(x1, x2, t)

for all (x1, x2) ∈ Ω.
Fig. 9(a), 9(b) represent the solutions ui(x1, x2, 499), i =

1, 2, of the drive network (31), and Fig. 9(c), 9(d) perform the
solutions ui(x1, x2, 499), i = 1, 2, of the response network
(32). We can see that they have the same shape, i.e., the
synchronization is performed for all cells of both networks.

IV. CONCLUSION

In this paper, we investigate the identical synchroniza-
tion of drive-response neural networks consisting of dif-
ferent reaction-diffusion systems with arbitrary topologi-
cal structures. Specifically, the drive network comprises n
reaction-diffusion systems of FitzHugh-Nagumo type, while
the response network contains n reaction-diffusion systems
of Hindmarsh-Rose type. We develop nonlinear adaptive
controllers and establish a suitable Lyapunov function to
achieve the desired synchronization. The numerical results
demonstrate the effectiveness of the proposed method. In this
study, the use of complex synchronous controllers is neces-
sary for attaining identical synchronization. Simplifying the
controllers and exploring additional drive-response networks
of n different reaction-diffusion systems will be key areas of
investigation in future research.
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Fig. 7. Synchronization patterns of the drive-response networks (31) and (32) with controllers (33). Fig. 7(a), 7(b) represent the solutions
ui(x1, x2, 499), i = 1, 2, of the drive network (31), and Fig. 7(c), 7(d) perform the solutions ui(x1, x2, 499), i = 1, 2, of the response network (32).
We observe that the patterns in the second column mirror those in the first column. In other words, the response network in equation (31) synchronizes
with the drive network in equation (32).

Fig. 8. Synchronization errors of the drive-response networks (31) and (32) with controllers (33) and big enough coupling strength. We can see that all
synchronization errors asymptotically reaches zero which means the synchronization occurs for all nodes of both considering networks.
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Fig. 9. Synchronization patterns of the drive-response networks (31) and (32) with controllers (33) and big enough coupling strength. Fig. 9(a), 9(b)
represent the solutions ui(x1, x2, 499), i = 1, 2, of the drive network (31), and Fig. 9(c), 9(d) perform the solutions ui(x1, x2, 499), i = 1, 2, of the
response network (32). We can see that all patterns have the same shape. In other words, the synchronization is performed for all cells of both networks.
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