
 

  

Abstract—Let G(p,q) be a simple graph, where p is the 

number of vertices and q is the number of edges if there exists a 

one-to-one mapping f: E(G)→{1,2,…,|E|}, so that for any two 

vertices uvE(G), if d(u)=d(v), then S(u)=S(v), where 

S(u)=uwE(G)f(uw) and d(u) represents the degree of vertex u, f 

is called the Adjacent Vertex Reducible Edge Labeling (AVREL) 

of G. Building on the current graph labeling algorithm, a 

heuristic search algorithm is designed, and this algorithm is 

used to label random graphs with less than 12 vertices and 

obtain the result set of adjacent vertex reducible edge labeling. 

Based on the analysis of the result set and combining it with the 

known theorem, the adjacent vertex reducible edge labeling law 

of other compound graphs is obtained, and the related proof is 

given. 

 
Index Terms—Adjacent Vertex Reducible Edge Labeling, 

special graphs, compound graphs, algorithm 

 

I. INTRODUCTION 

N the mid-1960s, the problem of graph labeling first 

emerged, becoming one of the most focused research 

topics in the field of graph theory. In 1967, Rosa et al.[1] put 

forward a beautiful conjecture that “every tree is beautiful.”. 

In 1997, Burris et al.[2] put forward the idea of 

vertex-distincting edge coloring along with associated 

conjectures. In 2002, MacDougall et al.[3] proposed the 

vertex-magic total labeling, which has since attracted 

increasing attention and research from scholars. In 2007, the 

literature[4] made new progress in the study of graceful 

labeling, super-magic total labeling, and harmonic labeling, 

and successfully proved the related conjecture. In 2009, 

Zhang Zhongfu et al.[5] expanded on the idea of dist- 

inguishing coloring by introducing the concept of reducible 

coloring. Many scholars have since studied this concept, 

leading to a series of research finding[6][7]. In 2023, the 
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literature[8] expanded on the theory of adjacent 

vertex-reducible edge labeling, deriving theorems and 

conjectures for path graphs, cycle graphs, star graphs, fan 

graphs, wheel graphs, tree graphs, and their compound 

graphs. The correctness of these theorems and conjectures 

was verified using mathematical proofs and computational 

algorithms. 

In frequency allocation, to reduce interference between 

base stations and users, it is necessary to ensure that different 

frequencies are assigned to different base stations. This issue 

can be expressed as a graph theory problem by abstracting the 

network topology into an undirected graph, where base 

stations are represented as vertices, and channels between 

them as edges. The issue of channel frequency allocation is 

then transformed into the problem of labeling the edges 

associated with each vertex in the graph, with the condition 

that each edge receives a different labeling. Building on the 

research of various scholars, this paper presents an algorithm 

for adjacent vertex reducible edge labeling, based on 

concepts such as vertex sum reducible edge coloring[9][10], 

adjacent vertex distinguishable edge coloring[11], and vertex 

magic total labeling[12]. This algorithm aims to address the 

adjacent vertex reducible edge labeling problem for special 

and compound graphs, starting with reducible coloring and 

incorporating vertex magic total labeling. The algorithm's 

labeling results are analyzed, corresponding theorems are 

summarized, and proofs are offered. 

 

II. PRELIMINARY KNOWLEDGE 

Definition 1: Let G(V,E) be a simple graph. If there exists 

one-to-one mapping f: E(G)→{1,2,…,|E|}, so that for any 

two vertices uvE(G), if d(u)=d(v), then S(u)=S(v), where 

S(u)=uwE(G)f(uw) and d(u) represents the degree of vertex u, 

then f is called the Adjacent Vertex Reducible Edge Labeling 

(AVREL) of G. The graph G is termed AVREL graph; 

otherwise, it is referred to as non-AVREL graph. 
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Fig. 1. Example of 7 5aaS F . 

Definition 2: Let G1 and G2 be simple connected graphs 

belonging to the path graph (Pn), cycle graph (Cn), star graph 
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(Sn), fan graph (Fn), wheel graph (Wn) and complete graph (Kn) 

where symbol a represents center nodes of star, fan and 

wheel graphs, degree-1 vertices of path graph and any 

vertices. Symbol b represents non-center nodes of star and 

wheel graphs, degree-2 vertices of fan graphs, and degree-2 

vertices of path graphs. Symbol d represents nodes at a 

distance of 2 from the previous node without passing through 

the center node. The compound graph 
1 2aaG G  refers to 

connecting the a node of G1 to the a node of G2, as shown in 

Fig. 1. 

Definition 3: Let Gn be a simple graph. The compound 

graph ( )3n nG G n   refers to the Gn formed by sharing 

edges with itself, as shown in Fig. 2(a). 

Definition 4: The friendship graph Tn is the compound 

graph formed by n copies of the cycle graph C3 with common 

vertices, as shown in Fig. 2(b). 
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(a) 
6 6W W  
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(b) 
4T  

Fig. 2. Example of 
6 6W W  and 

nT . 

Definition 5: Let G1 and G2 be two simple graphs with the 

number of vertices n1 and n2 and the number of edges m1 and 

m2, respectively. We define the corona graph of G1 and G2 as 

a graph that connects each vertex of G1 to each vertex of a 

copy of G2, represented as 
1 2G G . The vertex number of 

1 2G G  is 
1 21n ( n )+ , and the edge number is 

1 1 2 1 2m n n n m+ + . 

For example, G1 = C4, G2 = P2, and the corona graph of vertex 

4 2C P  of graph G1 and G2 are shown in Fig. 3. 
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Fig. 3. Example of 
4 2C P . 

Definition 6: Let G1 and G2 be two simple graphs with the 

number of vertices n1 and n2, and the number of edges m1 and 

m2. The generalized corona graph of G1 and G2 is defined as 

follows: for each b node of G1 (where b represents non-center 

nodes of star, wheel, friendship graphs, degree-2 vertices of 

fan graphs, and degree-2 vertices of path graphs), connect it 

to copy of the a node of G2 (where a represents center nodes 

of star, fan, wheel, friendship graphs, degree-1 vertices of 

path graphs, and any vertices of cycle graphs). This results in 

a compound graph denoted as 
1 2

b aG G . When several nodes 

of G1 are connected with a nodes of G2, the generalized 

corona graph is abbreviated as 
1 2

abc aG G . For example, 

1 8G W=  and 
2 3G S= , the generalized corona graph as 

8 3

b aW S  

of graphs G1 and G2, as shown in Fig. 4. 
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Fig. 4. Example of 
8 3

b aW S . 

III. AVREL ALGORITHM 

A. Preparation phase 

Based on the definition of AVREL, a graph classification 

function is defined using the graph's degree sequence. The 

graph is divided into two classes: the graph with the same 

degree sequence of neighboring vertex and the other with a 

different degree sequence of neighboring vertex; the adjacent 

vertex degree sequence has the same labeling, and the 

labeling number is continuous. A balance function is then 

defined according to the labeling conditions of AVREL, and 

this balance function is used to determine whether the 

labeling meets the necessary conditions. 

The basic principles of the AVREL algorithm involve 

utilizing permutations to generate a solution space and 

recursively searching the solution space to obtain labeling 

that satisfyingly restrictive condition. 

(1) Generate the solution space based on the preparatory 

work and recursively search through it. 

(2) Use a balancing function to filter out graph sets that 

satisfy AVREL conditions and output the labeling results as 

an adjacency matrix. 

(3) We classify the graph sets as AVREL if they satisfy the 

condition, and as non-AVREL if they don't. 

We are setting the labeling balance constraint condition 

based on the principles of the AVREL algorithm: 

(1) d(u)=d(v), for uvE(G), where S(u)=uwE(G)f(uw)= 

S(v)=vwE(G)f(vw)=k, and k is a constant. 
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(2) A one-to-one mapping f: E(G)→{1,2,…,|E|} exists, and the labeling numbers are consecutive. 

B. Pseudocode for AVREL Algorithm 

 

Input The adjacency matrix of the graph G(p,q) 

Output AVREL graph or non-AVREL graph 

begin  

1 
Read the AdjustMatrix, the adjacency matrix of 

graph G, and initialize the LabelMatrix for labeling. 

2 

Input the number of vertices, the number of edges, 

the degree sequence, the classification function, and 
the solution space 

3 while(φ(p,q))!=null) 

4     search φ(p,q) 

5     if G. isBalance   true 

6           LabelMatrix   AdjustMatrix 

           break 

7     end if 

8 end while 

9     if G. isBalance   false 

10           Output G is not AVREL 

11     end if 

12     else 

13           Output LabelMatrix 

14     end else 

end  

C. Analysis of Experimental Results 

Table Ⅰ lists the number of AVREL graphs in the single 

circle and double circle graphs, ranging from 4 to 12 vertices. 

From Table Ⅰ, it can be seen that the larger the vertices are, 

the proportion of single circle graphs that satisfy AVREL 

graphs increases gradually, and when the vertices are 8, the 

proportion reaches the maximum, and tends to be smooth 

after that; double circle graphs are exactly the opposite, and 

when the number of vertices is 8, the proportion of double 

circle graphs that satisfy AVREL graphs decreases and tends 

to be smooth after that. After that, it tends to stabilise. 

 
Fig. 5. Percentage of AVREL and non-AVREL graphs in all random graphs 

within 4-12 vertices. 

In Fig. 5, we conducted experiments on all random graphs, 

ranging from 4 to 12 vertices. All random graphs within the 

range of 4 to 12 vertices exhibit a proportion of AVREL and 

non-AVREL graphs. We can observe that the proportion of 

the AVREL graph gradually increases, reaches its maximum 

when there are 8 vertices, and then gradually decreases. 

TABLE I 

STATISTICS FOR AVREL GRAPHS WITH 4 TO 12 VERTICES IN SINGLE AND 

DOUBLE CIRCLE GRAPHS 

( )p,q  

Total 

number 

of 
graphs/

piece 

AVREL 
graph 

number/ 

piece 

( )p,q  

Total 

number 

of 
graphs/ 

piece 

AVREL 
graph 

number/ 

piece 

(4,4) 2 0 (8,9) 236 104 

(4,5) 1 1 (9,9) 240 85 

(5,5) 5 1 (9,10) 797 330 

(5,6) 5 3 (10,10) 657 226 

(6,6) 13 4 (10,11) 1412 568 

(6,7) 19 10 (11,11) 1806 599 

(7,7) 33 11 (11,12) 2675 1215 

(7,8) 67 32 (12,12) 5026 1659 

(8,8) 89 31 (12,13) 6121 2510 

Fig. 6 and Fig. 7 shows some of the labeling results for 

AVREL. 

4

11

 
Fig. 6. Labeling results of G(36,54) 

IV. THEOREMS AND PROOFS 

Theorem 1: The generalized corona graph 

( ) ( )( )1 mod 2 , 0 mod 2 , 3b a

n mW S n m n    is AVREL graph. 

Proof: Let the vertex set be ( )  1 2, , ,b a

n m mnV W S v v v=  

 1 2, ,..., nu u u and the edge set be ( )  1

b a

n m nE W S u u=  

  ( ) ( ) 1 0 2 1
,|1 1 , , |1,i i i i i i n i i im n i m n i

u u i n u u u v u v u v u v i n+ + − + − +
  −  

of the generalized corona graph b a

n mW S . 

When ( ) ( )1 mod 2 , 0 mod 2  and 3n m n   , the adjacent 

vertex reducible edge labeling of the generalized corona 

graph b a

n mW S  is: 

Let 2 1, 2 , , 1,2,n k m l k l= + = =  

( )0 4 3, 1,2, ,2 1if u u k i i k= − + = +
 

( )1

1
       , 1,3, ,2 1

2

1 , 2,4, ,2
2

i i

i
i k

f u u
i

k i k

+

+
= −

= 
 + + =


 

( )

( )

( )( ) ( )

( )( ) ( )

1

2

1

1

8 5, 1,2, ,2 1

4 2 1,2, , 2, 1,2, ,2 1

8 4 4 1 2,3, , 2, 1,2, ,2 1

n

i n i

i m n i

i m n i

f u u k

f u v k i i k

f u v kl l i l m i k

f u v kl l k i l m i k

+

− +

− +

= +

= − + = +

= + + = = +

= + − − − = = +
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Fig. 7. Labeling results of G(63,124) 

At this point, the graph contains degree-1 vertices, 

degree-n vertices, and degree-(m+3) vertices. Since the 

degree-1 and degree-n vertices are not adjacent, they do not 

need to be considered. It is only necessary to ensure that all 

adjacent degree-(m+3) vertices have the same sum of 

labeling. {u1, u2, …, un} are adjacent degree-(m+3) vertices. 

When 2 2i k  , the sum of their labels: 

( ) ( )
( )

( ) ( ) ( ) ( )( ) ( )( ) 
( ) ( ) ( ) ( )( ) ( )( ) 
( ) ( ) ( ) ( )( ) ( ) 

( ) ( ) ( )

( )

1 1 0 2 1

1 2 1 0 1 1 12 1 1 1

1 1 0 1

2 2
4 3 4 2 8 4 4 1

2 2

1 1 4

i
i uu E u

i i i i i i im n i m n i

n

n

m m

n n

n n

n mnn n n m

Sum u f uu

f u u f u u f u u f u v f u v

f u u f u u f u u f u v f u v

f u u f u u f u u f u v f u v

i k i
k i kl l i kl l k i

k k



− + − + − +

− + − +

− −

=

= + + + + +

+ + + + +

+ + + + +

+ + 
= + + − + + + + + + + − − − 

 

+ + +



( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) 

( )( ) ( )( )( ) 

( )( )( ) 

2 4 2 1 8 4 4 2

2 1 1 2 2 4 2 2 1 8 6 4 2

17 11 1 20 11 1 2 6 3

20 3 11 1 2 6 3

kl l kl l k

k k k kl k l kl k l

k l k l l k

kl k l l l k

+ + + + + + + − −

+ + + + + + + + + + + − + −

= + + − + + − − +

= − + + − − +

 

The symbol “||” in the full text is represented as a logical 

or. 

An example of the generalized corona graph b a

n mW S  is 

shown in Fig. 8. 
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Fig. 8. Generalized corona graph 

b a

n mW S . 

According to the AVREL definition, the function 

( )( )  1,2, ,2b a

n mf E W S n nm→ +  is a one-to-one mapping, 

and the sum of edge labels for adjacent vertices of the same 

degree is constant. The proof of Theorem 1 is complete. 

Theorem 2: The generalized corona graph 
2

b a

nW P  is 

AVREL graph. 

Proof: Let the set of vertex be ( )2

b a

nV W P =  

   1 2 1 2, ,..., , , ,n nu u u v v v  and the set of edge be 

( )      2 0 1|1 1 |1in n i i

b a u u i n u u u v i nE W P =   −    of the 

generalized corona graph 
2

b a

nW P . 

The adjacent vertex reducible edge labeling of the 

generalized corona graph 
2

b a

nW P  is: 

Let 2 1, 2 , 1,2,n k m k k= + = =  

( )

( )

( )

( )

( )

0

1

1

, 1,2, ,2

4 2, 1,2, ,2 1

4 2

4 3, 1,2, ,2 1

4 3

i

i i

n

i i

n n

f u u i i k

f u u k i i k

f u u k

f u v k i i k

f u v k

+

= =

= − + = +

= +

= + + = +

= +

 

Currently, the figure contains degree-1 vertices, degree-4 

vertices, and degree-n vertices. The degree-1 vertices are not 

adjacent, and the degree-n vertices form a separate point, so 

they are not considered. It is only necessary to ensure that all 

adjacent degree-4 vertices have the same sum of labels. {u1, 

u2, …, un} are adjacent degree-4 vertices. When 2 2i k  , 

the sum of their labels:  

( ) ( )
( )

( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) 

( ) ( ) ( ) 

( )

0 1 1

0 1 1 1

1

2 1 1

0 1

             

                

                

             4 3 4 2 4 3

                1 2 2 1

i

n

i uu E u

i i i i

n

n n n

i

n

i i

n

Sum u f uu

f u u f u u f u u f u v

f u u f u u f u u f u v

f u u f u u f u u f u v

i k i k i k i

k



− +

−

=

= + + +

+ + +

+ + +

= + − + + − + + + +

+ + +



( ) ( ) 

( ) ( ) ( ) ( ) 

 

2 2 1 1 2 2 1 2

                2 1 2 2 4 2 4 3

             12 8

k k

k k k k

k

+ − + + +

+ + + + + + +

= +

 

A graphical example of the generalized corona graph 

2

b a

nW P  is shown below in Fig. 9. 
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Fig. 9. Generalized corona graph 

2

b a

nW P . 

As defined by AVREL, it is possible to determine the 

function of the one-to-one mapping of 

( )( )  2 1,2, ,3b a

nf E W P n→ , and the sum of edge labels for 

adjacent vertices of the same degree is constant. The proof of 

Theorem 2 is complete. 

Theorem 3: For generalized corona graph a a

n mC S  

( )3, 2n m   except ( ) ( )0  2 1  2n mod ,m mod  , all are 

AVREL graph. 

Proof: Let the vertex set of the generalized corona graph 
a a

n mC S  be ( )    1 2 1 2, , , , , ,a a

n m n mnV C S u u u v v v= , and the 

edge set be ( )    1 1|1 1a a

n m i i nE C S u u i n u u+=   −  

( ) ( ) 2 1
, , |1i i i im n i m n i

u v u v u v i n
− + − +

  . 
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Fig. 10. Generalized corona graph ( )( ), 1 mod  2a a
n mC S n m  . 

Case 1: When ( ), 1 mod  2n m  , the adjacent vertex 

reducible edge labeling of the generalized corona graph 
a a

n mC S  is: 

Let 2 1, 2 1, , 1,2,n k m l k l= + = + =  

( )
( )( )

( )( )
1

1
   1 2 1, 1 mod  2

2

+1   1 2 1, 0 mod  2
2

i i

i
i k i

f u u
i

k i k i

+

+
  + 

= 
 +   + 


 

( )

( )

1 1

4 3   1 2 1

n

i i

f u u k

f u v k i i k

= +

= − +   +
 

( )( ) ( ) ( )( )2
4 2 2 3   1 2 1, 1,2, , 1 2i m n i

f u v kl k l i i k l m
− +

= + + − +   + = −  

( )( ) ( )( )1
4 2    1 2 1, 1,2, , 1 2i m n i

f u v kl l i i k l m
− +

= + +   + = −  

When ( ), 1 mod  2n m  , an example of the generalized 

corona graph a a

n mC S  is shown in Fig. 10. 

In the graph, there are only degree-1 and degree-(m+2) 

vertices. One of the degree-1 vertices is not adjacent, so there 

is no need to consider it, only to ensure that the adjacent 

degree-(m+2) vertices are the same. Meanwhile, {u1, u2, …, 

un} are adjacent degree-(m+2) vertices in the graph. When 

1 i n  , the sum of their labels is as follows: 

( ) ( )
( )

( ) ( ) ( ) ( )( ) ( )( ) 
( ) ( ) ( ) ( )( ) ( )( ) 
( ) ( ) ( ) ( )( ) ( ) 

1 1 2 1

1 1 2 1 1 1 12 1 1 1

1 11

=  

i
i uu E u

i i i i i i i im n i m n i

n m n m

nn n n n

n

n n m n n m

Sum u f uu

f u u f u u f u v f u v f u v

f u u f u u f u v f u v f u v

f u u f u u f u v f u v f u v



− + − + − +

− + −

−−

+

=

+ + + + +

+ + + + +

+ + + + +



 

( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) 

( ) ( ) ( ) ( )( ) ( ) 

( ) ( ) 2

1 4 3 2 2 2 1 2 2 1 1
2 2

1 1 4 2 2 2 2 1 2 2 1 1

2 1 1 2 2 2 2 2 1 2 2 1 1

5 4 4 2 8 5

i i
k k i l k l k

k k l k l k

k k k l k l k

k l k l k

  
= + + + + − + + + + + + + +  

  

+ + + + + + + + + + +

+ + + + + + + + + + + +

+ + + += +

 

From the proof above, it can be determined that for the 

generalized corona graph ( )3, 2a a

n mC S n m   when 

( ), 1 mod  2n m  , for adjacent vertices with the same degree, 

the total of their edge labels is constant. According to the 

AVREL definition, case 1 is proven to be an AVREL graph. 
.
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Fig. 11. Generalized corona graph ( )( )0 mod 2a a
n mC S m  . 

Case 2: When ( )0 mod 2m  , the adjacent vertex 

reducible edge labeling of the generalized corona graph 
a a

n mC S  is: 

Let 2 , 1,2,m k k= =  

( )

( )

( )

1

1

1 1

   1 1

1

i i

n

f u u i i n

f u u n

f u v n

+ =   −

=

= +
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( ) 2 2   2i if u v n i i n= − +    

( )

( )( ) ( ) ( )

( )( ) ( ) ( )

2

1

3 1   1

2 1 1   1 , 2,3, , 2

2 1    1 , 2,3, , 2

i n i

i m n i

i m n i

f u v n i i n

f u v k n i i n k m

f u v k n i i n k m

+

− +

− +

= − +  

= + − +   =

= − +   =

 

When ( )0 mod 2m  , an example of the generalized 

corona graph a a

n mC S  is shown in Fig. 11. 

In the graph, there are degree-1 and degree-(m+2) vertices. 

One of the degree-1 vertices is not adjacent, so there is no 

need to consider it, only to ensure that the adjacent 

degree-(m+2) vertices are the same. Meanwhile, {u1, u2, …, 

un} are adjacent degree-(m+2) vertices in the graph. When 

1 i n  , the sum of their labels: 

( ) ( )
( )

( ) ( ) ( ) ( )( ) ( )( ) 
( ) ( ) ( ) ( )( ) ( )( ) 
( ) ( ) ( ) ( )( ) ( ) 

 

 

( ) ( )

1 1 2 1

1 1 2 1 1 1 12 1 1

1

1

1 1

=

1 2 2 3 1 4 1

1 1 3 4 1

1 2

i
i uu E u

i i i i i i i im n i m n i

n m n m

n

n

n mnnn n n n nm

Sum u f uu

f u u f u u f u v f u v f u v

f u u f u u f u v f u v f u v

f u u f u u f u v f u v f u v

i i n i n i kn

n n n kn

n n n



− + − + − +

− + − +

− −

=

+ + + + +

+ + + + +

+ + + + +

= − + + − + + − + + + +

+ + + + + + +

− + + + +



( ) 2 1 4 1n kn+ + + +

 

 

 

2

2

5 2 2 2 4 1

2 2 1

n nk nk n k

nk nk n k

= + + + − +

+=

−

+ + +
 

It can be determined by the above proof that the total of the 

edge labeling of the adjacent vertices with the same degree is 

constant for the generalized corona ( )3, 2a a

n mC S n m   

when ( )0 mod 2m  . According to the AVREL definition, 

case 2 is a proof of the AVREL graph. 

In summary, the functions of one-to-one mapping for 

( )( )  1,2, ,a a

n mf E n nmC S → + can be determined from case 

1 and case 2, and the total of the edge labeling of adjacent 

vertices with the same degree is a constant. According to the 

AVREL definition, Theorem 3 proved. 

Theorem 4: The generalized corona graph 

( )( )0 mod 2abc a

n m mF S   is AVREL graph. 

Proof: Let the vertex set be ( )  0,...,abc a

n m nV u uF S =  

 1 2 2, , , n mv v v +
 and the edge set be ( )  0 |1abc a

n m iE u i nF S u=    

   1|1 ,0 |1 1imi ji iv j m iu n iu nu+ +      −  of the 

generalized corona graph abc a

n mF S . 

When ( )0 2m mod  the adjacent vertex reducible edge 

labeling of the generalized corona graph abc a

n mF S  is: 

Let 2 , 1,2,m k k= =  

( )
( ) ( )

( ) ( )

( )

( )

0

0

1 2 1,
1

2 2     ,

2 1   1,2, ,

2 1   

d

1 mod  2

0 m

,

2

1

 

,2 ,

o
i im j

i

i

j n k i j
f u i n

j n k i j

f u i i n

f u n i i m

v

u

v

+

 + + + −
=  

+ + −

= − =

= =



+



−

 

Case 1: When ( )0  2n mod  

( )
( )

( )
1

1   1  2
1 2 1

2       0  2
ii

n i i mod
f u u i , , ,n

n i i mod
+

 − + 
= = −

− 

 

Case 2: When ( )1  2n mod  

( )
( )

( )
1

2 1   1  2
1 2 1

1     0  2
i i

n i i mod
f u u i , , ,n

n i i mod
+

 − − 
= = −

− + 

 

For the generalized corona graph abc a

n mF S , its example 

graph is shown in Fig. 12. 

...

  

 1

 2  3
  

 0

 1  2  3  4
  

  +1

  +2

  +3

 2 

 2 +1

 2 +2
 2 +3  3 

 3 +1

 3 +2

 3 +3

 4 

 4 +1 4 +2

 4 +3

 5 

   +1

   +2

   +3

 ( +1) 

Fig. 12. Generalized corona graph abc a

n mF S . 

There are degree-1, degree-(m+2), degree-(m+3), and 

degree-(m+n) vertices that are not adjacent, so there is no 

need to consider them, only to ensure that the adjacent 

degree-(m+3) vertices are the same. Meanwhile, {u2, u3, …, 

un-1} are adjacent degree-(m+3) vertices in the graph. When 

2 1i n  − , the sum of their labels: 

Case 1: When ( )0  2n mod  

( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )

1 1 0

2 2 2 1 2 2 1 2 2 2

4 5 4

i
i uu E u

i i i i i i mi j

Sum u f uu

f u u f u u f u f u v

n i n i i kn k i k n k i

k n k

u



− + +

=

= + + + +

= − + + − + − + + + + − + + + −

= + +



 

Case 2: When ( )1  2n mod  

( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )

1 1 0

2 1 2 1 2 2 1 2 2 2

4 5 4 1

i
i uu E u

i i i i i i mi j

Sum u f uu

f u u f u u f u f u v

n i n i i kn k i k n k i

k n k

u



− + +

=

= + + + +

= − + − + + − + + + + − + + + −

= + + −



 

According to the AVREL definition, the function can be 

determined to establish a one-to-one mapping for 

( )( ) ( ) 1,2, , 1 2 1abc

n mf E n mS nF → + + − , and the edge label 

sum for adjacent vertices of identical degrees is constant. 

Theorem 4 roved. 

Theorem 5: The compound graph 
1 2n bb n bd bdW W    

( )1 2 , 6
tn t tW n n n n     is AVREL graph. 

Proof: Let ( )  
1 2 1 2, ,...,

tn bb n bd bd n tV W W W u u u   =  

 11 12, , ,
ttnv v v  be the vertex set of the compound graph 

1 2 tn bb n bd bd nW W W   , and ( )
1 2 tn bb n bd bd nE W W W   =  

    ( ) 1 1
|1 |1 1

ttn t t ti t ti tt i
v v u v i n v v i n

+
    −  be the edge set. 

The central vertices are denoted by {u1, u2, …, ut}, and the 
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initial labels of the non-central vertex in the first graph 

corresponds to the vertex connected to it in the second graph. 

Similarly, the initial label of the non-central vertex in the 

second graph corresponds to the vertex connected to it in the 

first graph, and so on. 

An example graph of the compound graph 

1 2 tn bb n bd bd nW W W    is shown in Fig. 13. 

... ...

...

 12

 13

 14

 11/ 21  23/ 31

 1

 2

  

 1 1
 2 2

 26  25

 24

 22

 ( -1)3/  1

      4

  3

  2

 

Fig. 13. Compound graph ( )
1 2 1 2tn bb n bd bd n tW W W n n n      . 

When 
1 2 , 6t tn n n n    , the adjacent vertex reducible 

edge labeling of the compound graph 
1 2 tn bb n bd bd nW W W    

is: 

Let , 1,2,t k k= =  

( )( ) ( )

( )( )
( ) ( )

( ) ( )

1

1
1

1

1

1 1

1

1
2 , 1 2

2

1
2 , 1 2 , 0 2

2

2 , 0 2 , 0 2
2

t

ti kt i
k

t
k

k k

k

ti t i t
k

k k

k

i
f v v n i mod

n i
n n mod i mod

f v v
n i

n n mod i mod

−

+
=

−

=

+ −

=

+
= + 

+ +
+  


= 

+ +  








 

( )
( )

( )

( )

1

1

1 1

1

1

1

1
2 , 1 2

2

2 , 0 2

2 1 2 , 1,2, , 6

   
t

t
k

k k

k

tn t t

k k k

k

t

t ti k k t t

k

n
n n mod

f v v

n n n mod

f u v n i n i n n

−

=

−

=

−

=

+
+ 


= 

 + 


= − + + = 





 且

 

The graph has degree-3, degree-6, and degree- 

( )1 tn n  vertices. Specifically, degree- ( )1 tn n  and 

degree-6 vertices are not adjacent, so they are not considered. 

One need only match the labels of adjacent degree-3 vertices 

on each cycle graph are the same. The set  2 3, , ,
tt t tnv v v  

represents adjacent degree-3 vertices. When 2 ki n  , the 

sum of their labels is: 

Case 1: When ( )1 2kn mod  

( ) ( )
( )

( )( ) ( )( ) ( ) 

( )( ) ( ) ( ) 
1 1

11

1 1 1

1 1 1

1 1 1

1 1 1

3
1 2 2 2 1 2

2

1 1 1
2 2 1 2

2 2

ti

t t tt

ti uu E v

ti ti t tit i t i

tn tn t t tnt n

t t t
k

k k k k

k k k

t t t
k k k

k k k k

k k k

Sum v f uu

f v v f v v f u v

f v v f v v f u v

n
n n n n

n n n
n n n n



− +

−

− − −

= = =

− − −

= = =

=

= + +

+ +

 +   
= + + + + − +    

    

+ − + + 
+ + + + + + 

 



  

  

1

1

5 3
6

2

t
k

k

k

n
n

−

=

  
  

  

+ 
= + 

 


 

Case 2: When ( )0 2kn mod  

( ) ( )
( )

( )( ) ( )( ) ( ) 

( )( ) ( ) ( ) 
1 1

11

ti

t t tt

ti uu E v

ti ti t tit i t i

tn tn t t tnt n

Sum v f uu

f v v f v v f u v

f v v f v v f u v



− +

−

=

= + +

+ +



 

1 1 1

1 1 1

1 1 1

1 1 1

1

1

2
1 2 2 2 1 2

2

1 1
2 2 2 1 2

2

5 2
6

2

t t t
k

k k k k

k k k

t t t
k

k k k k k k

k k k

t
k

k

k

n
n n n n

n
n n n n n n

n
n

− − −

= = =

− − −

= = =

−

=

 +     
= + + + + − +      

      

 − +    
+ + + + − + +    

    

+ 
= + 

 

  

  



 

According to the AVREL definition, the one-to-one 

mapping function ( )( ) 
1 2

1,2, ,
tn bb n bd bd nf E W W W   →  

( )1 22 tn n n+ + + can be determined, and the total of edge 

labels for adjacent vertices with identical degrees remains 

constant. This concludes the proof of Theorem 5. 

Theorem 6: The compound graph ( )3, 5n nW W n n    is 

AVREL graph. 

 12 13

 14

 15

 16  17

 1  2

 11/ 21

 1 / 2 

 22  23

 24

 25

 26
 27

 
Fig. 14. Compound graph ( )( )0 2n nW W n mod  . 

Proof: Let the vertex set be ( )  1 2,n nV W W u u =  

 11 12 2, , , nv v v  and the set of edge be ( )n nE W W =  

  ( )   11
|1 |1 1t ti ti tn tt i

u v i n v v i n v v
+

    −  of the compound 

graph 
n nW W . In which, the central nodes are {u1, u2}, and 

the edge v1nv11 of the first wheel graph is connected to the 

edge v2nv21 of the second wheel graph. 

Case 1: When ( )0 2n mod , the adjacent vertex reducible 

edge labeling of the compound graph 
n nW W  is: 

( )( )

( )( )

( )

( )

( )

1

1

1

2 21

1
, 1, 1,3, , 1

2

3 1
, 2, 1,3, , 1

2

, 1, 2,4, ,
2

, 2, 2,4, ,
2

3

3 , 1, 1,2, ,

4 1, 2, 1,2, ,

ti t i

ti t i

tn t

t ti

i
t i n

f v v
n i

t i n

i n
t i n

f v v
i

n t i n

f v v n

f u v n

n i t i n
f u v

n i t i n

+

+

+
= = −

= 
+ − = = −



+
= =

= 
 + = =


=

=

− = =
= 

− + = =
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When ( )0 2n mod , the example graph of compound 

graph 
n nW W  is shown in Fig. 14. 

The graph contains degree-3, degree-5, and degree-n 

vertices. Since the degree-n vertices are not adjacent, they do 

not need to be considered. It is only necessary to ensure that 

the sum of the labels for the two adjacent degree-5 vertices 

and others for each adjacent degree-3 vertex in the wheel 

graph is the same. In the graph, v11/v21 and v1n/v2n are adjacent 

degree-5 vertices, and {vt2, vt3, …, vt(n-1)} is an adjacent 

degree-3 vertex. When ( )2 1i t n  − , their sum of labels is: 

( ) ( )
( )

( )( ) ( )( ) ( )1 1
             

2
1 3 2 , 1

2
 

,

            
3 1 1

1

2

4 1, 2
2

    

7
 1

2

13
,

2

         

ti
ti uu E v

ti ti t tit i t i

Sum v f uu

f v v f v v f u v

n
n t

n

n
t

n
t

n n t



− +




= 




=

= 
 =


=

= + +

+
+ + − =

+ −
+ + + =



−



 

Then ( ) ( )2 1 3i iSum v Sum v n= +  

Vertices of the same degree that share an edge: 

( ) ( )
( )

( )( ) ( ) ( )

( )( ) ( ) ( )

2 2

1 11
1 1

2 2

11
1 1

             

                

ti
ti uu E v

ti t t tn tt i
t t

tn t tn tn tt n
t t

Sum v f uu

f v v f u v f v v

f v v f u v f v v



+
= =

−
= =

=

 
= + + 

 

 
+ + 

 



 

 

 

( )

             

1 1 3 1 1
                2 3 1

2 2

17
          

3
1 3 1

   
2

3
2

n n n

n
n n n

n n n

n

 
=  

 

− + + − − 
+ + + + + 

 

 
=  

 

+ + − + +

 

Case 2: When ( )1 2n mod , the adjacent vertex reducible 

edge labeling of the compound graph 
n nW W  is: 

( )( )1

1
       , 1, 1,3, , 2

2

1
2 , 2, 1,3, , 2

2

ti t i

i
t i n

f v v
i

n t i n
+

+
= = −

= 
+ − = = −



 

( )( )

( )( )

( )

( )

1

1

1

1
, 1, 2,6, , 1 4

2

1
2 , 2, 2,6, , 1 4

2

1
, 1

2

3 1
, 2

2

3 2

 

1, 1, 1, , ,

3     , 2, 1,2, ,

    

ti t i

tnt n

tn t

t ti

i n
t i n i

f v v
n i

n t i n i

f v v n

n
t

f v v
n

t

n i t i n
f u v

n i t i n

+

−

+ +
= = − 

= 
− + − = = − 



=

+
=

= 
− =



− − = =
= 

+ = =

且

且

 

( )1 1

3 1, 1

3      , 2
n

n t
f u v

n t

− =
= 

=
 

When ( )1 2n mod , the example graph of compound 

graph 
n nW W  is shown in Fig. 15. 

 11

 12

 13

 14  15

 1  2

 1 / 2 

 1( -1)/ 2( -1)

 21

 22

 23

 24 25

 

Fig. 15. Compound graph ( )( )1 2n nW W n mod  . 

The graph has degree-3, degree-5, and degree-n vertices. 

Among them, the degree-n vertices are non-adjacent, so they 

need not be considered. On each wheel graph, it is only 

necessary to ensure that adjacent pairs of degree-5 vertices 

share the same labels as adjacent degree-3 vertices. 

v1(n-1)/v2(n-1) and v1n/v2n are adjacent degree-5 vertices, and {vt1, 

vt2, …, vt(n-2)} are adjacent degree-3 vertices. When 

( )1 2i t n  − , the sum of their labels is: 

( ) ( )
( )

( )( ) ( )( ) ( )  ( ) ( ) ( ) 1 1 2 11 1

1
1 3 2 , 1

2

3 1
2 1 3 1, 2

2

ti
ti uu E v

ti ti t ti tn t t t t tt i t i

Sum v f uu

f v v f v v f u v f v v f v v f u v

n
n t

n
n n t



− +




= 



=

= + + + +

+
+ + − =

−
+ − + + =





 

7 1
 , 1

2

13 1
, 2

2

n
t

n
t



−
=

−
=




= 



 

Then ( ) ( )2 1 3i iSum v Sum v n= +  

Vertices of the same degree that share an edge: 

( ) ( )
( )

( ) ( ) ( )( )
2 2

1 1
1 1

             

ti
ti uu E v

tn t t tn tnt n
t t

Sum v f uu

f v v f u v f v v



−
= =

=

 
= + + 

 



 
 

( ) ( )( ) ( )( ) ( )( )

( )

( )

 

2 2

2 1 1 1
1 1

                

1 3 1
             2 1 4

2 2

1 1
                2 3 1 1 3 1

2 2

             9 1

t tnt n t n t n t n
t t

f v v f u v f v v

n n
n n n

n n
n n n n n n

n

− − − −
= =

 
+ + 

 

+ − 
= + + − + + 

 

 − − 
+ − + − − − + + − +  

  

= −

 

 

According to the AVREL definition, the one-to-one 

mapping function ( )( )  1,2, ,4n nf E W W n →  can be 

determined, and the sum of the edge labels for adjacent 

vertices of the same degree is constant. The proof of Theorem 

6 is complete. 
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Theorem 7: The generalized corona graph 

( )( )1 2b a

n mT S m mod  is AVREL graph. 

Proof: Let the vertex set be ( )  b a

n mV T S u=  

  ( ) 1 2 2 2 1 2 2 2 2
, , , , , ,n n n m n

v v v v v v+ + +
and the set of edge be 

( )   ( ) 1 2 2 1
|1 2 1 , |1b a

n m i i i mn i i m n i
E T S v v i n v v v v i n+ + − +

=   −  

 |1 2iuv i n   of the generalized corona graph b a

n mT S . 

An example graph of generalized corona graph b a

n mT S  is 

shown in Fig. 16. 

...

  

 
 

 

 1
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 3

 5
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 6  2 -1

 2 

 2 +1

 2 +2

 2 +3

 3 

 3 +1

 3 +2  3 +3

 4 

 4 +1

 4 +2
 4 +3
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 5 +1

 5 +2  5 +3

 6 

 2  +1

 2  +2 2  +3

 (2 +1) 

 (2 +1) +1
 (2 +1) +2

 (2 +1) +3

 (2 +2) 

 

Fig. 16. Generalized corona graph b a

n mT S . 

When ( )1 mod 2m  , the adjacent vertex reducible edge 

labeling of the generalized corona graph b a

n mT S  is: 

Let 2 1, 0,1,2,m k k= + =  

( )

( )1

, 1,2, ,2

1
2 , 1,2, ,2 1

2

i

i i

f uv i i n

i
f v v n i n+

= =

+
= + = −

 

When ( )0,1, , 1 2k m= − : 

( )
( )

( )
2

4 3 1, 2,4, ,

4 3 1, 1,3, ,
i mn i

k n i i n
f v v

k n i i n
+

 + + − =
= 

+ + + =

 

When ( )1,2 , 1 2k m= − : 

( )( ) ( )2 1
4 1 , 1,2, ,i m n i

f v v k n i i n
− +

= + + =  

The graph has degree-1, degree-(m+2), and degree-2n 

vertices. Among them, the degree-1 and degree-2n vertices 

are non-adjacent, so they do not need to be considered. It is 

only necessary to ensure that the labels of the two adjacent 

degree-(m+2) vertices are the same. {v1, v2, …, v2n} are 

adjacent degree-(m+2) vertices, and when 1 2i n  , the sum 

of their labels is: 

Case 1: When ( )1 2i mod  

( ) ( )
( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

( )

1 2 2 2 1

1
2 3 1 2 1 1 2 1

2

1
20 26 2 3 2

2

i
i uu E v

i i i i n i i mn i i m n i

Sum v f uu

f uv f v v f v v f v v f v v

i
i n n i m n i m n i

mn m n m i



+ + + − +

=

= + + + + +

+
= + + + + + + +  + + +  +  − +    

=  + − + + +  



 

Case 2: When ( )0 2i mod  

( ) ( )
( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

( )

1 2 2 2 1

2 3 1 2 1 1 2 1
2

1
20 26 2 3 1

2

i
i uu E v

i i i i n i i mn i i m n i

Sum v f uu

f uv f v v f v v f v v f v v

i
i n n i m n i m n i

mn m n m i



− + + − +

=

= + + + + +

= + + + + − + + + + − + − +

=  − − + + −  



 

It is possible to determine a function that establishes a 

one-to-one mapping for ( )( )  1,2, ,2 3b a

n mf E T S nm n→ +  

according to the AVREL definition, and the total of edge 

labels for adjacent vertices with identical degrees remains 

constant. The proof of Theorem 7 is complete. 

Theorem 8: The corona graph ( )3 2n aaW C P  

( )( )1 mod 2n   is AVREL graph. 

...
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Fig. 17. Corona graph ( )3 2n aaW C P . 

Proof: Let the vertex set of corona graph ( )3 2n aaW C P  

be ( )( )    1 2 11 12 43 2 , ,..., , , ,nn aa nV u vW vC u u vP =  and the 

edge set be ( )( ) ( ) 23 2 1 , 1|n aa ij i j
E v iW C P v n j

+
=   =  

( )     11
1 ,1 3 1 , 4| | 1nij ijii j

v v i n j u u u v i n j
+

         

 1 |1 1i iu u i n+   − . 

When ( )1 mod 2n  , the adjacent vertex reducible edge 

labeling of the corona graph ( )3 2n aaW C P  are labeled: 

Let 2 1, 1,2,n k k= + =  

( )

( )

( )

( )

( )

4 2   0 2 1, 1

   0 2 1, 2

4 3   0 2 1, 3

8 5   0 2 1, 4

i ij

k i i k j

i i k j
f u v

k i i k j

k i i k j

 + +   + =


  + =
= 

− +   + =


− +   + =

 

( )( )
( )

( )

( )
1

12 7   0 2 1, 1

12 6   0 2 1, 2

16 9   0 2 1, 3

ij i j

k i i k j

f v v k i i k j

k i i k j

+

 − +   + =


= + +   + =


− +   + =
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For the corona graph ( )3 2n aaW C P , it is example graph 

in Fig. 17. 

The graph has degree-2, degree-3, degree-4, degree-7, and 

degree-n vertices. Moreover, there are degree-3 vertices and 

degree-7 vertices in the adjacent same degree vertices, so 

degree-2, degree-4 and degree-n vertices need not be 

considered, just make sure that the adjacent degree-3 vertices 

are the same as the adjacent degree-7 vertices on corona 

graph. In the graph, {v11, v12, …, vn1, vn2} and {u1, u2, …, un} 

are adjacent degree-3 vertices and degree-7 vertices, the sum 

of their labels is: 

( )
( ) 

( ) ( ) ( )  ( ) ( ) ( ) 

( ) ( ) ( )  ( ) ( ) 

   

 

1 1 2 1 3 2 1 2 2 3

3

4 3 12 6 8 5 || 1 12 6 12 7

= 24 14 || 24 14

= 24 14

||

i

i i i i i i i i i i i

u

i

uu E
S

v v v v

k k k k k

v

k

f uu

f u v f f v f u f

k

v f v

k

v



= + + + + + + +

+

=

= + + +

+

+

+

+

+



 

( )
( ) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 

 

1 1 2 1 11 1 12 1 13 1 14

1 1 1

7

0 1

0 2 3 4

||

||

18 10 17 9 18 9 4 3 1 4 2 8 4 || ||

20 10 16 9 17 9 6 3 2 1 2 2 6 4

69 38 ||

i

n

n n n n n n n n n n n

uu E u

n

S f uu

f u u f u u f u u f u v f u v f u v f u v

f u u f u u f u u f u v f u v f u v f u v

k k k k k k

k k k k k k k

k



−

=

= + + + + + +

+ + + + + +

= + + + + + + + + + + + +

+ + + + + + + + + + + + +

= +



 

 

|| 69 38

69 38=

k

k

+

+

 

According to the AVREL definition, it is possible to 

determine that the one-to-one mapping function 

( )( )( )  3 2 1,2, ,8n aa nW C Pf E →  and the sum of the edge 

labels for adjacent vertices of the same degree are constant. 

This concludes the proof of Theorem 8. 

V. CONCLUSION 

This paper designs a novel adjacent vertex reducible edge 

labeling algorithm to address the signal interference problem 

in frequency allocation, based on existing approaches like 

vertex sum reducible edge coloring, adjacent vertex 

distinguishable edge coloring, and vertex magic total labeling. 

The algorithm iteratively finds the optimal solution, labeling 

path graphs, circle graphs, star graphs, fan graphs, wheel 

graphs, friendship graphs, and their compound graphs within 

a finite number of vertices. When a graph G(V, E) satisfies 

certain conditions, such graphs have AVREL labeling 

patterns, according to analysis. We derive the labeling 

patterns, summarize the theorems, and provide relevant 

proofs. 
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