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Abstract—To enhance the operational economy and energy 

utilization efficiency of the microgrid, this paper takes the 

minimization of the comprehensive cost of microgrid operation 

and environmental protection as the objective function and 

constructs the microgrid power dispatching model including 

wind and solar, gas, diesel power generation and energy storage 

units. By using an improved Sparrow Search Algorithm (ISSA) 

to optimize the particle filter algorithm, an improved particle 

filter (IPF) algorithm is developed for microgrid optimization 

scheduling strategies. Simulation examples demonstrate that, 

compared to traditional SSA and ISSA algorithms, the proposed 

algorithm has the advantages of shorter computation time and 

higher solution accuracy, which also proves its strong 

practicability in the microgrid optimal dispatching. 

 
Index Terms—microgrid; optimal dispatch; multi-objective 

optimization; improved particle filter 

 

I. INTRODUCTION 

 nder the dual impetus of the "dual carbon" goals and the 

principles of energy conservation and emission 

reduction, green and sustainable development has become the 

key direction of the accelerated transformation of power grids. 

However, the operation of power grids inevitably leads to 

energy waste and reduced economic efficiency, making the 

optimization of the energy structure in power grids a matter of 

paramount importance [1,2]. Microgrids, as an essential 

means of promoting the utilization of renewable energy, can 

save energy and improve efficiency through well-designed 

systems paired with optimized algorithms. Currently, experts 
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in this field have conducted extensive discussions and 

research on how to optimize microgrid performance from 

multiple perspectives [3-5]. 

The following is a summary of a series of studies conducted 

by experts in the field regarding microgrid modeling. Ref. [6] 

focuses on the simplified modeling of microgrids, reducing 

them to systems composed of multiple micro-source inverters, 

ensuring the stability of the AC bus voltage and frequency. 

This model serves as a foundation for designing control 

strategies for microgrids and is of great significance in voltage 

and frequency regulation during transitions between 

grid-connected and islanded modes. Ref. [7] introduces 

distributed generation units, such as photovoltaic energy, 

energy storage systems, and small hydropower, into the 

microgrid model, combining both linear and nonlinear control 

strategies. This significantly improves the system's ability to 

regulate and respond under complex operating conditions. In 

Ref. [8], an equivalent structural model of the microgrid is 

established, and a novel phase-locked loop (PLL) structure is 

designed to enhance phase-locking accuracy under grid 

voltage distortion. This modeling approach effectively 

reduces voltage transients during grid connection and 

improves system stability. 

Focusing on the current development of multi-objective 

optimization in microgrids, Ref. [9] combines the particle 

swarm optimization (PSO) algorithm with the artificial 

hummingbird algorithm (AHA), forming the PSO-AHA 

algorithm to solve microgrid problems. The research findings 

indicate that the PSO-AHA-tuned STATCOM effectively 

improves the voltage recovery capability of the microgrid, 

enhancing the system’s robustness and stability. Ref. [10] 

emphasizes the application of the sparrow search algorithm 

(SSA) in microgrids. By simulating the foraging behavior of 

sparrows, SSA optimally reallocates single-phase loads based 

on objective functions of voltage and current imbalance. 

Compared with traditional methods, SSA reduces the number 

of load switches while maintaining load balancing 

effectiveness. Ref. [11] proposes a microgrid optimization 

scheduling strategy based on an improved sparrow search 

algorithm (ISSA). By incorporating Logistic-Circle chaotic 

mapping, the sea squirt optimization algorithm, dynamic 

inertia weight, water wave dynamic factors, and 

Cauchy-Gauss mutation strategies, the global and local search 

capabilities of the sparrow search algorithm are enhanced. 

Ref. [12] introduces an enhanced sparrow search algorithm 

(ESSA) that optimizes the economic dispatch of isolated 

microgrids by integrating elite opposition-based learning, 

elite guidance, and adaptive t-disruption mechanisms. 

However, the ESSA algorithm has some disadvantages. In 
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complex scenarios, it may converge prematurely or become 

trapped in local optima during later iterations. Additionally, 

the improvement mechanisms increase computational 

complexity, leading to higher demands on computational 

resources when handling large-scale problems. 

Based on the aforementioned research, this paper 

constructs a microgrid power dispatch model that includes 

wind energy, solar energy, gas, diesel generation, and energy 

storage units. By using an improved sparrow search algorithm 

(ISSA) to optimize the particle filtering algorithm, an 

improved particle filtering (IPF) algorithm is proposed for the 

optimal scheduling of microgrids. This algorithm features 

shorter computation times and higher solution accuracy. 

II. MICROGRID SYSTEM ECONOMIC DISPATCH MODEL 

In this chapter, we introduce the   mathematical description 

of multi-objective optimal scheduling model of microgrid.  

A. Microgrid System Model 

Wind power model 

The output power of a wind turbine is significantly 

influenced by wind speed. Specifically, a wind turbine 

generates electricity only when the wind speed falls within a 

certain range. The power output model is as follows: 
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here, 
ci

v is the cut-in wind speed, which is the minimum wind 

speed at which the wind turbine starts generating electricity; 

co
v  is the cut-out wind speed, which is the wind speed above 

which the wind turbine stops generating electricity to protect 

itself; 
r

v  is the rated wind speed, at which the wind turbine 

can achieve its maximum power output; 
WI

P  is the actual 

power of the wind turbine; and 
r

P  is the rated power of the 

wind turbine. 

Photovoltaic (PV) power generation mathematical model 

Photovoltaic (PV) cells convert light energy directly into 

electrical energy. Their output power is greatly influenced by 

environmental conditions and exhibits significant nonlinear 

characteristics. The power output model for photovoltaic 

generation is as follows: 

 (1 ( ))
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stc

G
P q P T T

G


 
      

 
 (2) 

where q  is the derating factor of the photovoltaic cell, 

typically taken as 0.8; 
rated

P  is the rated output power of the 

photovoltaic cell; G  is the actual solar irradiance; 
stc

G  is the 

solar irradiance under standard test conditions; 
PV

  is the 

temperature coefficient of the photovoltaic cell; T  is the 

current cell temperature; and 
stc

T  is the cell temperature under 

standard test conditions. This model reflects the 

characteristics of photovoltaic cell output power as it varies 

with changes in irradiance and temperature. 

Micro gas turbine model 

Microturbines, as a type of distributed power source, have 

fuel cost and efficiency as their primary performance 

indicators. The model for a microturbine is as follows: 
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in these formulas, 
MT

F  is the fuel cost of the microturbine, C  

is the natural gas price, 
MT

P  is the output power of the 

microturbine, and 
MT

  is the efficiency of the microturbine, 

which is a cubic function of the output power 
MT

P . To 

accurately describe the efficiency curve of the microturbine, 

the parameters a, b, c and d are assigned the following values: 

a=30, b=2, c=1.7, and d=0.0301. These parameters are 

obtained by fitting the actual performance data of the 

microturbine and can accurately reflect the efficiency 

variation of the microturbine at different output power levels. 

In this paper, C is set to 2 yuan/m3, and the Lower Heating 

Value (LHV) is set to 9.7 kWh/m3. 

Diesel generator model 

Diesel engines are commonly used in fuel generators, and 

their operation involves various costs, including fuel expenses, 

maintenance costs, and pollutant treatment fees[13]. These 

costs are significant and cannot be ignored in the operation of 

diesel generators. The specific model for diesel engine power 

generation is as follows: 
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where 
DE.OM

( )C t ,
DE.F

( )C t , and 
DE.EN

( )C t  represent the operation 

and maintenance cost, fuel cost, and pollutant treatment cost 

of the diesel engine at time t , respectively; 
DE

( )P t  is the 

power generation of the diesel engine at time t ; 
DE.OM

K  is the 

operation and maintenance cost coefficient of the diesel 

engine; 
de ,k
  is the emission amount of pollutant k  produced 

by the operation of the diesel engine; and 
k

C  is the cost 

coefficient for pollutant treatment. The parameters are set as 

follows:  =0.00011,  =0.1801, and  =6. 

Battery model 

Batteries play a crucial role in microgrid systems by 

regulating the balance between power supply and demand 

through the charging and discharging process, thereby 

mitigating the uncertainty of wind and solar energy outputs. 

Specifically, the charging and discharging state of the battery 

can be described by the following formulas: 
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( ) ( 1) total load
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where ( )
SB

E t  represents the capacity of the battery at time t. 

( 1)
SB

E t   represents the capacity of the battery at time t-1. 

( )
total

P t  is the total output of the microgrid at time t. ( )
load

P t  is 

the total load of the system at time t. 
inv

  is the efficiency of 

the inverter. 
sb

  is the efficiency of the battery's charge and 

discharge, and the definitions of above symbols can be found 

in [6-12]. 
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B.  Microgrid Costs and Objective Function 

To ensure the economic efficiency, reliability, and 

environmental sustainability of microgrid operation, this 

paper establishes a multi-objective optimization scheduling 

model that comprehensively considers various costs within 

the microgrid system. The model includes the operational 

costs and environmental protection costs of the microgrid[14]. 

The operational costs cover the total costs of interactions 

between the microgrid and the main grid, maintenance costs 

of energy storage, total operational costs of microturbines, 

and total operational costs of diesel generators. The 

environmental protection costs mainly consider the pollutant 

treatment costs of the main grid and the pollutant emission 

treatment cost coefficients during operation. This paper 

comprehensively considers the microgrid system and solves 

the model under four scenarios: minimum environmental 

protection cost, minimum system operational cost, minimum 

total cost, and a compromise solution, to achieve dual 

optimization of economic and environmental performance of 

the system[15]. 

Microgrid operating costs 

Let Cg(t), Cbs(t), CMT(t), and CDE(t) represent the total 

interaction cost, storage maintenance cost, microturbine total 

cost, and diesel generator operating cost at time t, respectively. 

Let Pbs(t), Psl(t), Pb(t), Cb(t), and Csl(t) represent the storage 

power, power sold by the microgrid to the main grid, power 

purchased from the main grid, and the buying and selling 

prices of electricity between the microgrid and the main grid 

at time t. 

The modeling of microgrid operating costs is as follows: 
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Microgrid environmental costs 

Environmental costs mainly consider the treatment costs 

for the emissions of CO2, SO2, and NOx from the units. Clean 

energy sources such as PV and WT do not need to account for 

environmental costs as they do not produce pollutant gases 

during operation. Let CG.EN(t) be the pollutant treatment cost 

of the main grid at time t; γg,k be the emission amount of 

pollutant k produced by the main grid; and Ck be the cost 

coefficient for treating pollutant k. 

The environmental protection cost of the microgrid is as 

follows: 
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Objective function of microgrid dispatch model 

The purpose of the microgrid scheduling model is to 

minimize the total cost, which includes both the microgrid 

operating costs and the environmental protection costs. 

Therefore, the objective function is defined as follows: 

 
1 2

Z f f   (10) 

where Z represents the total cost of the microgrid. 

C. Microgrid Constraints 

System power balance constraint 

( ) ( ) ( ) ( ) ( ) ( ) ( )
load WT PV MT bs DE g
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Where PWT(t) is the output power of the wind turbine, PPV(t) is 

the output power of the photovoltaic cells, PMT(t) is the active 

output power of the microturbine, Pbs(t) is the charging and 

discharging power of the battery, PDE(t) is the diesel generator 

power, and Pg(t) is the total interaction cost between the 

microgrid and the main grid. 

Microturbine output constraints 
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where PMT,min(t) and PMT,max(t) represent the minimum and 

maximum power of the microturbine, PMT(t−1) represents the 

active output power of the microturbine at time t−1, rMT 

represents the ramp rate constraint of the microturbine, QMT(t) 

represents the thermal output of the microturbine at time t, 

QMT,min(t) and QMT,max(t) represent the lower and upper limits 

of the thermal output of the microturbine, respectively; 

( )co

MT
Q t  represents the cooling output of the microturbine at 

time t, 
,min

( )co

MT
Q t  and 

,max
( )co

MT
Q t  represent the lower and upper 

limits of the cooling output of the microturbine; ( )he

MT
Q t  

represents the heating output of the microturbine at time t; 

,min
( )he

MT
Q t  and 

,max
( )he

MT
Q t  represent the lower and upper limits 

of the heating output of the microturbine at time t. 

Diesel generator output constraints 
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where min

DE
( )P t  and max

DE
( )P t  represent the minimum and 

maximum power of the diesel generator, PDE(t-1) represents 

the power of the diesel generator at time t-1, and rDE 

represents the ramp rate constraint of the diesel generator. 

Microgrid line transmission power constraints 

 min max( ) ( ) ( )
g g g

P t P t P t   (14) 

where min ( )
g

P t  and max ( )
g

P t  represent the lower and upper 

limits of the transmission power of the microgrid line, 

respectively. 

Battery operation constraints 

 
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min max
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where min ( )
bs

p t  and max ( )
bs

p t  represent the lower and upper 

limits of the charging and discharging power of the battery, 

( )
bs

E t  represents the energy storage capacity of the battery, 

and min ( )
bs

E t  and max ( )
bs

E t  represent the lower and upper limits 

of the battery's energy storage capacity. 

III. IMPROVED PARTICLE FILTER ALGORITHM 

A. Sparrow Search Algorithm 

To improve the particle filter algorithm's performance, this 

paper introduces a bio-inspired optimization technique to 

enhance the sampling process. 
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The Sparrow Search Algorithm, inspired by sparrow 

foraging and anti-predation behaviors, operates based on the 

following fitness value matrix: 

 
1 2
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x N
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where 𝑁 is the size of the sparrow population, and 𝑑 is the 

dimension. 

The sparrow population is divided into three roles: 

discoverers, followers, and vigilantes. Discoverers are 

individuals with high fitness values and have a larger search 

range compared to other individuals. Their position update 

method is shown in the following formula: 
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where i represents the i-th sparrow in the population 

1, 2, ,i n ; j represents the j-th dimension of the 

optimization problem 1,2, ,j d ; t represents the t-th 

iteration of the optimization algorithm; iter indicates the 

maximum number of iterations of the algorithm;   is a 

random value in the interval (0,1] ; R2 represents the early 

warning value in the process of foraging; ST represents the 

safety value in the process of foraging; Q is a random value 

following a normal distribution; L represents a matrix of 

1 D . When 
2

R ST , the sparrow population is in a safe 

environment, and the discoverers should continue to expand 

their search range. Otherwise, it indicates the presence of 

predators in the surrounding environment, and the population 

should move to a safe area for foraging. 

When the sparrow population is foraging, followers in the 

population will follow the discoverers, and their position is 

updated as follows: 
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where 
worst

X represents the worst position of the sparrow in the 

population; 
p

X  represents the optimal position reached by 

the discoverer in the population; A represents a matrix of 

1 D , where the elements are randomly 1 or −1, 
1( )A A AA    ; When / 2i n , it means that the follower 

did not capture the food that the discoverer was seeking and 

needs to move to other areas to continue foraging. 

During the foraging process, some sparrows are selected as 

vigilantes to handle reconnaissance and provide early warning 

about the surrounding environment. When predators appear, 

vigilantes abandon their current food and move toward other 

sparrows to avoid danger. Vigilantes usually make up 

10%-20% of the entire population, and their positions are 

updated as follows: 
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where 
best

X represents the best position of the current sparrow 

population;   is a random value that follows a normal 

distribution and is used to control the movement step of the 

sparrow individual; k  is a random number used to control the 

moving direction and distance of individual sparrows, ranging 

from[ 1,1] ; i  represents the i-th fitness value of the sparrow 

in the population; 
g

f  and 
w

f  represent the fitness values of 

the global optimal and worst positions, respectively. The 

constant   is included to avoid division by 0. When 
i g

f f , 

it indicates the approach of natural enemies in the surrounding 

environment; when 
i g

f f , sparrows move closer to other 

individuals to avoid danger. 

B. Improved Sparrow Search Algorithm 

Aiming at the defects of the sparrow search algorithm, such 

as poor population diversity and a tendency to fall into local 

optima, this paper proposes a multi-strategy improved 

sparrow search algorithm. 

(1) Optimize population diversity by chaotic mapping  

Studies have shown that the initial population distribution 

in bionic optimization algorithms significantly impacts their 

optimization performance. A more uniform initial distribution 

leads to better search speed and optimization results. Using 

chaotic maps to optimize the initial population positions can 

enhance diversity without altering the population's 

randomness. Research indicates that, among commonly used 

chaotic models, the Sin chaotic model offers superior chaotic 

characteristics compared to the Logistic chaotic model due to 

its infinite number of mapping folds. Therefore, this paper 

employs the Sin chaotic model to optimize the population 

diversity in the sparrow search algorithm. The expression is 

shown in formula (21): 
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(2) Improve SSA search strategy 

The original SSA search strategy can be divided into two 

situations: approaching the origin and jumping to the position 

of the optimal solution. These two strategies cause the SSA to 

easily fall into local optima and weaken its global search 

ability. To address these deficiencies, this paper improves the 

original SSA search strategy. First, the approach-to-origin 

strategy is removed. The position update method for the 

finder is then modified, as shown in formula (22): 
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where is a random value that follows a normal distribution. 

Additionally, the position update method for vigilantes is 

modified. When a sparrow approaches other individuals to 

avoid danger, if it is in the optimal position of the current 

population, it will randomly move between the optimal and 

worst positions of the population. If the sparrow is not in the 

optimal position, it will move randomly between its current 

position and the population's optimal position. The improved 

position update method for vigilantes is shown as: 
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(3) Introduce the Cauchy-Gaussian mutation strategy 

In the later stages of the original SSA iteration, it often falls 

into local optima. To mitigate this, the Cauchy-Gaussian 
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mutation strategy is employed to mutate the individual with 

the best fitness value in the current population. The values 

before and after the mutation are compared, and the better 

position is selected for the next iteration. The specific formula 

is as follows: 

    2 2

1 2
1 0, 0,t t

best best
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where t

best
L is the position of the optimal individual in the 

population after mutation; 2 is the standard deviation of the 

Cauchy-Gaussian mutation strategy; 2(0, )cauchy  and 
2(0, )gauss  are random variables satisfying Cauchy and 

Gaussian distribution;
1

 and
2

 are random numbers that obey 

the normal distribution. 

The global search advantage of the Cauchy mutation 

strategy and the local search advantage of the Gaussian 

mutation is utilized to help the algorithm escape local optima 

while maintaining its global search capability. 

C. Particle Filter Algorithm Based on ISSA Optimization 

Traditional particle filters typically increase the number of 

particles to enhance sample diversity and delay particle 

degradation. However, an excessive number of particles can 

reduce the algorithm's efficiency, which is not suitable for 

applications like indoor positioning that require high 

real-time performance. 

An effective proposed distribution can accurately represent 

the real distribution, ensuring sample rationality and diversity 

with fewer particles. This approach avoids particle 

degradation and divergence of filtering results, maintaining 

the effectiveness of the filtering algorithm. 

This paper optimizes the particle filter sampling process 

using the Improved Sparrow Search Algorithm (ISSA). The 

specific process is as follows: 

Step 1: Initialize relevant parameters, including the 

number of particles, population size, dimension, ratio of 

discoverers and vigilantes, and the maximum number of 

iterations. 

Step 2: Using the fitness function ( )
i

f x , calculate the 

fitness value of each particle in the population. Sort the 

particles in ascending order based on their fitness values, and 

identify the particle with the best current fitness value. 

Step 3: Select a certain proportion of particles as 

discoverers and update their positions according to formula 

(22). Then, select another proportion of particles as joiners 

and update their positions according to formula (23). Finally, 

randomly select a proportion of particles as vigilantes and 

update their positions according to formula (24). 

Step 4: Obtain the new positions of all particles. Apply the 

Cauchy-Gaussian mutation strategy to mutate the individual 

with the best fitness value. Compare the positions before and 

after the mutation: if the new position is better, retain it; 

otherwise, keep the old position. Store the position with the 

best fitness value as t

best
X  and record the corresponding 

fitness value. 

Step 5: Check if the termination condition is met or if the 

maximum number of iterations is reached. If the condition is 

satisfied, output the optimal solution. If not, return to Step 2. 

This optimization process concentrates the particles in 

high-likelihood areas, thereby reducing particle degradation 

and divergence in the filter. 

D. Testing Functions 

To validate the feasibility and superiority of the IPF 

algorithm proposed in this paper, four classic benchmark 

functions (denoted as F1 – F4) are selected to test SSA, ISSA, 

and the IPF. The formulas for the test functions are as follows: 
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The dimensions (D), variable ranges, and theoretical 

minimum values of the testing functions are presented in 

Table 1. The 3D views of the testing functions are illustrated 

in Figs. 1-4. 
TABLE I 

TESTING FUNCTIONS AND PARAMETERS 

Function D Range Fmin 

F1 30 [-30,30] 0 

F2 30 [-50,50] 0 

F3 4 [-5,5] 0.00030 

F4 2 [-2,2] 3 

 

 
Fig. 1. 3D view of F1 

 
Fig. 2. 3D view of F2 
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Fig. 3. 3D view of F3 

 
Fig. 4. 3D view of F4 

 
Fig. 5. Convergence curves of F1 

 

Fig. 6. Convergence curves of F2 

To comprehensively evaluate the development and 

exploration capabilities of the IPF algorithm, Table 2 lists the 

average fitness and standard deviation results of SSA, ISSA, 

and IPF under benchmark functions. Figs. 5-8 compare the 

convergence curves of the three algorithms. 

 
Fig. 7. Convergence curves of F3 

 
Fig. 8. Convergence curves of F4 

TABLE 2 

COMPARISON RESULTS 

Function Criteria SSA ISSA 
Improved 

ISSA 

F1 
Avg 5.15E-03 4.77E-05 4.32E-05 

Std 1.51E-02 5.15E-06 9.12E-07 

F2 
Avg 4.15E-06 3.71E-08 5.25E-09 

Std 3.18E-06 1.88E-08 2.75E-09 

F3 
Avg 4.66E-04 4.18E-04 3.21E-04 

Std 1.19E-04 1.79E-04 6.21E-05 

F4 
Avg 3.04E+00 3.00E+00 3.00E+00 

Std 2.99E-02 5.57E-06 2.79E-08 

From Table 2, it can be seen that the IPF outperforms both 

ISSA and SSA algorithms across the four test problems. For 

the unimodal function F1, the IPF effectively searches for the 

global optimum, significantly enhancing the solution 

accuracy. In the case of the multimodal function F2, the IPF 

demonstrates better average fitness and standard deviation 

compared to the SSA and the ISSA algorithms. Furthermore, 

in the tests of the fixed-dimensional multimodal functions F3 

and F4, the IPF exhibits exceptional robustness. This is due to 

the IPF's use of chaotic mapping to optimize population 

diversity, the enhancement of search strategies, and the 

introduction of the Cauchy-Gaussian mutation strategy, which 

significantly boosts its global search capability and solution 

accuracy. The convergence curves in Figs. 5-8 visually 

illustrate the superiority of the IPF algorithm in 

problem-solving. 

IV. CASE ANALYSIS 

Consider that the microgrid includes multiple distributed 

energy sources such as photovoltaic (PV), wind turbines 

(WT), micro gas turbines (MT), and diesel engines (DE). The 

related parameters of this microgrid are listed in Tables 3-6. 
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TABLE 3 

 UNIT PARAMETERS 

Equipment 

Power 

Range 

(Kw) 

Maximum 

Ramp-Up Power 

(Kw/min) 

Unit Price for 

O&M(yuan/Kwh) 

WT [0,90] 0 0 

PV [0,60] 0 0 

MT [2,30] 1.7 0.0301 

DE 

Grid 

[6,36] 

[-30,30] 

1.6 

0 

0.139 

0 

TABLE 4 

POLLUTANT EMISSION COEFFICIENTS AND COSTS 

Name 
Cost 

(yuan/kg) 

Pollutant Emission Coefficient (g/Kwh) 

WT PV MT DE Grid 

SO2 5 0 0 0.003 0.299 2 

NOX 7 0 0 1.3 12 1.8 

CO2 0.021 0 0 700 650 900 

TABLE 5 

BATTERY PARAMETERS 

Equipment Parameter Value 

Battery 

Maxi Capacity(kWh) 150 

Mini Capacity(kWh) 5 

Maxi Input Power(kW) 30 

Max Output Power(kWh) 30 

Initial Capacity(kW) 20 

Charge and Discharge Rate 0.9 

TABLE 6 

TIME-OF-USE ELECTRICITY PRICES 

Type Time Price 

Sell 

Peak 
10:00~14:00 

1.35 
18:00~22:00 

Mid-Peak 
07:00~09:00 

0.82 
15:00~17:00 

Off-Peak 
00:00~06:00 

0.38 
23:00~24:00 

Purchase All-Day 00:00~24:00 0.36 

To analyze the scenarios with the lowest operating costs, 

lowest environmental protection costs, and lowest total costs, 

this paper also addresses the power distribution under a 

compromise solution. The process of selecting the 

compromise solution includes the following steps: 

(1) Normalization of Objective Functions. Normalize the 

operating costs and environmental protection costs of the 

non-dominated solutions to facilitate comparison. The 

normalization formula is as follows: 

 
i

, 1,2
max( )

i

i

f
f i

f

    (30) 

(2) Weighted Sum Method. Perform a weighted sum of the 

objective functions. Choose the solution with the smallest 

weighted sum as the compromise solution. The formula is as 

follows: 

 
1 2

object( ) ( ) ( )i f i f i    (31) 

(3) Selecting the Optimal Solution. Choose the solution 

with the smallest comprehensive objective value as the 

compromise solution. 

By following these steps, an effective balance between 

multiple objective functions can be achieved, which leads to 

the identification of a compromise solution to optimize the 

scheduling of the microgrid.  

TABLE 7 

ALGORITHM COMPARATIVE ANALYSIS 

 SSA ISSA IPF 

Number of iterations 100 100 100 

Iteration time(s)  349 333 298 

Optimal value(yuan) 1556.3 1495.5 1409.8 

Average(yuan) 1605.5 1544.7 1477.6 

 
Fig. 9. Predicted and actual photovoltaic power 

 
Fig. 10. Predicted and actual wind power 

 
Fig. 11. Predicted photovoltaic, wind power, and total load 

 
Fig. 12. Compromise solution 

By setting the number of iterations to 100, the average 

iteration time, optimal value, and mean value of 10 

experimental results were recorded. From Table 7, it can be 
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seen that the iteration time of the IPF algorithm is 14.6% and 

10.5% faster than that of the SSA and ISSA algorithms, 

respectively. The optimal and average microgrid cost values 

obtained by the IPF are significantly better than those 

computed by the SSA and ISSA. In terms of optimal value, 

the IPF is 9.4% and 5.7% lower than the SSA and ISSA, 

respectively; in terms of average value, the IPF is 8.0% and 

4.3% lower than the SSA and ISSA, respectively. Therefore, 

it can be concluded that compared to SSA and ISSA, the IPF 

algorithm achieves higher solution accuracy and faster speed 

for the microgrid problem discussed in this paper. 

Fig.9 illustrates the actual and predicted photovoltaic 

power. Fig.10 depicts the actual and predicted wind power. 

Fig. 11 shows the predicted photovoltaic power, predicted 

wind power, and microgrid load power. 

 
Fig. 13. Minimum total cost solution 

 
Fig. 14. Minimum operating cost solution 

The optimization scheduling model proposed in this paper 

aims to minimize microgrid costs. The total microgrid cost 

includes operating costs and environmental costs, with a 

weighted sum of these two forming the compromise scenario. 

To evaluate the impact of the objective functions on the 

scheduling results, this paper discusses the scheduling results 

when different objective functions are used. Fig 12 shows the 

power distribution in the compromise scenario, Fig 13 depicts 

the power distribution when the total cost is minimized, Fig 

14 illustrates the power distribution when the operating cost is 

minimized, and Fig 15 displays the power distribution when 

the environmental cost is minimized. 

A simple energy analysis reveals that the battery storage 

(BS) acts as an auxiliary regulator, with its charging and 

discharging strategy adjusted according to changes in 

electricity prices. The battery charges when prices are low and 

discharges when prices are high, thereby reducing the 

economic and environmental costs of the microgrid. Since 

photovoltaic and wind power generation cannot fully meet the 

load demand, the microgrid must purchase electricity from the 

main grid and rely on distributed energy sources to meet the 

load demand. 

 
Fig. 15. Minimum environmental protection cost solution 

V. CONCLUSIONS 

This paper has taken the minimization of the 

comprehensive cost of microgrid operation and 

environmental protection as the objective function and 

constructs the microgrid power dispatching model including 

wind and solar, gas, diesel power generation and energy 

storage units. And an improved particle filter algorithm for 

microgrid optimal dispatching strategy has been obtained. 

Simulation examples show that the iteration time of the 

proposed IPF algorithm is 14.6% faster than that of the SSA 

and 10.5% faster than that of the ISSA. In terms of optimal 

value, the IPF algorithm is 9.4% lower than the SSA and 5.7% 

lower than the ISSA. And in terms of average value, the IPF 

algorithm is 8.0% lower than the SSA and 4.3% lower than 

the ISSA. These data fully demonstrate the superiority and 

efficiency of the IPF algorithm in microgrid optimization 

scheduling. 
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