
 

  

Abstract—Uncertain parameters are pervasive across 

various domains, necessitating sophisticated approaches for 

their effective management within optimization problems. This 

review extensively examines state-of-the-art models and 

algorithms to tackle uncertain optimization challenges. We 

delve into a broad spectrum of contemporary research hotspots, 

including stochastic programming, fuzzy optimization, interval 

optimization, and polymorphic uncertain optimization. The 

paper meticulously analyzes essential solution methods such as 

the expectation method, chance-constrained optimization, 

sample average approximation, robust optimization, 

distributionally robust optimization, data-driven method, α-cut 

set method, and fuzzy expectation method. Each approach is 

scrutinized for its applicability, strengths, and limitations, 

offering a nuanced perspective on its practical value. By 

presenting these insights, we establish a robust theoretical 

foundation and provide valuable guidance for future research 

in uncertain optimization. This research highlights significant 

advances and identifies promising future research directions, 

making a substantial contribution to the evolving optimization 

field under uncertainty.    

 
Index Terms—Stochastic programming, robust optimization, 

distributionally robust optimization, interval optimization, 

fuzzy optimization, data-driven method 

 

I. INTRODUCTION 

N intricate environments, accurately estimating parameters, 

and predicting the probability distribution pose significant 

challenges due to the dynamic evolution of circumstances, 

information asymmetry, and external interferences. 

Uncertainty is an objective and inherent phenomenon. 

Product demand in supply chain problems, taxi driver 

earnings per unit time in transportation management, stock 

prices in financial markets, machine failure randomness and 

workshop scheduling in industry, wind and photovoltaic 

power generation in renewable energy systems, and aquifer 

and hydraulic properties in environmental problems are all 

examples of uncertain variables. Randomness, imprecision, 

or ambiguity can all induce uncertainty. Ignoring uncertainty 

in decision-making processes may result in suboptimal 

solutions [1]. This has significantly propelled research on 

complex optimization models and methodologies designed to 

address uncertain scenarios, stimulating scholars to analyze 
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and solve such uncertain optimization problems with a 

rigorous scientific approach. Numerous uncertain 

optimization models have been discovered and applied to 

solve problems in various domains such as supply chain, 

investment portfolio management, transportation, aerospace 

engineering, machine learning, energy environment, and 

bioengineering. Therefore, advancing research in uncertain 

optimization is of paramount importance. The mathematical 

representation of an optimization model incorporating 

uncertain parameters is presented as follows: 

 

( )min ; .
x X

x 


                          (1) 

 

Given the inherent uncertainty of the underlying 

parameters, the optimization model’s objective function may 

pose complex challenges. This complexity may stem from 

non-smoothness, nonlinearity, non-differentiability, 

non-convexity, and noise, presenting significant hurdles to 

the optimization process. Establishing effective optimization 

models and finding stable and reliable solutions is at the 

forefront of academic challenges. Traditional deterministic 

models are insufficient for addressing these issues. Even in 

the case of smooth nonlinear optimization problems, where 

the unknown decision variables of the model are related to 

complex multi-dimensional integrals, solving the objective 

function remains extremely challenging. For non-smooth 

optimization problems, conventional optimization techniques 

that rely on gradients and other standards are rendered 

inapplicable due to the absence of derivative 

information.  Moreover, existing software packages such as 

MATLAB, CPLEX, and Lingo are not directly suited to 

solving these intricate models. All these factors contribute to 

the complexity of research. 

Despite the multitude of methods developed to tackle 

complex optimization problems with uncertainty, the 

efficiency of their performance remains suboptimal due to 

the inherent limitations of these strategies. Stochastic 

programming methods heavily depend on the cumulative 

distribution function (CDF) or probability density function 

(PDF), which satisfy and require sufficient independent 

measurement sample data. Fuzzy optimization methods 

suffer from a high degree of subjectivity in their 

representation of uncertainty. Traditional heuristic 

algorithms are plagued by significant computational costs 

and present challenges in verifying convergence and 

avoiding local optima dilemmas. These challenges 

underscore the ongoing difficulties in optimizing 

performance in uncertainty. 

A thorough overview of uncertain optimization models 

and their feasible methods is presented in this paper. Initially, 
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various uncertain optimization models such as stochastic 

programming, fuzzy optimization, interval optimization, 

polymorphic uncertain optimization, and their corresponding 

solution methods are systematically summarized and 

categorized. These models and methods can effectively solve 

the problems of uncertain data input and uncertain 

parameters in objective functions or constraints. 

Subsequently, these models and methods are analyzed and 

compared in detail to provide valuable insights for 

researchers in related fields. 

The subsequent sections of the paper are structured as 

follows. The next section focuses on the recent research 

hotspots in the stochastic programming model and multiple 

methodologies for handling known and unknown random 

parameter distributions. In Section III, the fuzzy optimization 

model and methodologies are reviewed. Section IV presents 

the interval optimization model. Section V is devoted to the 

development of polymorphic uncertain optimization. Finally, 

followed by a summary and comparative analysis, we 

highlight potential future research directions and draw 

conclusions in Section VI. Refer to Fig. 1 for the research 

framework diagram. 
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Fig. 1.  Research framework. 

 

II. STOCHASTIC PROGRAMMING 

Stochastic programming (SP) is the most prevalent method 

for addressing optimization problems under uncertainty. 

Stochastic programming models involve optimization with 

random parameters and are approached using probability 

statistics theory, stochastic processes, and stochastic analysis. 

Advances in solving stochastic programming problems have 

been substantial, establishing SP as one of the most effective 

methods for decision-making in uncertain environments. 

The mathematical form of a stochastic programming 

model with the random parameter   is expressed as follows: 

 

( )min ; ,
x X

x 


                           (2) 

 

where nR  denotes the n-dimensional Euclidean space.  

( )1, , nx x x X=   represents the n-dimensional decision 

variable. Given a real-valued function : X R =  → , the 

goal is to find the global minimum solution *x  that satisfies 

( ) ( )* , nx x x R    .  

In stochastic programming, when the support set of the 

random parameter is U, deterministic optimization can be 

regarded as a case where the uncertainty set contains only one 

specific element [2], as illustrated in Fig. 2. 

 

       

(a) Deterministic Optimization        (b) Stochastic Programming 

Fig. 2.  The distinction and interconnection between deterministic 

optimization and stochastic programming. 

 

For stochastic programming models, an initial step 

involves analyzing the distributional characteristics of the 

random parameters before making optimization decisions. 

Uncertainty can be classified into two distinct categories:  

pure risk and strict uncertainty. Pure risk occurs when the 

probabilities of all potential states of the random parameters 

are fully known. Conversely, strict uncertainty occurs when 

the probability distribution is not uniquely determinable. 

Classical stochastic programming models typically operate 

under the assumption that the probability distribution of the 

uncertain parameters is known. 

Research in stochastic programming mainly differs in the 

assumptions regarding the exact form of the probability 

distribution. Currently, the methodologies for solving 

stochastic programming encompass several broad 

approaches.  These include the expectation method, 

chance-constrained programming, sample average 

approximation method, and distributionally robust 

optimization. Emerging techniques such as machine learning, 

heuristic algorithms, simulation optimization, and hybrid 

algorithms are also being explored. 

A. The known probability distribution 

1. Expectation method 

If the probability distribution of uncertain parameters is 

known, statistical techniques can handle the randomness 

inherent in the objective function or constraint conditions [3]. 

Among these techniques, the expectation method (EM) 

stands as a prevalent approach for transforming stochastic 

programming (2) into an equivalent deterministic 

optimization problem: 

 

( )min ; .P
x X

E x 


                              (3) 

 

The problem (3) represents a large class of stochastic 

programming problems predicated on the following critical 

assumptions [4].  

Hypothesis 1: The distribution of random parameters is 

assumed to be known, although this may not hold in most 
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cases.  

Hypothesis 2: The objective function and constraints must 

be known or observable. This implicit assumption is essential 

for constructing an optimization model.  

Hypothesis 3: Any function that depends on random 

parameters should be represented through a probability 

distribution. Risk measures, such as expected value, 

probability, or conditional value-at-risk (CVaR), can 

facilitate reformulating the objective function. Select the 

probability distribution based on the decision maker’s risk 

preference. For instance, conventional expectation methods 

are considered risk-neutral, whereas objective functions 

incorporating conditional value-at-risk reflect a risk-averse 

optimization approach. 

In recent years, numerous novel expectation methods have 

been developed to solve uncertain optimization problems. 

Wan et al. [5] have introduced a new variance expectation 

synthesis approach to tackle the multi-objective constrained 

stochastic programming model. The deterministic 

equivalence class of the optimization problem is defined, and 

an interactive method grounded in the decision-maker’s 

preferences is proposed. Deng et al. [6] further transformed 

the stochastic programming model into a deterministic 

mathematical model with complementarity constraints 

(MPCC). By employing partial smoothing technology [7], 

MPCC was transformed into a sequence of standard 

smoothing optimization subproblems for solution, and a 

gradient-based algorithm was proposed to solve the original 

model. Deng’s subsequent research [8] proposed a novel 

stochastic programming decision model based on the random 

net income of urban taxi services. The newly established 

expected profit maximization and risk minimization models 

were further verified to be risk-neutral through the 

expectation method. Wang employs the expected value 

method to tackle a complex stochastic multi-item lot-sizing 

optimization problem pertinent to make-to-order 

manufacturing, with the ultimate aim of wealth maximization 

[9]. Akande presents a comparative analysis and 

comprehensive overview of stochastic and deterministic 

models employed in solving scheduling problems [10]. 

In the problem (3), when the random parameter is a 

multi-dimensional random vector, the random parameter is 

referred to as a joint probability density. However, Faes et al. 

[11] assert that constructing the necessary prior estimate of 

the joint probability density with uncertain parameter values 

is subjective and requires strict statistical uniformity 

assumption of the random field. 

2. Chance-constrained programming method  

Another effective and convenient method for handling 

optimization problems characterized by uncertain parameters 

is the chance-constrained programming method (CCPM). 

This method is designed to manage risk in decision-making 

scenarios under uncertainty. The origins 

of chance-constrained programming can be traced back to the 

1950s when Charnes et al. first proposed [12].  Over the 

decades, it has evolved into an essential tool in diverse 

decision-making environments.  

Despite its utility, CCPM is not without limitations. In 

practice, the probability distributions of random parameters 

are often unknown, which can introduce biases into the 

solutions obtained by this method. CCPM allows the decision 

to ensure that the probability or possibility of satisfying the 

constraints is not less than a predefined confidence level. The 

optimal solution satisfies the uncertain constraints with at 

least a certain probability β. For instance, decision-makers in 

the financial industry may want to ensure that their 

investment portfolio achieves a target return with at least a 

certain probability β. 

Typically, the problem (2) can be reformulated into a 

typical chance-constrained problem as follows: 

 

( )

( )( )
( )( )

min ;

; , ,
. .

; 0, ,

x X

i

x

P x i I
s t

P g x i I

 

   

 



   


  

                 (4) 

 

where β and α represent the pre-specified confidence levels 

for the objective function and constraint conditions, 

respectively. Since its introduction, the chance-constrained 

programming method has developed rapidly and has been 

effectively applied to solve numerous practical problems. 

However, several significant challenges persist:  

1) Prior knowledge requirement: CCPM necessitates prior 

knowledge of the probability density and the inverse of the 

random variables involved.  

2) Non-convexity of Chance Constraints: The chance 

constraints frequently exhibit nonconvex characteristics, 

complicating the optimization process. 

3) Complexity of calculation: Calculating the probability 

associated with chance constraints is challenging due to the 

involvement of complex, high-dimensional integral 

problems. 

Several approaches have been developed to address these 

challenges.  Charnes et al. [13] and Calafiore et al. [14] 

introduced a nonlinear but convex chance-constrained 

scheme for exceptional cases to address the first challenge. 

Nemirovski et al. [15] and Chen et al. [16] provided 

conservative convex approximations. Approximation 

methods such as stochastic simulation are often adopted in 

engineering to address the second challenge. For the third 

challenge, Nemirovski et al. [17] and Luedtke et al. [18] 

proposed scenario approximation methods, simplifying the 

computational process and ensuring that the optimal solution 

satisfies the chance constraints with high probability. 

Notably, Luedtke et al. [19]-[20]  have successfully 

addressed chance-constrained integer optimization problems. 

The limitations inherent in the optimization methods for 

random parameters with known probability distributions are 

manifested in several key aspects: 

1) Unknown probability distributions: If the probability 

distribution of the random parameters is unknown, a large 

amount of data or statistical moment estimation is required to 

fit the distribution that satisfies [11]. This process can be 

data-intensive and computationally demanding. 

2) Inference of distribution type: In scenarios where 

distribution types are inferred based on sample experiments, 

data from analogous events, or accumulated experience, there 

is inherent subjectivity in determining the joint probability 

density of uncertain parameters. This inference relies heavily 

on prior estimation and requires a strict assumption of 

statistical uniformity of the random field. 
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3) Quantifying all possible joint possibilities: Accurately 

and objectively quantifying all possible joint possibilities of 

parameter values necessitates sufficient independent 

measurement data.  In cases where such data is lacking, this 

fitting will significantly affect the reliability and accuracy 

of the quantification results [21]. 

B. The unknown probability distribution 

Assuming a known probability distribution for uncertain 

parameters is unrealistic in practical scenarios. Firstly, the 

precise probability distribution of uncertain parameters is 

frequently unknown. Secondly, even if an approximate 

probability distribution is used, it may not be reliable. When 

the probability distribution of uncertain parameters is 

unknown, accurately calculating the expectation in problem 

(3) becomes challenging. The amount of data or statistical 

moment estimation is required to fit the probability 

distribution it satisfies. In practice, parametric and 

nonparametric methods can be used. This situation 

necessitates substantial data or statistical moment estimation 

to fit an appropriate probability distribution. 

In practice, two main approaches can be employed: 

parametric and nonparametric methods. The parametric 

approach presupposes that the actual distribution belongs to a 

specific family of parametric distributions. Data can also be 

utilized to infer the prior distribution of unknown parameters 

or parameters [22]. In contrast, nonparametric methods do 

not need to know a predefined form for the distribution. 

Typically, specific probability distributions are obtained by 

storing, observing, and analyzing historical data, collecting 

expert opinions, and calculating simulation results. 

1. Sample average approximation 

Historical data can be treated as samples extracted from the 

underlying probability distribution. Akcay et al. [23] fitted 

the samples to a probability distribution within a parameter 

family containing many common distributions. However, 

distribution fitting methods can lead to substantial errors. The 

sample average approximation method (SAA) often offers 

superior accuracy compared to traditional distribution fitting 

approaches. The standard SAA methodology is to consider a 

stochastic approximation family of functions ( ) N  , each 

defined as ( ) ( )
1

1
: ;

N
j

N

j

x
N

  
=

 =  . N ,,1  are samples 

drawn from the distribution of the random variable ξ. Given a 

class of estimators ( ) N  , an approximation problem (3) 

can be constructed: 

 

  ( ) ( )
1

1
min ; ; .

N
j

N
x X

j

x x
N

   


=

=                   (5) 

 

SAA methods are frequently employed to address 

two distinct categories of stochastic programming problems: 

The first category of problems remains computationally 

challenging even when the distribution is known, such as 

two-stage discrete problems and those involving complex 

utility function expectations. The SAA method 

approximates the complex, known objective function 

through sampling and solves the corresponding equivalent 

problem. For two-stage stochastic integer optimization, 

Shapiro et al. [24] have proven that the optimal solution of 

the SAA method converges to the actual optimal value with a 

probability of 1. The accuracy of the SAA method is 

contingent upon the variability of the objective function and 

the size of the feasible domain, and they hold the view that 

the SAA method is overly conservative. 

The second category involves problems where the 

distribution is known, and the objective function is 

straightforward to estimate, such as the newsvendor problem. 

The newsvendor problem is one of the most fundamental and 

widely utilized inventory models. Retsef and Levi et al. 

[25]-[26] analyzed the application of the SAA method to 

data-driven supplier newsvendor problems and assessed the 

accuracy of the SAA method in solving such problems. 

Shapiro [27] has shown that if the feasible set is tight and 

the loss function is uniformly continuous on the feasible set, 

the optimal value and solution of the SAA problem converge 

almost surely to the actual problem. When the loss function 

satisfies the Lipschitz continuous condition, the SAA method 

can guarantee good performance under limited samples [28]. 

However, in cases where the sample size is small and 

acquiring additional samples is costly, the optimal solution of 

the SAA method often exhibits poor out-of-sample 

performance. 

2. Robust optimization 

An alternative method to the chance-constrained 

programming method is robust optimization (RO). RO 

operates under the assumption that the exact distribution is 

unknown. However, the known probability distribution 

belongs to a specified uncertainty set, which may be 

characterized by a specific structure, such as an ellipsoid or 

polytope. Refer to Fig. 3 for details. 

 

 
Fig. 3.  The uncertainty set of RO. 

 

Robust optimization is performed for the worst-case 

scenario within the uncertainty set, inevitably leading to 

overly conservative and suboptimal decisions. The formal 

RO methodology is defined as follows: 

 

( )min sup ; ,
x X U

x


 
 

                           (6) 

 

where U denotes the support set of random parameters. 

Robust optimization provides several key advantages when 

tackling problems with uncertainty, noise, or interference. 

1) Self-adaptation capability. Robust optimization is 

inherently adaptable, allowing real-time adjustments based 

on current environmental conditions and input data, which 

maintain excellent performance. 

2) Fault tolerance. Robust optimization seeks the optimal 

solution to worst-case scenarios, including all conceivable 

situations. As a result, robust optimization possesses a 

measure of fault tolerance and can continue to provide 

superior decisions even when faced with unexpected failures 
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or inconsistencies. 

3) Diversity. Robust optimization considers all 

potential strategies when seeking optimal decisions to 

increase the adaptability of decisions to parameter changes. 

4) Global performance optimization. Robust optimization 

focuses on the superiority of maintaining global performance 

under various conditions. 

RO is a suitable approach in the following scenarios. 

1) The random parameters in the optimization problem 

need to be estimated accurately. However, estimations 

inherently carry risk. 

2) Any possible realization of the uncertain parameters in 

the optimization model must satisfy the constraint functions.  

3) The objective function or the optimal solution is highly 

sensitive to perturbations in the optimization model 

parameters.  RO offers a robust solution. By focusing on 

worst-case scenarios, RO mitigates the impact of such 

sensitivities and stabilizes the decision-making process. 

4) The decision maker cannot bear the enormous risks of 

low-probability events. 

Stochastic programming and robust optimization are two 

fundamentally different methods. Despite their successes, 

each method also has distinct limitations: 

1) Utilization of data and conservatism: Apart from 

calibrating the uncertainty set, the RO method does not fully 

utilize the rich data available to the decision maker [29]. If 

RO ignores valuable probability information, its solution 

may be overly conservative. Conversely, modelling for 

stochastic programming requires too much information about 

the probability distribution, which may be unavailable. If the 

distribution used in the model is inaccurate, the stochastic 

programming problem may produce suboptimal solutions. 

2) Performance in out-of-sample: Solutions derived from 

robust or stochastic programming models may perform 

poorly in out-of-sample tests, or simply increasing the sample 

size may not eliminate inherent biases. 

3) Computational complexity: The RO may be difficult to 

compute, mainly when dealing with large-scale data. 

Similarly, stochastic programming often involves complex, 

high-dimensional integrals that are generally challenging to 

solve. 

3. Distributionally robust optimization 

To consider the distribution of random parameters more 

accurately, the distributionally robust optimization (DRO) 

proposed by Wiesemann et al. [30] and Delage et al. [31] has 

extensively promoted the development of stochastic 

programming techniques. As an essential extension of robust 

and stochastic programming, DRO provides a powerful 

modelling framework that addresses the above limitations of 

robust optimization and stochastic programming. It is not 

limited to the true probability distribution that may be 

difficult to obtain in applications and allows for some 

ambiguity in the probability distribution. For instance, rather 

than presuming a specific Gaussian distribution with fixed 

mean and variance, DRO considers all Gaussian distributions 

with the same mean but varying variances or even all 

distributions with a mean close to 0 and variance close to 1. It 

forms an ambiguity set of distributions. All potential 

probability distributions that can be considered are elements 

of the set. The significant distinction between distributionally 

robust optimization and stochastic programming lies in their 

respective sets. In DRO, the ambiguity set consists of a 

collection of distributions, reflecting the inherent uncertainty 

about the exact probability distribution.  In contrast, 

stochastic programming relies on an uncertainty set. This 

difference is illustrated in Fig. 4.  

 

 
Fig. 4.  The ambiguity set of DRO. 
 

 Distributionally robust optimization and stochastic 

programming adopt distinct methodologies and strategies in 

the optimization process. A stochastic programming model 

with a known probability distribution can be viewed as a 

particular case where the ambiguity set of distributions 

comprises only a single element 0Q . Choosing the 

probability distribution becomes crucial when the ambiguity 

set of distributions  contains multiple elements. The 

general approach addresses the worst-case scenario across all 

distributions within the ambiguity set, which minimizes the 

average cost of the loss function. The DRO formulation of the 

distributionally robust stochastic programming problem (2) 

is: 

 

( )min sup ; .f
x X f

E x 
 

                          (7) 

 

This technique considers the ambiguity set of distributions 

that encompasses all possible probability distributions for the 

parameters rather than relying on a predefined probability 

distribution.  DDRO hedges against the uncertainty of the 

probability distribution by leveraging the ambiguity 

distribution set. The worst distribution in the ambiguity set is 

optimized, corresponding to minimizing the expected cost in 

the worst-case scenario. The DRO method is proficient in 

effectively addressing both parameter uncertainty and 

uncertainty related to the probability distribution. 

The significant challenges associated with distributionally 

robust optimization algorithms lie in constructing the 

ambiguity set of the distribution and determining the optimal 

solution. Although these two problems involve distinct 

techniques, they can be addressed concurrently. The structure 

of the ambiguity set heavily influences the tractability of 

DRO solutions. The optimal solution can often be derived 

using the Lagrange dual method. A DRO that lacks 

computing tractability- encompassing both practical 

solvability and approximability- is essentially useless. 

The ambiguity set of distributions is the most crucial 

element of any distributionally robust optimization 

model.  To ensure robustness and efficacy, an ambiguity set 

must meet several criteria. Firstly, a good ambiguity set of 

distributions should encompass the true probability 

distribution with high confidence. Secondly, the ambiguity 
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set of distributions should be narrow enough to exclude 

pathological distributions that could lead to overly 

conservative decisions. Finally, the ambiguity set of 

distributions should be easily parameterized from available 

data. Ideally, this set should facilitate reforming the 

distributionally robust optimization problem into a structured 

mathematical programming problem that can be solved using 

standard optimization software.  

Broadly, the ambiguity set of distributions can be divided 

into those based on moment information and those grounded 

in statistical distance. 

1) Ambiguity set based on moment information 

Ambiguity sets defined by moments encompass a family 

of distributions whose moments satisfy certain conditions. 

The earliest model of this concept can be traced back to 

Scarf’s stochastic programming model proposed in 1958 for 

the newsvendor problem. Scarf investigated robust ordering 

quantities within an ambiguity set of distributions [32]. 

Dupacova et al. subsequently validated this pioneering model 

[33] in 1960. The distribution robust newsvendor model with 

moment constraints remains tractable. Saghafian et al. 

combined empirical data with moment information to study 

the newsvendor problem. Empirical moment information 

often defines a distribution ambiguity set using a moment 

information-based approach [34]. For example, the mean and 

covariance can be fixed to specific values, or all distributions 

satisfying these moment conditions can define a set of 

distributions ( )   : , ,Tf E E    =     . For 

more complex families of distributions, higher-order 

moments information may be used. Complex ambiguity sets 

based on cross-moment information were proposed by 

Delage E et al. [31] as follows: 

 

( )

( )

 ( )  ( )

( )( )

0 0 1 2

1

0 0 0 1

0 0 2 0

, , , ,

1

,
T

T

r r

f M E E r

E r





   

   

−

 

 
 =

 
 

=  −  −  
 

 − −  
  

 

 

where M is the set of all probability measures in measurable 

space. mR   represents a closed convex set. Delage E et al. 

introduced a DRO model based on support moments, where 

the first moment of the random parameter is confined within 

an ellipsoid, and the second moment is at the intersection of 

two semi-positive cones. Then, the problem (2) is 

transformed into the following form based on the distribution 

ambiguity set : 

 

( )

 

( )( )

 

 ( )

( )

0 0 2 0

0 0

0 1

min sup ;

1 1,

,

. .
0,

0, .

f
x X f

T

T

E x

E

E r

s t E

E r

f

 

   

 

 

 

 

  

 =


 − − 
 


  −
 

−  


  

               (8) 

 

With the development of moment-based distribution 

ambiguity sets, Bertsimas [35], Goh and Sim [36], and 

Wiesemann [30] have proposed various extensions to address 

different objective functions and consider the probability 

distribution shapes. These extensions include formulating 

new distribution ambiguity sets that account for symmetric 

and asymmetric and unimodal and multimodal distributions. 

Moment-based ambiguity sets contain probability 

distributions with common characteristics regarding moment 

information rather than specific probability distributions. 

There is a lack of a straightforward way to define an 

empirical distribution in pure moment-based ambiguity sets. 

An empirical probability distribution can be derived from 

sampling the true distribution. Further, study a family of 

distributions in ambiguity set closely to the particular 

empirical distribution. The correct ambiguity set should at 

least statistically contain the true unknown probability 

distribution. Consequently, a pivotal challenge in studying 

ambiguity sets is accurately measuring the closeness between 

probability distributions, a classic problem in statistics. 

In many cases, the optimization problem obtained can be 

reformulated into quadratic or semidefinite programming 

problems. However, considering all distributions that only 

use first and second moments information may lead to overly 

conservative results [37]. Only the moment information of 

the data is used, while other important information that may 

exist is ignored. It may affect the performance and results of 

the model. Furthermore, obtaining moment information in 

practical problems is also tricky. Technical limitations or 

incomplete data collection methods, historical data is 

insufficient, and it is challenging to estimate moments. Even 

with precise moment information, constructing an ambiguity 

set based only on the moment information can forfeit 

valuable prior information about the shape of the distribution, 

potentially leading to suboptimal solutions for 

decision-making. 

2) Ambiguity set based on statistical distance 

Another method for quantifying the statistical distance 

between two probability distributions is considering 

probability measures and constructing a set of possible 

distributions centered around an underlying probability 

distribution. The candidate distributions in the set are close to 

the underlying distribution in the sense of statistical distance. 

The underlying probability distribution is usually an 

empirical or Gaussian distribution with fixed mean and 

variance. The empirical distribution is generally determined 

by data-driven methods such as sampling, expert opinions, 

and simulations. The conservatism of the optimization 

problem is controlled by adjusting the radius of the ambiguity 

set. Specifically, as the radius decreases, the ambiguity 

set correspondingly contracts to incorporate solely the 

underlying probability distribution. In this case, the 

distribution robustness problem is simplified to a stochastic 

programming problem with no ambiguity. One significant 

advantage of this method is that it can effectively incorporate 

observed or sampled data directly into the optimization 

problem. This approach is a data-driven method because of 

its direct and extensive use of actual data[38]. 

Research on distributionally robust optimization primarily 

focuses on the choice of measure for assessing the statistical 

distance between probability distributions. Commonly used 
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measures include the Prokhorov measure [39] and the 

Kantorovich measure [40]. Kuhn [41] and some scholars 

study specific divergences ( ), such as relative entropy [42] 

2 -distance [43]. The choice of divergence depends on the 

risk preferences of the modelers.  -divergence has 

convexity and can use the first and second moments and other 

numerical characteristics. Ben-Tal et al. [44] have explored 

ambiguity set models based on  -divergence and tested their 

computational viability. However, Gao noted that 

the  -divergence-based distribution ambiguity set may 

sometimes fail to include the distributions that 

decision-makers want to include, and  -divergence does not 

consider the proximity between two points in the support, 

resulting in overly conservative or pessimistic results [45]. 

Blanchet et al. [46] have employed the Wasserstein distance. 

The Wasserstein distance accurately evaluates the closeness 

between two points and accurately measures the distance 

between two distributions[45][47]. Hanasusanto et al. [48] 

comprehensively review various ambiguity set types. Table I 

summarizes commonly used probability measures for 

constructing ambiguity sets [49]. 

 

 

The two vectors  1, ,
T

mP p p= and  1, ,
T

mQ q q=  

represent probabilities on these m scenarios. Two discrete 

probability distributions ( P , Q ) are defined on the same  , 

except for the Wasserstein distance. These two probability 

distributions are respectively supported on  1, , m   and 

 1, , n   for the Wasserstein distance. Notably, most 

 -divergences are not metrics, though they help characterize 

the divergence between distributions. Only the Variation 

distance is metric, which satisfies the properties of a metric.  

Based on these probability measures, an ambiguity set can 

be constructed as 

 

( ) ( ) ( ) 0 0, : 1, , ,mQ r P R P D P Q r+=   =   

 

where 0Q  represents the underlying distribution. The inner 

maximization problem in (7) is given below.  
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The critical step is to dualize the above problem. Its dual 

problem is given by 

 

( )( ) ( )
1 2

1 2 1 2 0
, 0 0

1
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m
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P

i
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 
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 
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  
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Through Lagrangian duality theory, the equivalent 

reformulation of the DRO problem based on various 

ambiguity sets of probability measures takes the form of 

Table II. 

 

 

Kuhn [41] proved that the DRO method based on 

Wasserstein distance is precious, offering finite sample 

guarantees, asymptotic consistency, and computational 

tractability. Wasserstein distance has received much attention 

due to its many desirable properties. It has seen increasing 

application in generative adversarial networks (GANs), 

autoencoders, and machine learning regularization. 

Although ambiguity sets based on moment information 

have better tractability, those based on Wasserstein distance 

provide strong out-of-sample performance guarantees and 

allow decision-makers to control the conservatism of the 

model. Therefore, recent DRO research has increasingly 

focused on methodologies grounded in statistical distance. 

4. Data-driven method 

With today’s explosive growth in data, various industries 

are collecting vast quantities of data regularly. Suppliers 

track order patterns throughout the supply chain, the World 

Health Organization compiles comprehensive infection data, 

GPS tracks drivers’ movements, and brokerages record 

historical stock prices. These massive amounts of data have 

catalyzed a shift from traditional reasoning and assumptions 

to data-centric approaches. Data-driven algorithms (DDA) 

are at the forefront and are emerging and becoming 

increasingly prevalent and significant in modern computing. 

TABLE II 
THE EQUIVALENT REFORMULATION OF THE DRO PROBLEM BASED ON 

DIFFERENT PROBABILITY MEASURES AMBIGUITY SET 

Probability 

measures 
The equivalent reformulation 

Kullback- 
Leibler 
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TABLE I 
PROBABILITY MEASURES COMMONLY USED FOR CONSTRUCTING 

AMBIGUITY SET 

Divergence ( ),D P Q
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For instance, data-driven robust optimization algorithms can 

make the most of data. The algorithm can provide detailed 

descriptions of random parameters using historical data and 

statistical inference. Data-driven distributionally robust 

optimization methods can fully consider uncertain factors 

related to decisions and use collected data to estimate 

distribution sets more accurately, transcending limited to 

specific distributions. Constructing new optimization 

techniques tailored to data-driven environments can obtain 

reliable solutions. 

As researchers grow more interested in leveraging data and 

advanced technologies to solve practical problems, 

data-driven algorithms evolve and improve. 

1) Machine Learning  

Several researchers have employed machine learning 

techniques to tackle vendor-managed inventory (VMI) 

problems, addressing demand uncertainty and managing 

inventory costs effectively. For instance, Bertsimas et al. [50] 

applied machine learning techniques to control the inventory 

for video entertainment products in VMI frameworks. 

Ferreira [51] utilized machine learning techniques to 

optimize pricing decisions for online clothing retailers by 

predicting future demand for new products. Y. Shi et al. [52] 

employed data-driven methodologies to manage inventory 

allocation for overseas warehouses. Their approach randomly 

partitioned the complete data set into training and validation 

sets according to a specific ratio. It used machine learning 

techniques to analyze product attributes from historical sales 

data. After fitting the model to the training data set, the 

effectiveness of model performance was evaluated based on 

the out-of-sample of the validation data set. 

Deep learning (DL) represents an emerging and prominent 

area of study within machine learning (ML). It is well known 

that problems can be solved analytically if the probability 

distribution is known. However, the probability distribution 

is frequently unavailable or unknown. Typically, 

decision-makers only have a series of historical data. 

Oroojlooyjadid et al. [53] proposed a deep learning method 

that utilizes prior knowledge of the demand’s probability 

distribution to address this issue. The product order quantities 

are optimized based on the characteristics of demand data. 

Numerical experiments on real-world data show that for 

highly volatile demand, the deep learning method 

significantly outperforms other conventional data-driven 

methods. 

2) Simulation optimization 

In mathematical programming problems under uncertainty, 

simulation optimization can simulate the objective function 

and constraint conditions of the optimization problem 

through a “black box” when they cannot be expressed in 

analytical form. These simulations can operate under random 

inputs to the simulation system and the corresponding 

random outputs based on the objective function and 

constraints. The simulation system has adjustable design 

variables to optimize performance [54]. Amaran et al. 

developed a simulation optimization library that includes 

various simulation optimization examples and applications 

[55]. 

3) Heuristic algorithm 

Heuristic algorithms are essential tools for dealing with 

complex optimization models. The core idea is to iteratively 

update various feasible points and systematically search the 

solution space to find the global optimal solution. Practical 

metaheuristic algorithms include particle swarm, local search, 

tabu search, simulated annealing, evolutionary algorithms, 

scatter search, ant colony optimization, bee colony 

optimization, and artificial immune systems. Among them, 

particle swarm optimization (PSO) is a population-based 

metaheuristic method inspired by swarm intelligence. Each 

particle moves in the solution space, and its position 

represents a point visited in the decision variable space and 

the value of the objective function at that point. Another 

attribute of the PSO algorithm is the particle’s velocity, 

which represents its movement direction and step size. PSO 

iteratively updates particle positions by collectively 

integrating information from individual particles and the 

swarm. The algorithm intends to efficiently search the 

complex solution space from an adaptive particle system to 

determine the global optimum solution [56]. Hughes et al. [57] 

improved the PSO algorithm by proposing a robust 

metaheuristic solution for black-box problems under 

uncertainty. It can be applied to more general-scale 

optimization problems with less information on the objective 

function and can be achieved under expected evaluation 

times. Xing further enhanced the PSO comprehensively and 

deeply by introducing the mutation operator in the genetic 

algorithm (GA) and the Metropolis criterion in the simulated 

annealing algorithm (SI) [58]. Bertsimas et al. [59-61] 

proposed an improved robust local search adaptive method 

based on a downhill direction (d.d.). This method is 

essentially a robust local search. 

Given a starting point in the decision variable space, 

internal maximization is performed in the uncertain 

neighborhood, unwanted high-cost points (HCP) are 

identified from this search, and the best direction away from 

all these HCP points is determined through quadratic 

programming. Iterate to a new point in this descent direction 

and repeat the process until no further descent direction can 

be identified. Hughes et al. [62] proposed the largest empty 

hypersphere metaheuristic algorithm (LEH). This global 

optimization method moves the search to a feasible location 

within the farthest distance from all previously visited “bad” 

points. Using the idea of identifying high-cost points globally 

with the d.d. method, LEH uses the historical set of evaluated 

points and the high-cost set. The latter is a subset of the 

historical set containing all points with objective function 

values greater than the threshold, set to the current estimated 

robust global minimum value. Beyer and Sendhoff et al. [63] 

proposed a genetic algorithm (GAs/RS3) based on a robust 

solution search plan to solve issues such as parameter drift 

within the running time, model sensitivity, and other aspects.   

Heuristic optimization algorithms are characterized by 

their independence from initial conditions. In addition, these 

algorithms do not rely heavily on the structure of the solution 

space and do not require differentiability or continuity in the 

solution domain, making them suitable for solving problems 

with unknown solution space or discrete variables. Heuristic 

methods start from any initial solution and explore the 

optimal solution in the entire solution space based on a 

specific mechanism and probability. Furthermore, heuristic 

optimization algorithms are easy to implement. 

However, heuristic optimization algorithms also present 
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certain disadvantages. While they can provide approximate 

solutions, the inherent randomness of their iterative search 

process often incurs significant computational costs as a 

trade-off. The convergence speed tends to be relatively slow, 

and verifying their convergence can be challenging, 

especially for high-dimensional and multimodal problems, 

where the algorithm may face convergence issues or get stuck 

in local optima. 

4) Hybrid algorithm 

In recent years, hybrid random optimization algorithms 

based on data-driven techniques have garnered significant 

attention among practitioners and researchers. Jiang et al. [64] 

developed a precise method to solve stochastic programming 

problems through data-driven chance constraints (DCC) with 

 -divergence. Two types of confidence sets are constructed 

for stochastic distributions based on nonparametric statistical 

estimation of moments and probability density from 

historical datasets. Their approach effectively solved 

stochastic programming with DCC under moment-based and 

density-based confidence sets. In addition, they derived a 

quantitative relationship between DCC and the sample size of 

historical data, thereby demonstrating the intrinsic value of 

data. Similarly, Lee et al. [65] studied the data-driven 

distribution of robust newsvendor problems under 

Wasserstein distance. They derived a closed-form solution 

and characterized the worst-case distribution. 

Additionally, McLachlan et al. clustered multivariate data 

observed from random samples using finite mixture models 

and fitted them employing the expectation-maximization 

(EM) method with maximum likelihood [66]. However, this 

method has limitations in addressing variance characteristics 

concentrated in the uncertainty set.  Pierpaolo D U et al. [67] 

proposed several uncertainty clustering methods based on 

distinct theoretical methods for modelling uncertainties to 

address these limitations. 

Despite the growing prominence of data-driven methods, 

Elishakoff et al. [21] argue that their practical application 

remains challenging.  This difficulty arises from all joint 

probabilities of parameters should be objectively quantified. 

In scenarios with insufficient independent measurement data, 

this fitting process can significantly impact the accuracy of 

quantification results. Furthermore, these methods usually 

require substantial computational costs, especially when the 

failure probability is tiny. 

Next, a motivating example of a linear programming 

problem by Shang et al. [68] is used to illustrate these 

models: 

 

1 1 2 2

1 2

1 2

1 2

max

. . 5 2 80,

6 8 200,

, 0,

z x x

s t x x

x x

x x

 = +

+ 

+ 



 

 

where 
1 and 

2 represent uncertain parameters. Data 

samples are generated randomly based on their nominal 

values [8, 2]. The comparative analysis of running time and 

optimal values across varying sample sizes in the motivating 

case are depicted in Fig. 5 and Fig. 6. Specifically, in the 

motivating example, when the means of the random variables 

are known to be [8,2], the solutions obtained from the 

deterministic optimization model and EM align perfectly. 

 

 
Fig. 5.  Comparisons of running time across varying sample sizes. 

 

Figure 5 illustrates that the CCPM and RO methods exhibit 

substantial increases in running time with growing sample 

sizes, indicating a significant impact of algorithmic 

complexity on their performance when dealing with 

large-scale data. In contrast, the EM, SAA, DRO, and GA 

methods display minimal variation in running times across 

different sample sizes, reflecting high efficiency and 

potential scalability. Despite this, GA, as an intelligent 

algorithm, seeks local optimal solutions, which results in 

unstable optimal values. Furthermore, the SAA and EM 

methods show the lowest running times, indicating good 

performance in handling large-scale problems. SAA and 

DRO are often preferable for highly uncertain datasets due to 

their design, which incorporates risk considerations into the 

optimization process. 

 

 
Fig. 6.  Comparisons of optimal values across varying sample sizes. 

 

As illustrated in Figure 6, when the means of the random 

variables are known, EM demonstrates stability, exhibiting 

minimal variation with changes in sample size. This 

consistency indicates that EM might be robust to fluctuations 

in the amount of data. Conversely, CCPM exhibits a 

noticeable fluctuation in optimal values with varying sample 

sizes. This variability indicates that the CCPM may be 

sensitive to sample size, with performance possibly 

improving with larger samples but also some instability. RO 

shows significant variability in the optimal values,  reflecting 

a high dependence on the sample size and data characteristics. 

The method may perform inconsistently across different 

sample sizes, which could reflect sensitivity to the specific 

data or sample characteristics. DRO and GA present a 

consistent and decreasing trend in optimal values similar to 
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the SAA. It indicates improved performance with larger 

sample sizes and more excellent stability as sample size 

increases. However, the optimal values obtained by GA are 

relatively small and do not reach the global optimum, as 

evidenced by the comparison results in Table III. 

The performance of these methods is further evaluated 

using the optimal values performance loss ratios. These ratios 

are computed by comparing the loss values of the optimal 

values obtained through each method to those from the 

deterministic model. Specifically, the performance loss ratio 

quantifies the extent to which the optimal values from given 

methods deviate from the optimal values provided by the 

deterministic model. 
 

 

The comparison of linear programming methods reveals 

that both CCPM and RO experience increased running times 

with larger samples, indicating high algorithmic complexity. 

Conversely, EM, SAA, DRO, and GA maintain efficiency 

and stability across varying sample sizes. Due to their risk 

management capabilities, SAA and DRO are particularly 

well-suited for uncertain datasets. EM remains stable when 

the means of the random variables are known, suggesting 

robustness. CCPM displays variability with sample size, 

while RO demonstrates significant fluctuations in optimal 

values, reflecting sensitivity to data characteristics. The 

optimum value of the GA is relatively small and does not 

achieve the global optimum. Overall, SAA and DRO offer 

reliable performance and scalability with larger sample sizes, 

making them advantageous choices for managing uncertainty 

and handling large datasets effectively. 

 

III. FUZZY OPTIMIZATION MODEL 

When decision tasks are too complex for quantitative 

description or faced with some non-precise information 

lacking clear boundaries, such as information related to 

human language or behaviors, fuzzy optimization (FO) 

provides practical techniques and methods. 

The fuzzy optimization problem involves an optimization 

model with either the objective function or constraints 

containing fuzzy variables. This approach is particularly 

suitable for dynamic, uncertain, or complex systems. Since 

LA Zadeh [69] proposed the concept of “fuzzy sets” in 1965, 

numerous new methods and mathematical theories have been 

developed to address imprecision, fuzziness, and uncertainty.  

These advancements are often extensions of fuzzy set 

theory, while others attempt to mathematically model 

imprecision and uncertainty in different frameworks (Kerre 

and Burgin [70][71]). Such studies generally extend fuzzy set 

theory as standard probability theory often falls short in 

sufficiently handling complex problems involving 

randomness, imprecision, fuzziness, and partial 

incompleteness. Fuzzy theory draws on hesitant sets and 

inference logic (conditional event function) and appropriately 

complements traditional probability theory to better handle 

the complexities inherent in statistical inference problems. 

Prominent examples include Type-2 fuzzy set theory [72], 

Intuitionistic fuzzy set theory [73], Rough set theory [74], 

Shadowed set theory [75], Credibility set theory [73], and 

theory of evidence [76]. Pioneering works by Bellman, 

Kalaba, and Zadeh et al. [77] laid the groundwork for 

clustering based on fuzzy set theory. Their research results 

were prototypes of clustering algorithms. In addition, 

numerous studies have employed fuzzy theory to solve 

uncertainty in practical applications [78]-[80]. The fuzzy 

linear optimization model is as follows: 
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where x  represents the decision variable.  , ija , jb  denote 

the fuzzy variable. The α-Cut set, and fuzzy expectation 

method are commonly employed to solve fuzzy optimization 

models. 

1) α-Cut Set Method 

The basic principle of handling fuzzy optimization is to 

treat the fuzzy objective function and fuzzy constraints as 

fuzzy subsets within the solution space. These fuzzy sets are 

represented by their respective membership functions. The 

intersection of the fuzzy objective function and fuzzy 

constraints is analyzed to find an optimal solution. 

Maximizing the membership function of the intersection is 

the optimal solution to the fuzzy optimization problem. 

Let the fuzzy subset ( ) A
A x x  =   be the α-cut set 

of the fuzzy set A, where α is the confidence level. The fuzzy 

linear optimization model (9) can be converted into an 

interval optimization model using the concept of cut set: 
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2) Fuzzy Expectation Method 

For any confidence level [0,1]  , the fuzzy linear 

optimization problem (9) can be reformulated as the 

following interval optimization model: 
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where the possibility of the fuzzy event A k  is 

TABLE III 

COMPARES RESULTS ACROSS VARYING MODELS 

Model Optimal value Loss ratio 

EM 128.0000 0.0000 
CCPM 110.1825 -0.1392 

SAA 129.1200 0.0088 
RO 135.4909 0.0585 

DRO 129.1200 0.0088 

GA 125.1658 -0.0221 
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 = . The necessity of the fuzzy event is 
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In summary, fuzzy optimization and stochastic 

programming are two pivotal optimization methods for 

tackling uncertainty in optimization problems. Their primary 

distinction lies in how uncertain parameters are modeled and 

described. Fuzzy optimization treats uncertain parameters as 

fuzzy numbers and constraints as fuzzy sets, some of which 

allow violations and define the satisfaction degree of 

constraints as the membership function of constraints [66]. 

Conversely, stochastic programming represents uncertain 

parameters as discrete or continuous probability distributions. 

Although interval fuzziness effectively describes uncertain 

variables, measuring uncertainty through the degree of 

membership functions largely relies on the expertise of 

analysts. Therefore, fuzzy optimization has an inevitable 

subjectivity [70]. 

 

IV. INTERVAL OPTIMIZATION 

Obtaining appropriate membership functions or accurate 

probability distributions is difficult in uncertain and complex 

environments. In recent years, interval optimization (IO) has 

been developed to address optimization problems that 

involve uncertain parameters. This approach requires only 

the knowledge of the boundaries of uncertain parameters 

without the need for detailed probability distributions or 

membership functions. Rommelfanger [81] proposed a linear 

programming problem with interval parameters in the 

objective function in 1989, marking a significant step 

forward in this field. Ishibuchi [82] further advanced this 

concept by transforming mathematical programming 

problems with interval parameters in the objective function 

into multi-objective problems, utilizing ordinal relationships. 

Sengupta [83] proposed an interval linear programming 

problem with inequality constraints containing interval 

parameters and simplified it to an equivalent form for the 

solution. Jiang et al. [84] introduced a nonlinear interval 

number programming problem with uncertain coefficients of 

nonlinear objective functions and constraints. The general 

form of the nonlinear interval number programming (NINP) 

problem with uncertain interval parameters in the objective 

function and constraints is presented below: 
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        (10) 

 

Consider the vector  as a q-dimensional uncertain vector 

with interval numbers components. The objective function or 

constraint condition is represented as intervals rather than a 

real number for each specific x . The general objective 

function and constraint conditions are typically nonlinear. 

Traditional deterministic optimization and linear interval 

programming methods cannot solve this problem. 

Considering robustness, Jiang [84] transformed the uncertain 

objective function into two deterministic objective functions. 

Calvete [85] discussed the optimization problem of stochastic 

linear bilevel programming, demonstrating that when the 

coefficients of the two objective functions are interval 

parameters, optimal solutions are found at the extreme points 

of the polytope defined by the common constraints. Interval 

optimization has a broad range of applications. Simic V [86] 

proposed a two-stage stochastic programming model with 

interval parameter conditional value-at-risk for end-of-life 

vehicle management. Wan [87] decomposed the interval 

parameter model into two standard nonlinear uncertain 

programming problems and developed a two-step sampling 

method. 

Interval optimization methods provide a new approach to 

solving general optimization problems with uncertainty. IO 

provides an alternative to stochastic programming techniques 

and offers a viable method to solve some problems without 

sufficient uncertainty information. 

 

V. POLYMORPHIC UNCERTAIN OPTIMIZATION 

Previous literature generally only concentrated on a 

situation, considering random variables without considering 

fuzzy parameters, or vice versa. The optimization problems 

simultaneously considering random, fuzzy, or interval 

parameters have not been mentioned.  The concept of 

polymorphic uncertain optimization (PUO) was first 

introduced by Wan et al. [88] in 2011, representing a 

significant advancement in this area. They designed a 

piecewise inference method to infer the probability 

distribution. This method can offer specific analytical 

expressions for these distributions and makes a breakthrough 

in prediction methods. 

For uncertain analysis, mixed techniques such as fuzzy 

randomness are also introduced [89]. Contemporary 

literature employs an approach to model uncertainty by 

simultaneously considering random and fuzzy methods using 

fuzzy random variables (FRVs) theory. This approach 

constructs an appropriate distribution ambiguity set 

probability measure, with crucial contributions from 

researchers such as Puri et al. [90], Klement [91], and Colubi 

[92]. Zhang et al. [93] applied the polymorphic uncertain 

optimization model to comprehensively address the fuzziness 

in objective function parameters and the randomness in 

constraint condition parameters within an end-of-life vehicle 

recycling network model. By transforming the original 

problem into a deterministic multi-objective mixed integer 

linear optimization problem to offset the uncertainty of the 

model, they developed a straightforward, interactive fuzzy 

method to find the compromise solution of the uncertain 

model.  

Further advancing this field, Wan et al. [94] used the 

developed polymorphic uncertain equilibrium model to solve 

the problem of decentralized supply chain management. In 

their approach, consumer demand was regarded as a 

continuous random variable, while the holding costs of 

retailers and the transaction costs between manufacturers and 

retailers are described by fuzzy sets. They first derived a 
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deterministic equivalent formula (DEF) through a 

compromise optimization method. Then, standard smoothing 

techniques are used to polish it partially. Ultimately, an 

approximate equilibrium point for the uncertain problem is 

found by applying robust algorithms based on gradient 

information. Notably, although the DEF in their study is a 

nonlinear complementarity problem, a particular type of 

variational inequality, their method effectively addresses the 

assumption of monotonicity of the variational inequality. 

In the realm of optimization problems characterized by 

fuzzy and interval parameters, Wan notably developed a 

linear programming model incorporating interval and 

random coefficient constraints derived from the sintering to 

address the optimal mixture slurry problem associated with 

the production process of alumina [95]. Zhang et al. [96] 

developed a polymorphic uncertain nonlinear programming 

model (PUNP) consisting of a nonlinear objective function 

and constraints with uncertain parameters. For a given 

satisfaction level, this definition is a nonlinear optimization 

that only involves interval parameters. They also proposed a 

sampling-based interactive method to estimate parameters 

under polymorphic uncertainty and obtain a robust solution 

to the original model. 

The PUO algorithm represents a synthesis of deterministic 

optimization techniques and uncertainty processing 

techniques, incorporating stochastic programming, fuzzy 

optimization, and robust optimization to manage various 

forms of parameter uncertainty. 

 

VI. CONCLUSION AND PROSPECT 

This article provides a comprehensive overview of the 

state-of-the-art techniques in uncertain optimization. It 

succinctly introduces methods and fundamental principles 

for addressing uncertain optimization problems. Each 

method exhibits unique adaptations and advantages, as Table 

IV details. In practice, selecting the most appropriate 

algorithms depends on the specific characteristics of the 

problem to achieve the optimal solutions. 

 

 

Stochastic programming, an integral component of 

uncertain optimization, has yielded substantial research 

advancements in tackling complex practical problems. 

Extensive literature has contributed significantly to this field, 

documenting notable progress in stochastic programming. 

Table V comprehensively discusses and summarizes various 

widely adopted models and methodologies for addressing 

stochastic programming. 

 

 

 

Fig. 7 presents an analysis of six methods evaluated on 

robustness and complexity. Robustness scores indicate that 

robust optimization and distributionally robust optimization 

exhibit superior performance in the face of worst-case 

scenarios. In contrast, the expectation method scores the 

lowest, suggesting limited robustness. Regarding complexity, 

RO and EM stand out with the highest scores when dealing 

with high-dimensional random variables, highlighting their 

computational demands. Overall, these illustrate a notable 

trade-off between robustness and complexity. Selecting 

appropriate methods based on specific application needs and 

computational resources is crucial. 

 

 
Fig. 7.  The robustness and complexity of different models. 

 

As documented in the literature, significant progress has 

been achieved in stochastic programming. The expectation 

method generally converts the model into a mixed-integer 

nonlinear model, and efficient methods for such models are 

currently a prominent research hotspot and challenge. 

Distributionally robust optimization models address 

uncertainty by defining an ambiguity set for the probability 

distribution. The distributionally robust optimization 

problems are relatively tractable while the moment 

information is obtainable. However, distributionally robust 

optimization problems with unknown numerical 

characteristics are challenging to solve. For instance, most 

optimization problems with unknown distributions may be 

confronted with the dilemma of nonconvex or non-closed 

solutions. Nevertheless, such problems are more common in 

practical modelling. Data-driven methods have good 

numerical performance and can solve the limitations of 

chance-constrained programming methods and 

distributionally robust optimization methods. By leveraging 

existing data, these methods can constrain the range of 

random variables and reduce the excessive conservatism 

often associated with traditional robust optimization 

TABLE V 

SUMMARY OF STOCHASTIC PROGRAMMING AND METHODOLOGIES  

Model Set 
Distribution 

known 
Methodologies 

EM Uncertainty set √ Take the expectation 
CCPM Uncertainty set √ Satisfy a confidence level 

SAA Support set × Take the sample average 

RO Uncertainty set × The worst-case realization 

DRO Ambiguity set × 
Take the expectation of the 

worst-case distribution 

DDA Data sets × Train and test the data 

 

TABLE IV 

SUMMARY OF UNCERTAIN OPTIMIZATION MODELS AND METHODOLOGIES 

Model 
Uncertainty 

variables 
Set Methodologies 

SP Random variable 
Uncertainty/ 

ambiguity set 

EM, CCPM, SAA, 

RO, DRO, and 

DDM 

FO Fuzzy variable Fuzzy set 
α-Cut Set Method, 
Fuzzy Expectation 

IO Interval parameter Interval Interval search 

PUO 
Random variable 

and Fuzzy variable 
Support set 

and fuzzy set 
Integrated algorithm 
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approaches. 

Despite these advancements, several notable deficiencies 

persist in current methodologies. For example, the 

expectation and chance-constraint methods require extensive 

data to fit the probability distribution accurately. In 

distributionally robust optimization methods, determining the 

optimal radius and bounds of the ambiguity set is challenging. 

Although heuristic algorithms have effectively addressed 

various uncertain programming models, their applicability is 

generally limited to smaller-scale problems. Other 

data-driven methods exhibit strong numerical performance 

but face challenges in ensuring guaranteed out-of-sample 

performance and consistent convergence. 

Fuzzy optimization, interval optimization, and 

polymorphic uncertain optimization have been achieved in 

numerous research results on uncertain optimization models 

and algorithms. However, each approach presents inherent 

challenges. Fuzzy optimization methods, while valuable, 

introduce a degree of subjectivity. This subjectivity arises 

from relying on membership functions to represent 

uncertainty, which depends on expert judgment. Interval 

optimization, which deals with parameter ranges rather than 

precise values, can expand the search space and limit 

accuracy. Polymorphic uncertain optimization involves 

multiple uncertainty variables, making the problem more 

complex. Collectively, these methodologies are 

computationally tricky and time-consuming. 

To effectively address larger-scale problems, further 

improvements and new attempts are necessary in method 

design to address the limitations of traditional methods. 

Based on the analysis of previous literature, future research in 

uncertain optimization models can focus on the following 

areas:  

Applying the theory of distributionally robust optimization 

and stochastic programming to construct abstract 

optimization models is necessary to tackle complex 

environments scientifically. Secondly, considering various 

methods have limitations, their accuracy is still 

unsatisfactory, suggesting room for significant improvement. 

Researchers combine recently developed data-driven 

methodologies to design efficient, novel techniques based on 

data-driven techniques. Construct new optimization methods 

suitable for random parameters and independent of specific 

distribution assumptions. These advancements assist in 

making optimal decisions in complex and uncertain 

environments. Evaluating the latest techniques in terms 

of convergence, convergence speed, operating cost, solution 

quality, and overall performance is crucial. Thirdly, most 

current methods for solving these models are single. There is 

a notable gap in research addressing the polymorphic 

uncertain optimization problems that integrate stochastic 

programming and fuzzy optimization models. New flexible 

methods that consider both are lacking.  Further exploration 

using diverse techniques is needed to effectively address 

these complex optimization challenges. Fourthly, the 

distributionally robust optimization problems, particularly 

those involving two-stage or newsvendor problems, can be 

further studied. Transforming these problems into 

deterministic models amenable to numerical solutions could 

enhance performance and practical implementation. Finally, 

the potential application prospects of uncertain optimization 

models are broad. They are crucial tools for solving 

real-world problems, with great practicality and significant 

implications. For instance, the supply chain network was 

optimized for medical relief supplies management under 

severe crises, considering the uncertainty of affected or 

infected populations. Effective optimization can improve the 

management of medical disaster relief materials after 

common emergencies like home fires, emergency treatment, 

vehicle accidents, and more catastrophic situations such as 

earthquakes, tsunamis, and explosions. 

Based on the analysis, uncertain optimization problems 

demonstrate extensive applicability and significant potential 

for further development. This paper comprehensively 

analyzes various models and methodologies in this domain, 

highlighting their specific applications and inherent 

limitations.  To address particular challenges, it is necessary 

to creatively construct efficient uncertain optimization 

models and develop practical algorithms in complex 

environments. Exploring the application of uncertain 

optimization models and their associated algorithms in 

practice presents a formidable challenge and a highly 

academic research value. The ongoing advancement in this 

field is crucial for driving progress in related disciplines and 

tackling complex, real-world problems with greater efficacy. 

The continuous advancement of uncertain optimization 

models and algorithms is vital in enhancing their practical 

utility and promoting related fields. 
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1)    Date of modification - October 4, 2024 

2)    Brief description of the changes 

- Updated the optimal solution to the optimal value in Table III. 

- Corrected a typo by updating ‘8’ in the optimization problem to ‘80’. 
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