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Abstract—The crossing number is a key indicator of the
graph’s complexity and difficulty in visualization. In this paper,
we study the crossing number of the Cartesian product of
triangular snake graph TSm with path Pn (on n+1 vertices),
cycle Cn, star K1,n and 3-vertex graphs. We prove that
cr(TS5×Pn) = 2(n−2) ∀ n ≥ 1 and establish a conjecture for
the general case. Moreover, we obtain the crossing number of
the graph TSm×Cn by proving that cr(TSm×Cn) = nbm

2
c for

m,n ≥ 3. Furthermore, we consider the graph TS5×K1,n and
establish cr(TS5×K1,n) = n(n−1) ∀ n ≥ 3, also a conjecture
is provided for the general case. Finally, we extend the study
to 3-vertex graphs by proving that cr(TSm × P2) = b

m

2
c for

m ≥ 5.

Index Terms—Crossing Number, Triangular Snake Graph,
Subdivision, Edge-Disjoint Subgraphs, Contraction the Edge.

I. INTRODUCTION

THE smallest number of crossings that occur among all
of G’s drawings in the plane is known as the crossing

number, or cr(G). The following four prerequisites must be
met in order to study this concept:

1) No edge crosses over to itself.
2) The edges that are adjacent do not cross.
3) Two edges can only be crossed at one point at most.
4) Three or more edges do not cross at the same point.

In Figure 1, the aforementioned conditions are clarified.
A drawing is considered good if it satisfies those

conditions. If crD(G) = cr(G), (crD(G) is the number of
crossings in D), then D is known as optimal drawing of G.
Let crD(u, v) be the number of crossings founded among
the edges incident on u or v in D.

Let L be a graph constructed from G by inserting vertices
of degree 2 into G’s edges, then L is referred to as a
subdivision of G [1]. Clearly, cr(G) = cr(L) and G is
planar if and only if L is planar. Every subdivision of K5

and K3,3 is therefore nonplanar (based on the nonplanarity
of K5 and K3,3).

The Cartesian product of two graphs H and L, denoted
by H×L, has vertices set V (H)×V (L) and edges set
E(H×L) = {(u1, v1)(u2, v2) : u1 = u2 and v1v2 ∈ E(L)
or v1 = v2 and u1u2 ∈ E(H)}. Thus for each edge u1u2
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Fig. 1. Prohibited crossings in a good drawing.

of H and each edge v1v2 of L, there are four edges in H×L
(Figure 2).

Fig. 2. G = H × L.

A path with m vertices p1, p2, ..., pm, m is odd, together

with the edges p2i−1p2i+1, 1 ≤ i ≤ m− 1

2
, is called the

triangular snake graph, or TSm (Figure 3 for m = 7).
In 2012, Rajan et al. [2] investigated cr of the join

product of TSm with an empty graph nK1, Pn (on n
vertices) and Cn. They established cr(TSm + nK1) =

Z(m,n)+ bm
2
cbn

2
c, cr(TSm +Pn) = Z(m,n)+ bm

2
cbn

2
c

and cr(TSm +Cn) = Z(m,n)+ bm
2
cbn

2
c+2 : m ≥ 5 and

n ≤ 6. In 2023, Alhajjar et al. [12] began to study a new
case in relation to the strong product of path with TSn by
proving that cr(P2 � TSm) = 3bm

2
c for m ≥ 3.

P1 P2 P3 P4 P5 P6 P7

Fig. 3. The graph TS7.

There are many applications of this concept, for instance,
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the process of creating integrated circuits using VLSI (very
large scale integration) involves combining millions of tran-
sistors onto a single chip. In fact, VLSI allows integrated
circuits to perform a wide range of functions on a single
chip, whereas before VLSI, most integrated circuits had
a more limited range of functions. In VLSI, the chip is
represented as a graph, with vertices representing macro cells
and edges representing wires connecting the vertices. The
chip designer’s task is to arrange macro cells and wires on
a circuit board, with the aim of avoiding crossings between
the wires because we have to change one of the wires’ layers
when two wires cross. Such a change in layer is known
as a contact cut, and it is best to use as few contact cuts
as possible because doing so forces the chip to use more
area. In the context of the graph, this means fewer edge
crossings overall, see [5]. Furthermore, Székely [9] and Pach
et al. [7] provided multiple discrete geometry proofs based on
crossing number theory findings. Purchase [8] clarified that
the most significant aesthetic quality is the crossing number.
To be more precise, graph drawings with as few crossings
as possible are actually easier to understand. We may refer
to [11] for extra information and terminology about crossing
number theory.

II. cr(TSm × Pn)

Let Pn be the Path on n + 1 vertices, there are many
studies regarding the class of the Cartesian product of path
with other graphs, for example:

1) cr(K1,m×Pn) was calculated by Bokal (2007) [3]
using the following formula: cr(K1,m × Pn)= (n −
1)bm

2
cbm− 1

2
c for (m ≥ 3 and n ≥ 1).

2) The following conjecture was introduced by Zheng et.
al. (2007) [17] regarding cr(Km × Pn):
Conjecture: cr(Km × Pn) =
1
4b

m+1
2 cb

m−1
2 cb

m−2
2 c(nb

m+4
2 c+ b

m−4
2 c) ; n ≥ 1.

In 2014, it was proven by [16] for m ≤ 10.
3) Wang et al. (2009) [6] considered the graph

Wm × Pn and proved that: cr(Wm × Pn)= (n −
1)bm

2
cbm− 1

2
c+ n+ 1 : m ≥ 3 , n ≥ 1.

4) In 2011, Zheng et al. [14] investigated cr(W2,m×Pn),

they established: cr(W2,m×Pn)= 2nbm
2
cbm− 1

2
c+

2n : m ≥ 3, n ≥ 1.
5) In 2022, Alhajjar et al. [10] started to study cr(Sm ×

Pn) where Sm is a sunlet graph, they proved that:
cr(Sm×P2)= m : m ≥ 3, also they came up with the
following conjecture:
Conjecture: cr(Sm × Pn)= m(n− 1) : m,n ≥ 3.

In this section, we extend this class of graphs by studying
cr(TSm×Pn). It is easier to label the vertex ws,t instead of
(ps, vt) where s = 1, ...,m, t = 1, ..., n+ 1 in TSm × Pn.

For m = 3, TS3 × Pn is a planar graph (Figure 4).

Theorem II.1. cr(TS5 × Pn) = 2(n− 1) for n ≥ 1.
Proof:
Let us consider D as a good drawing of TS5 × Pn

and Qt as a subgraph of D induced by the vertices
{ws,t, ws,t+1, ws,t−1 : s = 1, 2, 3, 4, 5} for t = 2, ..., n − 1.
Hence, TS5×Pn = Q2

⋃
Q3

⋃
...
⋃
Qn−1. Note that Qt has

a subgraph which is a subdivision of K3,4, thus cr(Qt) ≥ 2.

Fig. 4. The graph TS3 × Pn.

Let Q
′

t be the subgraph of Qt which is a subdivision of K3,4,
it is easy to check that V (Q

′

t) = {w3,t−1, w3,t, w3,t+1} ∪
{w1,t, w2,t, w4,t, w5,t} ∪ I(Q

′

t) for t = 2, ..., n − 1, where
I(Q

′

t) is the set of two-degree inserted vertices in Q
′

t. (An
example shown in Figure 5 for j = 2).

Fig. 5. Left: Q2. Right: Q
′
2.

The rest of the proof consists of demonstrating that each
Q

′

t has at least two crossings that do not occur in any other
Q

′

k (t 6= k), this is known as the Counting Argument [4].
In Q

′

t, a crossing denoted by r is formed by the
intersection of two edges e and f where e 6= f (essentially,
K2,2 forms every crossing), if r occurs in more than one
subgraph of Q

′

t, then the edges e and f must belong to
each one of Q

′

t. Since the two-degree inserted vertices have
no effect regarding the number of crossings in Q

′

t, then we
can treat them as points from the edges of Q

′

t, therefor we
can write:
crD(Q

′

t) = crD(w3,t−1, w3,t) + crD(w3,t−1, w3,t+1) +
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crD(w3,t, w3,t+1) ≥ 2 (1)
(In general, each drawing of Km,n can have a
total of crossings counted in the following way:∑m−1

s=1

∑m
k=s+1 cr(vs, vk), where vs, vk belong to the

set of vertices m).
The formula (1) thus leads to the conclusion that changing

the variable t results in at least two crossings in each Q
′

t

that do not occur in any Q
′

k (t 6= k). As a result, there
will be at least 2(n − 1) crossings in D. Figure 6 exhibits
a drawing of TS5 × Pn with 2(n − 1) crossings, it follows
that cr(TS5 × Pn) = 2(n− 1). �

Fig. 6. A drawing of TS5 × Pn with 2(n− 1) crossings.

The natural extension obtained from Figure 6 exhibits
a drawing of TSm × Pn with (n − 1)bm

2
c crossings, i.e.

cr(TSm × Pn)≤(n− 1)bm
2
c.

Conjecture 2.1 cr(TSm×Pn) = (n−1)bm
2
c : m ≥ 7 and

n ≥ 1.

III. cr(TSm × Cn)

Let Cn be the Cycle on n vertices. The following theorem
determines the value of cr(TSm × Cn):

Theorem III.1. cr(TSm × Cn) = nbm
2
c for m,n ≥ 3 , m

is odd.
Proof:
The graph TSm consists of bm

2
c edge-disjoint subgraphs of

C3, therefore cr(TSm × Cn) ≥ nbm
2
c for m,n ≥ 3, m is

odd. (Recall that cr(C3 ×Cn) = n : n ≥ 3, [13]). Figure 7
exhibits a drawing of TSm ×Cn with nbm

2
c crossings, this

applies cr(TSm×Cn) = nbm
2
c and the proof is completed.

�

Fig. 7. The natural extension of TSm×Cn with nbm
2
c crossings.

IV. cr(TSm ×K1,n)

The complete bipartite graph K1,n is known as the star
graph. We only deal with n ≥ 3 because K1,1 and K1,2 are
isomorphic to P1 and P2 respectively. Let v0 be the vertex
with degree n and vj be the vertex with degree 1 for j =
1, ..., n in the graph K1,n. In this section, we present new
results related to cr(TSm ×K1,n), m is odd and n ≥ 3.

Lemma IV.1. cr(TS3 ×K1,n) = b
n

2
cbn− 1

2
c ∀ n ≥ 3.

Proof:
The subgraph P2 is contained in TS3, thus cr(TS3 ×
K1,n) ≥ cr(P2 × K1,n) = bn

2
cbn− 1

2
c ∀ n ≥ 3, [3]. In

fact, it is simple to observe that the graph TS3×K1,n has a
subgraph which is a subdivision of K3,n. In Figure 8, there

is the drawing of TS3 ×K1,n with bn
2
cbn− 1

2
c crossings.

The claim follows. �

Theorem IV.1. cr(TS5 ×K1,n) = n(n− 1) ∀ n ≥ 3.
Proof:
TS5 contains K1,4 as a subgraph, hence cr(TS5×K1,n) ≥
cr(K1,4 ×K1,n) = n(n − 1) ∀ n ≥ 3, [15]. In the rest of
the proof, we will show a drawing D of TS5 × K1,n with
n(n− 1) crossings exactly. Let us construct a drawing D of
TS5 ×K1,n as follows:

1) For each i = 1, ..., 5, place the vertices wi,0 on the
y − axis equally around the center.

2) If j is even, then place the vertices

{w1,j , w2,j , ..., w5,j} on the vertical line x =
j

2
equally around the x− axis.
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w1,0

w2,0

w3,0

w1,2

w2,2

w3,2

w1,1

w2,1

w3,1

w1,4

w2,4

w3,4

w1,3

w2,3

w2,3

Fig. 8. A drawing of TS3 ×K1,n with bn
2
cbn− 1

2
c crossings.

w1,0

w2,0

w3,0

w1,2

w2,2

w3,2

w1,1

w2,1

w3,1

w1,4

w2,4

w3,4

w1,3

w2,3

w2,3

w4,0

w5,0

w4,1 w4,2w4,3 w4,4

w5,2w5,1w5,3
w5,4

Fig. 9. A drawing of TS5 ×K1,n with n(n− 1) crossings.

3) If j is odd, then place the vertices {w1,j , w2,j , ..., w5,j}
on the vertical line x = −j + 1

2
equally around the

x− axis.

Figure 9. Note that D has a subgraph which is a
subdivision of K5,n by deleting the set of the egdes F =
{w1,jw2,j , w4,jw5,j , w1,0w3,0, w2,0w3,0, w3,0w4,0, w3,0w5,0 :

j = 0, 1..., n}. In fact, this forces Z(5, n) = 4bn
2
cbn− 1

2
c

crossings [4], moreover it is not difficult to find that
the edges w1,0w3,0 and w3,0w5,0 contribute with 2bn

2
c

crossings in the presented drawing D which are different
from the crossings formed by the subdivision of K5,n. Thus

crD(TS5 × K1,n) = 4bn
2
cbn− 1

2
c + 2bn

2
c = n(n − 1),

therefor cr(TS5 ×K1,n) = n(n − 1) for n ≥ 3. The proof
is completed. �

The natural extension obtained from Figure 9 exhibits

a drawing of TSm × K1,n with 4bm− 2

2
cbn

2
cbn− 1

2
c +

bm
2
cbn

2
c = 4bm− 2

2
cZ(n) + bm

2
cbn

2
c crossings, i.e.

cr(TSm ×K1,n)≤ 4bm− 2

2
cZ(n) + bm

2
cbn

2
c.

Conjecture 4.1 cr(TSm × K1,n) = 4bm− 2

2
cZ(n) +

bm
2
cbn

2
c for m ≥ 7 and n ≥ 3.

V. cr(TSm × 3− vertex graphs)

The path P2 (on three vertices) and the cycle C3 are the
only two connected non-isomorphic graphs on 3 vertices. By
Theorem III.1, cr(TSm×C3) = 3bm

2
c for m ≥ 3, m is odd.

Contraction the edge cf in the graph G is the process
of merging it into a single vertex w so that w is adjacent to
every vertex in G that is adjacent to c or f in G, (Figure
10).

G G1

a b

c

df

g

a b

g

d

w
e

Fig. 10. Contraction the edge e in the graph G results in the graph G1.

Theorem V.1. cr(TSm×P2) = b
m

2
c for m ≥ 5, m is odd.

Proof:
Figure 11 exhibits a drawing of TSm × P2 with bm

2
c

crossings, thus cr(TSm × P2)≤b
m

2
c. Let us prove this

inequality for the inverse direction.
By contracting the edges (wi,1,wi+1,1) as well as

(wi,3,wi+1,3) for i = 1, 2, ...,m − 1, we obtain a drawing
of TSm + 2K1 which has bm

2
c crossings [2], therefore:

cr(TSm × P2) ≥ cr(TSm + 2K1) = bm
2
c. The proof is

completed. �

VI. CONCLUSIONS

We introduced the conjecture in which cr(TSm × Pn) =

(n − 1)bm
2
c crossings and we proved that it is true when
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w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

wm,1 wm,2 wm,3

wm-1,1 wm-1,2 wm-1,3

Fig. 11. A drawing of TSm × P2 with b
m

2
c crossings.

m = 3, 5, n ≥ 1. Moreover, we could identify cr(TSm×Cn)
by proving that for a given m,n ≥ 3, m is odd: cr(TSm ×
Cn) = nbm

2
c. In addition, we could introduce a conjecture

that cr(TSm × K1,n) equals 4bm− 2

2
cZ(n) + bm

2
cbn

2
c

crossings, and we succeeded in proving that it is true for
(m = 5 and n ≥ 3). Finally, we extended the study to 3-
vertex graphs by proving that cr(TSm × P2) = bm

2
c for

m ≥ 5, m is odd.
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