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lagging behaviour exists. Cattaneo [2] and Vernotte [3] 

individually suggested a relaxation time   that is because of 

heat flux to solve the inconsistency caused by the infinite gap 

velocity of the thermal signal,  referred to as SPL constitutive 

relation as: 

           (2) 

The combination of SPL relation and energy balance equation 

shows a bioheat model of thermal wave.  

The SPL model was further studied by Tzou [4] and gives a 

phase lag time that occurs because of the temperature gradient 

 and is called DPL constitutive relation as: 

        (3)  

When the DPL model is integrate with energy balance equation, 

then it becomes the DPLBHT model. Several researchers [5-13] 

explained the third phase lag  and combined with the DPL 

constitutive relation with temperature displacement, known as 

the TPL constitutive relation, i.e. 

                            

(4)  

where   is thermal displacement and 

stands for  thermal conductivity rate of tissue. 

We used the expansion of Taylor's series of the TPL model up to 

first order at time  in the present problem as: 

                                                                      (5)  

Where   

Moroz [14] reviewed the four sub-classes, which are arterial 

blockage, direct injection, intracellular, and interstitial insert 

hyperthermia, in terms of clinical results, advantages, 

disadvantages, and current status in hyperthermia treatment.  

  Askarizadeh [15] used the DPLBHT model for the treatment of 

the transient transfer of heat problems in epidermis tissues 

through periodic heat flux. Comparisons of previous studies 

results and analytical results by taking Jacobi elliptic functions 

are shown. The results of thermal conductivity, metabolic heat, 

perfusion of blood, and the coefficient of transfer of heat in 

biological tissues on the temperature profile are numerically 

shown by Kengnea [16]. Ahmadikia [17] gave solutions of 

hyperbolic and parabolic bioheat transfer models under pulse 

heat flux, periodic, and constant BCs. Using the Laplace 

transform approach, the problem is analytically described by 

taking into consideration finite and semi-infinite domains. 
  Yuan [18] investigated the porous model on hyperthermia 

therapy of the heat transformation coefficient in tissue and blood 

and applied the FDM for solving the PBHT equation. Salloum 

[19] determined the highest heating patterns in the instigated 

tumour model with nanoparticle injections of irregular 

geometries in hyperthermia. Ghazanfarian [20] discretized the 

non-linear PBHT equation and DPL model by using a procedure 

of mesh-free smoothed particle hydrodynamics method.  

Gupta [21] described the method of transfer of heat with 

blood perfusion having different BCs and coordinate systems by 

radiations of electromagnet using the Adomian decomposition 

method. Khanafer [22] mathematically studied the flow of 

pulsatile laminar and rising temperature protocol on thermal 

profile in hyperthermia treatment. They validated their 

numerical results by comparing them with previous studies. The 

response of heating and thermal dose of tissue underneath non-

equilibrium conditions for hyperthermia therapy has been 

investigated by Yuan [23]. Jalali [24] introduced the method to 

control the temperature profile across the tissue, which can be 

derived by proper handling of functional variables in 

hyperthermia. A finite volume scheme is used to evaluate the 

problem.  Jiwari [25] offered a numerical method that depends 

on the polynomial of the differential quadrature example for 

finding the solutions of the 2D Sine-Gordon equation under 

second-kind BCs. Song [26] studied the responses of 

hyperthermia on the blood flow. Choudhuri [27] obtained a TPL 

model by an extension of models of thermoelastic explained by 

Tzou, Green-Naghdi, and Lord-Shulman. 

 The thermal behaviour of the DPL model of transfer of 

bioheat in living tissue during thermal therapy is reviewed by 

Kumar [28-33]. The FEWG, FDM, and R-K (4, 5) methods are 

used to evaluate the non-linear model, and the outcomes are 

compared to the exact answer found by Laplace and its inversion 

approach. In hyperthermia treatment, Kumar [34] explained by 

studying the DPL model of transfer of bioheat by using a 

Gaussian distribution source underneath generalized BC by 

using the finite element wavelet Galerkin scheme. Liu [35] 

analyzed the behaviour of temperature during hyperthermia 

treatment in biological tissues within the DPL model.  

Reis [36] adopted the PBHT equation for the thermal tumour 

ablation of magnetic nanoparticles, to get the good hyperthermia 

condition by using the explicit finite difference method. Sharma 

[37] calculated the mathematical- based modelling and its 

simulation of bioheat transfer underneath the Dirichlet BC with 

complex nonlinear DPLBHT for the temperature profile in 

tissues of infected cells during treatment of hyperthermia. 

Bagaria [38] considered the tissue model taking a spherical 

region for magnetic fluid hyperthermia treatment.  

     In this article, we explained the mathematical 

modelling and simulation of the TPLBHT model for 

hyperthermia treatment. Temperature-dependent terms that have 

been verified through experimental are the metabolic heat and 

blood perfusion terms. The whole work has been resolved and 

composed in a non-dimensional format. The hybrid approach is 

used to address the present problem. Using central FDM, the 

third order partial differential equation problem is transformed 

into ODEs. Again converting third order ODEs into first order 

differential equations and solving with the R-K (4, 5) method. 

The parameters impact used in the TPLBHT model are shown in 

Figures. The formulation of the hybrid method is shown in the 

following sections. 

 

II. FORMATION OF THE PROBLEM 

In this research paper, we considered a 1-D inner structure of 

length  with introductory temperature in skin tissue. The 

inner boundary of skin tissue  and exterior surface of 

skin tissue   are insulated is presented by Figure1  

   
Fig 1. Schematic representation of skin tissue in one dimension. 
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The 1-D energy balance equation is generally conducted by 

PBHT equation [1] is       

                      (6) 

 where  is the density of tissue;  is the specific heat of    tissue; 

t is time  is the heat flux;  and  are the heat of blood 

perfusion  and metabolic source respectively. 

Metabolic heat source is the temperature depended which is the 

source of local tissue temperature, given as: [6, 39] 

                           (7) 

where  is the  heat source reference term and  is the 

associated metabolic constant. 

The blood perfusion source is given as: [32, 40] 

                    (8) 

where  

                 (9) 

where , ,  stands for the density, specific heat of 

blood and blood perfusion rate coefficient respectively. is 

blood temperature and  is the associated blood perfusion 

constant. 

By using (5) - (9), eliminating   which gives:  

                    (10) 

Where   

Subject to initial conditions 

                   (11) 

Considering the periodic boundary condition as fluctuating 

temperature specified by Kumar [30] and Singh [41] as:   

                                       (12) 

 Inner boundary is insulated, therefore the heat flux at boundary 

is zero, i.e., 

                                                                        (13) 

 

III. CONCLUSION OF THE PROBLEM 

To convert the equation into dimensionless form and reduce 

some parameters in the equation so that it is easy to solve, we 

define the dimensionless variables, which are as follows:  

ξ
ρ
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ρ

τ

ρ

τ

ρ
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β  

By using dimensionless parameters in (10) – (13), the 

equations become 
ξ
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.   (14)                                                          

Where  

Subject to initial conditions  
ξ

ξ

ξ

ξ
     (15) 

 

Boundary condition  

                     ξ θ ωξ                 (16) 

nd symmetric condition  

                                   
ξ

ξ
                            (17) 

IV. HYBRID.NUMERICAL.METHOD 

The hybrid method is implemented to resolve the problem 

numerically. This method is a combination of two different 

methods. The first method in which (14) is discretized by FDM 

by using the central difference method, given by many 

researchers [32, 42, 43]. After discretization, our problem is 

turned into a third order non-linear ODEs with initial conditions. 

Again converting third order ODEs into first-order non-linear 

ordinary differential equations [44]. For the results of the 

problem, the second method, which is the R-K (4, 5) [25, 45, 46] 

scheme, is applied. The whole procedure of the hybrid scheme is 

explained in the next sub-section. 

 

         SPATIAL DISCRETIZATION SCHEME 

The domain of space coordinate  is discretized into  

sub intervals of equivalent length ℎ  by taking  

i.e, . By 

applying central finite difference formula, the second order 

derivative is written as, 
ξ ξ ξ ξ

ℎ
               (18) 

Then the (14) - (17) converted by the above equation as  

 

ξ

ξ
 

ξ
 

 

ξ ξ ξ
  (19) 

 
ξ
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ξ ξ ξ
           (20) 

 

ξ

ξ

ξ

ξ ξ ξ
           (21) 

Subject to initial conditions  
ξ

ξ

ξ

ξ
      (22)  

 

RUNGE - KUTTA (4, 5) SCHEME 

   Lets suppose that [44] 
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ξ ξ ξ ξ ξ ξ ξ
                    

(23) 

By using (23), then (19) - (22) can be reduced in  
′

ℎ ℎ

ℎ
      (24) 

 
′

ℎ ℎ

ℎ
      (25) 

 
′

ℎ
ξ

ℎ
ξ

ℎ
ω ξ                     (26)                                     

 Subject to initial conditions  

             (27) 

 

V. RESULT AND DISCUSSIONS 

When the outermost region was kept at a temperature which is 

constant, the thermal distribution in the body was identified 

using the non-linear TPLBHT model in the present mathematical 

technique. The perfusion term and metabolic term in the model 

are temperature-dependent and have been verified 

experimentally. We explained the parameters, which are distinct 

from reference values. Graphical representations of results are 

shown in Figures (2 - 11). For the computation of a non-

dimensional temperature profile in a finite domain in biological 

skin tissue, the particular reference value of non-dimensional 

terms is as follows: 

 
          Table 1. Physical properties of biological tissue. 

 

Specifications  Dimensions Numeric 

Quantities 

Reference

s 

Thermal 

Conductivity 

℃ 0.5 [34] 

Wall temperature ℃ 39.5 [34] 

Initial temperature ℃ 37 [34] 

Specific heat ℃ 4000 [34] 

Density  1000 [47] 

Thickness  0.05 [47] 

Blood’s density  1060 [47] 

Specific heat  ℃ 3860 [47] 

Blood temperature ℃ 37 [47] 

Lag time because 

of heat flux 

 600 [28] 

Lag time because 

of temperature 

gradient 

 300 [28] 

Lag time because 

of thermal 

displacement 

 100 [6] 

Associated 

metabolic 

constant 

℃  2.15 [32] 

Initial blood 

perfusion 

coefficient 

- 2.15 [32] 

Blood perfusion 

rate 

 2.14

 

[40] 

Metabolic 

generation of heat 

 50.65 [39] 

Thermal 

conductivity rate 

℃  6.25

 

[6] 

 

Hyperthermia is used for the treatment depending on the 

different duration and temperature level, such as ℃ for 

 min. The arithmetic model of heating the skin tissues is 

obtained from the standard Fourier hypothesis of heat 

conduction. When the non-linear TPLBHT model is identified 

with verified metabolic processes and human blood perfusion, 

computational results give an accurate temperature profile in 

tissue. For the calculation of the temperature in tissue, this 

research will be beneficial for the therapist for precise treatment. 

The hybrid numeric method, which is depends on the FDM 

and the R-K (4, 5) method which refers to the FERK (4, 5) 

scheme, is employed for the numerical solution of the non-linear 

the TPLBHT model for the tissue.  

The result of dimensionless lagging time because of heat flux 

 is observed in Figure 2 with respect to non-dimensional 

temperature and time. In which we notice that as the rate of  

increases, the thermal profile increases. In Figure 3, the impact 

of non-dimensional lagging time because of temperature 

gradient is shown. It has been concluded that thermal wave 

of temperature profile rises as value of  decreases. From 

Figure 4, it has been noticed that as increasing the values of 

phase lag time, which is because of thermal displacement , 

the temperature distribution wave increases. 

 Therefore, , ,   affects on temperature profile 

concluded from Figures 2-4. The behavior of periodicity on 

temperature profile and time is shown in Figure 5.   It shows that 

the amplitude of temperature is highest on  and falls as the 

value of  rises. Blood perfusion and metabolic heat have 

important impact on heat transfer in tissue. Blood perfusion 

manages to transfer the oxygen, nutrients, and waste products.  

In Figure 6, the effect of dimensionless blood perfusion 

source  is shown with respect to non-dimensional temperature 

and time. We determined that the temperature distribution 

decreases as increasing the blood perfusion   term. Similarly, 

metabolic heat generation is the heat released by physical 

activities.  Figure 7 shows the effect of a dimensionless 

metabolic heat source  with temperature and time. 
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    It has been concluded that temperature is approximately same 

for  and , and it rises 

for value of . 

In Figure 8, the impact of amplitude  is obtained with 

respect to non-dimensional temperature and time. It described 

that thermal wave rises as the value of  increases  In Figure 9, 

the wave of temperature profile rises while increasing the value 

of the dimensionless associated metabolic constant  The 

results of blood perfusion constant  with respect to non-

dimensional temperature and time are presented in Figure 10. It 

has been concluded that as increasing the value of  the 

temperature profile decreases. Figure 11 introduces the effect of 

 with respect to non-dimensional temperature and time, which 

shows that the wave of temperature profile increases as 

increasing the value of .    

VI. CONCLUSION 

 

The mathematical modelling and simulation of the non-linear 

TPLBHT model is solved by using periodic boundary 

conditions. The observations from the present problem are 

concluded as follows:  

� The hybrid methodology was used for the results of the 

non-linear TPLBHT model, which gives high accuracy 

with lesser computation. 

� For the hyperthermia, the effect of temperature profiles 

is shown on the various values of the parameters. 

� When the value of  increases with respect to non-

dimensional temperature and time, then the temperature 

profile decreases, while as    and increases, the 

temperature distribution decreases. 

� As increasing the value of  the temperature wave 

decreases while reduces the value of  , the thermal 

wave of the temperature profile decreases.  

� It is achieved that as increasing the value of  and , 

the thermal wave of temperature profile increases and 

decreases, respectively.  

� The value of and  increases with respect to non-

dimensional time, then thermal distribution increases 

while the value of  decreases, the temperature profile 

increases. 

     Based on all these observations, we observed that the 

presented non-linear TPLBHT model played an important role in 

the hyperthermia treatment of malignant cells. 

  

         

Fig 2. Comparison of the dimensionless thermal profile with time for the dimensionless phase lag time because of heat      

flux parameter. 

 
         

Fig 3. Comparison of the dimensionless thermal profile distribution with time for dimensionless phase lag because of 

thermal gradient. 
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Fig 4. Comparison of the dimensionless thermal profile distribution with time for different values of the phase lag because of 

thermal displacement. 

 

 
 

Fig 5. Impact of  on dimensionless thermal distribution in tissue with respect to dimensionless time. 

 

 

 
 

Fig 6. Representation of the dimensionless thermal profile distribution with time for different values of the blood   

perfusion source. 
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Fig 7. Shows the comparison of dimensionless thermal distribution with time for various values of the dimensionless 

metabolic heat source. 

 

Fig 8. Impact of A on dimensionless thermal profile in tissue with respect to dimensionless time. 

 
 

Fig 9. Comparison of the dimensionless thermal profile with time for various values of the dimensionless blood perfusion     

constant. 
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Fig 10. Representation of the dimensionless thermal profile with time for various values of the blood perfusion constant. 

 
 

Fig 11. Impact of  on dimensionless temperature profile in tissue with respect to dimensionless time. 
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