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Abstract—Hyperspectral images have a low spatial resolution

due to the limitations of satellite imaging equipment, resulting
in multiple substances contained in a pixel (mixed pixels). The
phenomenon of mixed pixels affects the subsequent analyses
and researches on hyperspectral images. To address this
problem, we propose a novel hyperspectral unmixing method
named adaptive total variation regularization for weighted
low-rank tensor sparse hyperspectral unmixing
(ATVWLRTSU). This method considers the spatial structural
characteristics of different regions in the hyperspectral image
by using the adaptive Total Variation (ATV) term, and exploits
the abundance low-rank tensor by utilizing weighted nuclear
norm in hyperspectral unmixing. Simulation and real
experiments show that the proposed method has better
performance in terms of both anti-noise and details.

Index Terms— adaptive total variation, low-rank tensor,
sparse unmixing, hyperspectral images

I. INTRODUCTION

YPERSPECTRAL technology has made great progress
with the development of remote sensing technology in

recent decades [1,2]. Due to limitations of satellite equipment,
the spatial resolution of hyperspectral images is relatively
low [3-5]. The phenomenon of a low-resolution image
containing multiple substances in a single pixel is called
mixed pixel [6]. A large number of mixed pixels in
hyperspectral images make difficulties for subsequent
processing and analysis of hyperspectral images [7,8]. In
order to solve this problem, scholars have proposed many
unmixing methods [9-11].

Generally speaking, hyperspectral mixing models are
divided into two categories: linear mixture models and
nonlinear mixture models [12,13]. The nonlinear mixture
models usually assume that each mixture pixel in
hyperspectral data is combined by multiple endmembers in
different proportions through a nonlinear form [14], while the
linear mixture models assume that the mixture pixel is mixed
by these endmembers through linear form [15]. The nonlinear
mixture models can more realistically express the process of
hyperspectral image mixing, but they have too many
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parameters and are difficult to solve, so they are usually
replaced by the linear mixture model which is simple and
close to the real solution [16].

In the linear methods, sparse unmixing methods are
currently the mainstream hyperspectral unmixing methods
[17-19], which make unmixing simpler and more effective
through a known spectral library [20]. The variable splitting
and augmented Lagrangian for sparse unmixing (SUnSAL)
[21] is a classic sparse unmixing method. This method
utilizes some prior information such as abundance
sum-to-one constraint (ASC) and the abundance
non-negativity constraint (ANC) to solve [22]. Considering
the correlation of local pixels in abundance images, some
scholars [23-25] have added the total variation (TV)
regularization term for abundance matrix in the unmixing
model, such as the sparse unmixing via variable splitting
augmented Lagrangian and TV (SUnSAL-TV) [26] and
adaptive total variation regularized for hyperspectral
unmixing (SU-ATV) [27]. SUnSAL-TV based on SUnSAL
only adds the TV regularization term, while SU-ATV
considers the characteristics of different regions in the
abundance image with different structures and proposes an
adaptive TV (ATV) regularization term. SU-ATV not only
takes into account the similarity of local pixels in the image
like SUnSAL-TV, but also considers the characteristics of
spatial structure changes of abundance. On the other hand,
the abundance matrix with higher linear correlations exhibits
a low-rank phenomenon[28,29]. According to this
characteristic, many algorithms [30-32] added low-rank
regularization term into the unmixing models to improve the
accuracy of unmixing, such as the alternating direction sparse
and low-rank unmixing algorithm (ADSpLRU) [33] and
weighted nonlocal low-rank tensor decomposition method
for sparse unmixing of hyperspectral images (WNLTDSU)
[30]. WNLTDSU utilizes both collaborative sparsity and
low-rank tensor regularization terms to constrain abundance
for tensor sparse unmixing , which better protects the
structural information of the hyperspectral images. Shen et al
[48] proposed a local global based sparse regression
unmixing method (LGSU) based on the fact that
hyperspectral has local sparsity, thus improving the unmixing
performance considering only global sparsity. Later,
considering the idea of interactive learning of multilayer
abundance matrices, proposed a layered sparse regression
decomposition (LSU) [49] to further improve the unmixing
accuracy.

However, the above methods only constrain the abundance
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Fig. 1. Flow chart of the proposed ATVWLRTSU method.

matrix through TV, low-rank, abundance weighted, or their
variations, ignoring the full utilization of the spatial and
spectral information. In order to solve this problem and
improve the accuracy of unmixing, a novel hyperspectral
unmixing method named adaptive total variation
regularization for weighted low-rank tensor sparse
hyperspectral unmixing (ATVWLRTSU) is proposed in this
study. Fig. 1 presents the flow chart for the ATVWLRTSU.
This method considers local similarity by adaptive TV
(ATV) regularization term [27] and spatial correlation by
nonlocal low-rank tensor regularization term [30]. The three
contributions of this article are as follows：

1）According to the spatial structure of the abundance
tensor, an adaptive weight matrix is added to the TV
regularization item for adjusting the proportion of horizontal
and vertical weights in TV. It enables the spatial information
of hyperspectral datas to be fully explored.

2) By utilizing the adaptive TV, weighted nuclear norm of
abundance tensor and sparse regularization terms, the
proposed method simultaneously considers adaptive spatial
structure, nonlocal low-rank tensor and sparsity to improve
the denoising performance of the unmixing method and
enhance the unmixing effect.

3) Efficient solution of the proposed model uses an
alternating direction method of multipliers (ADMM) [34].

In section II, we give some introduction to the related
work, such as tensor notations and hyperspectral sparse
unmixing. In section III, we focus on the contributions of
this paper. Firstly, the model of ATVWLRTSU is explained
in detail. Secondly, we use the ADMM to solve this model.
In section IV, Synthetic and real data experiments are used
to validate the state-of-the-art of model ATVWLRTSU .
Section V is a summary of the whole paper.

II. RELATED WORK

A. Tensor Notation
Tensor is the symbol used in our algorithm [35]. Let

niii  21 (n>2) is a n-dimensional tensor, composed
of 1 2 ni i i   members

niii ,,, 21  , where n is the modes

of tensor. An hyperspectral image is usually considered to be
three-dimensional (3-D) cubes [36] and can be represented

by 3-D tensor lnn  21 , where 1n and 2n are the

numbers of hyperspectral pixels, l is the number of spectral
bands. Some operations [37] of 3-D tensors is as follows:

Definition 1, Frobenius Norms of 3-D tensors: Given a
tensor lnn  21 , its Frobenius norm is defined as
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Definition 2, Inner product of 3-D tensors: Given two

tensor
lnn  21 and

lnn  21 .
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i iiiiii,  is their

inner product expression .
Definition 3, Outer product of m-dimensional tensors:

Given two tensors miii  21 and njjj  21 .
Their outer product expression is

nm jjjiii   2121 .
Definition 4, The m-order product: Given a tensor

nm jjj  1 and a matrix m mi jC  . Their
m-order product expression

is nmmm jjijj
m

   111C .
Definition 5, Mode-m unfolding and folding: Given a

tensor nm jjj  1 . The Mode-m ( m 1,2, , n  )

unfolding of  is  
 1 2 1 1

m
m m m nj j j j j j       B   and

the reverse operation is   mBmfold where

 mfold  is the inverse function of unfolding. In this
article, Mode-third tensors are used, and for simplicity,

(m)B is used instead of  3B .

B. Hyperspectral sparse unmixing
The hyperspectral linear spectral unmixing model is as

follows:
 Y AX N， (1)

where l nY  is hyperspectral observation data.
p nX  represents the abundance matrix corresponding
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to spectral library l pA  . l nN  represents the noise
of the hyperspectral image. ,   and l n p represent the
number of spectral bands, pixels, and different endmembers
in the spectral library, respectively.

Sparse unmixing is currently a widely used and effective
method for hyperspectral unmixing [38]. It uses a spectral
library composed of hundreds of known spectral of different
substances as a prior condition [39]. Since the 0-norm can
measure the number of non-zero elements in a matrix, the
sparsity of the matrix is denoted by

0
 [40]. Due to

0
 is

hard to solve , BioucasDias [21] proposed using
1
 to

approximately replace
0
 and solving using the SUnSAL

method. This model added two constraints, ASC and ANC,
to hyperspectral sparse unmixing. The unmixing model is as
follows:

1,1

1min , subject to 0,
2 F

  
X

Y AX X X (2)

where  is regularization parameter, used to adjust the

proportion of approximation term
F

Y AX and sparsity

term
1,1

X .

Since SUnSAL ignores the spatial information in
hyperspectral, Iordache [26] then proposed an improved
method SUnSAL-TV. It is modeled by adding a TV
regularization term to the SUnSAL model, which has a
constraint function on the spatial information of abundance.
The model is as follows:

1,1
min +  

subject to 0,
TVF TV

  


X

Y AX X X

X

，
(3)

where 1

2 1,1
TV

 
   

X
X

X
, p nX  ,

   1 1 2 2 1 2 = , , , and = , , ,n nh h h v v v X X 
represent horizontal and vertical differences, respectively.

 and i i ih j j jvh x x v x x    denote the differences

between i pixel and its horizontal neighbour and between j
pixel and its vertical neighbour, respectively.

[1, p] and [1,n].ih jv  TV is regularization parameter,

adjusts the proportion of approximation term
F

Y AX ,

sparsity term
1,1

X
.
, and TV term

TV
X .

The vectors in the abundance are highly correlated with
each other and the abundance matrix consisting of these
vectors is low-rank. Giampouras [33] proposed the
ADSpLRU method, which improves the unmixing accuracy
by adding a nuclear norm regularization term to constrain
the low-rank abundance.

1,1 ,*
min +  

subject to 0,
F b

  


X

Y AX X X

X

，
(4)

where

  
,* 1

 rank
i ib i
b


 XX X ，   1 +  i ib   X

 and i X is the singular values of X . ε is the smallest

non-negative value.  rank X is the rank of X .  is

regularization parameter of low rank term.
A hyperspectral image is a 3-D cube composed of

continuous bands of many different substances [41]. The
traditional 2-D hyperspectral image that vectorizes the
abundance images according to the spectral dimensions,
loses a lot of spatial information compared to 3-D
hyperspectral images cube [42]. The sparse unmixing model
is:

,3   A (5)

where    )3(3(3)3  and 21 XY foldfold lnn    
pnn  21 are tensor forms of hyperspectral

images (3) (3) and Y X respectively. 1 2 .n n n  In this

article, we use X simplification to represent (3)X and Y
simplification to represent (3)Y .  is 3-D hyperspectral

observation data.  represents the abundance tensor.
l pA  is spectral library . lnn  21 represents the

3-D noise of the hyperspectral image.
Le Sun [30] proposed the WNLTDSU method, which

takes the hyperspectral image tensor as the unmixing object,
and integrates TV and low-rank tensor regularization terms
to significantly improve the unmixing results. The sparse
unmixing optimization problem is:

0, subject to
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j ijxX

(3) .p nX    ，
1,1

T
21  

TV
and

     kj,i,k1,ji,kj,i,  1 ,

     kj,i,kj,,ikj,i,   12 represent
horizontal and vertical differences operators, respectively,

1 21,2, , ,  1, 2, ,i n j n   and 1,2, , .k l 
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


q
q

jj ，)( )3(X is a 3-D non-local similar patch in  ,

which is composed of many similar 3-D local patches in
different regions of  . Q represents the number of
non-local patches in  .

  (3)( 1) +q
j jd k    X , where d is a constant

greater than zero and k is the number of similar patches.
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III. PROPOSED METHOD

TABLE I
The pseudocode of ATVWLRTSU

Algorithm 1： ATVWLRTSU algorithm

1. Choose: 0 , 0 , 0TV  , 0  , 0k  ，

and set 0i ,

      1T
3

T
3

0 4 
 IAAA ,

           ，00
3

00
23

00
1 ,,   A
               ，00

7
00

6
0

4
0

5
0

3
0

4 ,,,   T
              ，00

7
0

6
0

5
0

4
0

3
0

2
0

1  
  





 

20
1ˆ

(0)
1 11/ Gkt ,

  




 

20
2ˆ

(0)
2 11/ Gkt .

2. Repeat
(1)Update variables：

(a)

     

       

        ，
2
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 

    .
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







A
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 
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     
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
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




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(2)Update Lagrangian operator：

(i)         1
13

1
1

1
1

  iiii  A ,

(j)         1
2

1
2

1
2

  iiii  ,

(k)         1
3

1
3

1
3

  iiii  ,

(l)         1
4

1
34

1
4

  iiii  ,

(m)         1
5

1
45

1
5

  iiii Τ  .

(n)         1
6

1
6

1
6

  iiii  ,

(o)         1
7

1
7

1
7

  iiii  .

(3) Replacement of variate:

(p) 




 

2)(
1ˆ

)(
1 11/ ii Gkt  .

(q) 




 

2)(
2ˆ

)(
2 11/ ii Gkt 

.

(4) Update iterations： 1i i  .
3. Until a certain stopping criterion is satisfied.

A. Adaptive Total Variation Regularization
The TV regularization term has the same proportion of

horizontal differences 1 and vertical differences 2 .
However, different regions in hyperspectral images have
different structures, and the horizontal and vertical
proportions of the tangent line along theregion's edges are
different [43-44]. It is important to maintain the diffusion of
the corresponding Euler-Lagrange equation in the tangent
direction of the image edge [45]. The adaptive total variation
(ATV) regularization term is as follows:

,
1,2

  T
ATV

(7)

where ，
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T
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 
  
 

is a weight matrix

and 




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2

1ˆ1 /1 Gkt and 




 

2

2ˆ2 /1 Gkt

are the weight coefficients of 1 and 2 , respectively.

k and ̂ are the tuning parameters, ˆG
represents the

Gaussian convolutional kernel, and  is the convolution

operator.  2 denotes a new 3-D tensor obtained by

squaring each element in the 3-D tensor   .

    ，
1

2
22

2
11

1,222

11

1,22

1

2

1

0
0





































tt

t
t

t
t

ATV
(8)

B. Proposed Model and Optimization
An novel sparse unmixing model after adding the ATV,

sparse tensor and weighted low-rank tensor regularization
terms is named adaptive total variation regularization for
weighted low-rank tensor sparse unmixing model
(ATVWLRTSU) as follows:
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0. subject to

 ,
2
1min

,*13








 


ATVTVF

A

(9)
Expand and write the above equation as：

0. subject to 

,
2
1min

,*2,113








 

 TTVF
A

(10)

where
2

3 F
A is a data fitting term to make the

unmixing result more close to the real value;

    
 1 2

1 1 1 ,,1

n

i

n

j

l

k kjix is a sparsity constraint term

used to constrain the abundance sparsity during the
unmixing process;

2,1
T is an adaptive TV term used to

adaptively adjust the weights of the horizontal and vertical
differences of the abundance under different structures in
each iteration to achieve a better denoising effect;

,*
 is

a low-rank term used to de-correlate the abundance to make
the result more robust; 0. is a non-negativity constraint
on abundance.  ，， TV are regularisation parameters
to adjust the weight ratio of the sparse constraint term, the
adaptive TV constraint term and the low-rank constraint
term.

In order to solve the above problem, we used the
alternating direction method of multipliers (ADMM) [34]
for solving this problem. Using ADMM, formula (9) can be
converted to:

 7,*6

2,151212
1min










Ri

TVF





(11)

where ,,,, 343231   A
  7645 ,,T and  Ri represents

0 .
The Lagrangian function can be written as:

 

,
22

22

22

2

 
2
1min

2

F77
2

F66

2

F554
2

F443

2

F33
2

F22

2

F1137

,*62,1512
2

F1

7654321

7654321



















































T

Ri

,,,,,,,
,,,,,,,

TV

A
(12)

where 7654321  ,,,,,, are Lagrangian

multipliers, and 0  is Lagrangian penalty factor.

We iteratively solve 7654321  ,,,,,,, and

7654321  ,,,,,, in sequence, using the
ADMM algorithm. The following shows the solution
process for several sub-problems:

(1) Sub-problems :
     

       

        ，
2

F77

2

F66

2

F33

2

F22

2

F113
1

22

22

2
min arg

iiii

iiii

iii


















 A

(13)

where   i represents the result of the ith iteration of   .

By solving we can get:

 
           
            

  1T
3

77663

322
T

3111

4            






















IAA

A
iiiii

iiiii
i






(14)

where I represents the identity matrix.
(2) Sub-problems 1 :

 

    .
2

2
1min arg

2

F113
1

2

F1
1

1

ii

i














A
(15)

By solving we can get:
      .

11
1

13
11

1
iii  





  A





(16)

(3) Sub-problems 2 :

      .
2

min arg
2

F22
1

1,12
1

2
2

iii 


  

(17)
By solving we can get:

       ,,soft 2
11

2 







 


iii  (18)

where soft(a, b) sgn(a) max( a b, 0)  .

(4) Sub-problems 3 :

     

    .
2

2
min arg

2

F443

2

F33
11

3
3

ii

iii








 





(19)

By solving we can get:

 
          

   .
I

443
1

1
3 
















div
div iiii

i




 (20)

(5) Sub-problems 4 :
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     

    .
2

2
min arg

2

F554

2

F44
1

3
1

4
4

ii

iii

T 






 





(21)

By simplifying formula (20), we can obtain:
             . 554

1
3

1
4

2 iiiii TTI   

(22)
Expand formula (22) to obtain：

 

 

   

   

   

    . 
0

0

10
01

5252

5151

2

1

42
1

32

41
1

31
1

42

1
41

2
2

2
1































































ii

ii

ii

ii

i

i

t
t

t
t










(23)

Further obtaining：
             . 1 5151141

1
31

1
41

2
1

iiiii tt    (24)

             . 1 5252242
1

32
1

42
2
2

iiiii tt    (25)
Finally, we can obtain the results:
            . 

1
1

5151141
1

312
1

1
41

iiiii t
t

 


  (26)

            . 
1

1
5252242

1
322

2

1
42

iiiii t
t

 


  (27)

(6) Sub-problems 5 :

      .
2

min arg
2

F55
1

42,15
1

5
5

ii
TV

i T 


  

(28)
By solving formula (28), we can obtain:

      .,soft 5
1

4
1

5 







 


TViii T  (29)

(7) Sub-problems 6 :

      .
2

min arg
2

F66
1

,*6
1

6
6

iii 


  


(30)
By solving we can get:

      .,soft 6
11

6 







  


iii  (31)

(8) Sub-problems 7 :

        .
2

min arg
2

F77
1

7
1

7
7

iii Ri 


 


 

(32)
By solving we can get:

      .0,max 7
11

7
iii    (33)

During the iterative,  is update first, then

7654321  ,,,,,, , and finally

7654321  ,,,,,, . Until a certain stopping
criterion is satisfied, the iterations do not end. The
pseudocode of ATVWLRTSU is shown in TABLE I.

In TABLE I, the algorithm execution process can be

divided into three steps. The first step is the initialisation, in
which we initialise the variables and parameters. The second
step is the update and loop iteration steps, in which both the
requested variables and the intermediate variables are
iterated and updated until the set stop conditions are met.
The third step is to stop and return the result.

IV. EXPERIMENTS AND ANALYSIS

In this section, we validate the proposed method
(ATVWLRTSU) using two synthetic hyperspectral datasets
and one real hyperspectral dataset. We compare the
unmixing performance of several state-of-the-art methods
(SUnSAL -TV [26], SU-ATV [27], ADSpLRU [33],
WNLTDSU [30], LGSU [48], LSU [49]) with the proposed
method, and conduct a detailed analysis of the comparison
results. These methods are all sparse unmixing algorithms.
SUnSAL-TV makes use of a TV regularization term, while
SU-ATV comes with an adaptive TV regularization term.
ADSpLRU makes use of the low-rank constraint for
abundance matrix, while WNLTDSU has the weighted
nonlocal low-rank tensor as prior information. And the
proposed method (ATVWLRTSU) combines their
advantages by including not only adaptive TV regularization
term but also weighted nonlocal low-rank tensor
regularization term. LGSU uses locally sparse regular terms
for superpixels. LSU utilises a multilayer sparse regression
method with interactive learning.

A. Experiments with synthetic data
In the experiment, the signal-to-reconstruction error

( SRE ), the probability of success ( sp ) and sparsity are
used to evaluate the unmixing accuracy. Their definitions are
as follows:

 
,

ˆE

E
10lgSRE(dB)

2

2

2

2






 





(34)

where ̂ is the estimated value of the true abundance  ,
( )E represents the expected of ( ). The higher SRE , the

smaller the signal reconstruction error, and the better the
unmixing effect.

,
ˆ
2

2

2

2 thresholdPps 














 





(35)

whete  P  represents the probability that   is valid. The

threshold is a threshold, usually set to 3.16(5dB) [21].
The higher sp , the higher the probability of success, and the
better the unmixing effect.

 
,

0.005,0ˆmax

21

0)3(

nnp
sparsity






X
(36)

where (3)
ˆ p nX  is Mode-3 unfolding of pnn  21ˆ 

and 21 nnn  . The lower sparsity , the sparser the
abundance, and the more accurate the unmixing is.
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Fig. 2. True abundances of each endmembers in synthetic SD1

Fig. 3. True abundances of each endmembers in synthetic SD2

(a) (b) (c)
Fig. 4. SRE (dB) as a function of parameters  , TV and  for DS1 at 20 dB. (a)  and TV . (b)  and  . (c)  and TV .

We choose the spectral library 224*240A  to unmix the
synthetic datasets. A is made up of the spectral curves of 240

substances randomly selected in USGS [46], each spectral
curve possesses 224 bands distributed uniformly from
0.4-2.5μm. The two synthetic hyperspectral datasets (SD1
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and SD2) used in the simulation experiment are constructed
from this spectral library.

1) Synthetic hyperspectral dataset 1 (SD1): The SD1 is a
mixture of five randomly selected spectral curves (named
endmembers) from A . Their corresponding abundances are
different matrices of size 75*75 pixels. The fractional
abundances follow the constraint of ANC and ASC. The true
abundance images are shown in Fig. 2. The background of
each abundance is made up by linear mixing in a 0.1149:
0.0741: 0.2003: 0.2055: 0.4051 ratio of these five
endmembers.

2) Synthetic hyperspectral dataset 2 (SD2): The SD2 is
also a mixture of nine randomly selected endmembers from
A . Their corresponding abundances are different matrices
of size 100*100 pixels. The fractional abundances also
follow the constraint of ANC and ASC. Fig. 3 shows the true
abundance images.

After theses Synthetic hyperspectral datasets are generated,
Gaussian noise with three levels of signal-to-noise ratios
(SNR) (10 dB, 20 dB and 30dB) are added to them. The
results of different unmixing method after adding different
noises are shown in TABLE II and TABLE III.

In order to ensure the fairness, several methods
(SUnSAL-TV, SU-ATV, ADSpLRU, WNLTDSU, LGSU,
LSU, ATVWLRTSU) for comparison are uniformly iterated
for 200 times to output the comparison results. In
ATVWLRTSU algorithm , the two parameters (parameter k
and standard deviation ̂ ,) are only related to the synthetic
datasets and have little to do with other factors. So we set

15000k  , ˆ 1.3  in SD1 experiments, and set

30000k  , ˆ 0.3  in SD2 experiments.
Fig. 4 shows the function diagrams of several parameters (

 , TV ,  ) and SRE for SD1 at 20dB. Since the three
parameters and SRE are difficult to show in one graph, we
split them into three subgraphs (  and TV ,  and

 , TV and  ). From these figures, we can find that the
smaller the values of these parameters, the better the SRE .

The results of these methods are shown in TABLEs II and
III, which show the optimal results (SRE, ps, sparsity) and
the corresponding parameters of the methods under the
corresponding unmixing data and signal-to-noise ratios. In
these tables, the optimal results of different algorithms are
shown in bold type under the same conditions, and the
sub-optimum results are shown in italic type.

From the tables II and III, we can find that SU-ATV with
the addition of adaptive TV regularization term is much
better than SUnSAL-TV without it, and in the SD1 data
experiments, the method performance (represented by SRE)
improves 42% at 10dB, 79% at 20dB and 38% at 30dB, in the
SD2 data experiments, the method performance (represented
by SRE) improves 14% at 10dB, 51% at 20dB and 27% at
30dB. The WNLTDSU method using weighted low-rank
tensor as a regularization term is better than the ADSpLRU
using normal low-rank of matrix, and in the SD1 data
experiments, the method performance (represented by SRE)
improves 231% at 10dB, 261% at 20dB and 202% at 30dB, in
the SD2 data experiments, the method performance
(represented by SRE) improves 127% at 10dB, 102% at 20dB
and 16% at 30dB. The algorithm ATVWLRTSU with both an
adaptive TV regularization term and a low-rank tensor
regularization term works better than these all methods
(SUnSAL-TV, SU-ATV, ADSpLRU, WNLTDSU, LGSU,
LSU ), and in the SD1 data experiments, the performance of
the method is higher than the other algorithms 7%-256% at
10dB, 11%-300% at 20dB and 12%-238% at 30dB, in the
SD2 data experiments, the performance of the method is
higher than the other methods 12%-155% at 10dB,
23%-147% at 20dB and 3.5%-72% at 30dB. In particular, at
low signal-to-noise ratios (e.g., 10 dB), our method still
achieves 7%-255% accuracy improvement. This indicates
that our method has strong denoising and robustness
capabilities.

TABLE II
SRE , sp and sparsity results of SD1

Algorithms
SNR=10 SNR=20 SNR=30

SRE ps sparsity SRE ps sparsity SRE ps sparsity

SUnSAL-TV
5.846 0.911 0.054 8.609 0.964 0.062 16.246 0.996 0.037

λ=1e-1, λTV=2.5e-1, μ=5e-1 λ=1.1e-2, λTV=7e-2, μ=5.5e-1 λ=4e-3, λTV=1.5e-2, μ=2e-1

SU-ATV
8.303 0.849 0.027 15.432 0.994 0.022 22.375 1.000 0.025

λ=2e-1, λTV=3.5e-1, μ=1.7 λ=1.5e-2, λTV=1.2e-1, μ=1.4 λ=1.8e-2, λTV=1.4e-2, μ=0.3

ADSpLRU
4.775 0.737 0.103 6.078 0.903 0.061 10.114 0.938 0.032

λ1=4e2, λ2=3e-1, μ=1.5 λ1=1.2e2, λ2=1e-2, μ=1 λ1=1.46e2, λ2= 4.7e-3, μ=6.4e-1

WNLTDSU
15.791 0.995 0.023 21.916 1.000 0.021 30.5598 1.000 0.020

λ=5e-2, λTV=1e-1,λWT=2.5e-2,μ=0.5 λ=1e-3, λTV=5e-3,λWT=2.5e-3,μ=0.5 λ=5e-6, λTV=2e-3, λWT=1e-4,μ=0.75

LGSU
      13.5896 0.9981 0.0267

3e1, 1 e-3 3, 1e-2 8 e-2, 3e-3

LSU
      17.8395 1 0.0219

5e-3 5 e-7

Our Method
16.951 0.999 0.021 24.3243 1.000 0.020 34.1645 1.000 0.020

λ=1e-2, λTV=5e-2,τ=3e-2, μ=2 λ=5e-4, λTV=1.5e-2,τ=8e-4, μ=1.1 λ=2e-2, λTV=3e-3,τ=2e-5, μ=8.5e-1
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TABLE III
SRE , sp and sparsity results of SD2

Algorithms
SNR=10 SNR=20 SNR=30

SRE ps sparsity SRE ps sparsity SRE ps sparsity

SUnSAL-TV
3.883 0.524 0.041 6.358 0.664 0.087 11.871 0.957 0.048

λ=4e-1, λTV=1.4e-1, μ=5e-1 λ=2e-2, λTV=1.5e-2 μ=2.5e-2 λ=8e-3, λTV=4e-3, μ=3e-2

SU-ATV
4.426 0.550 0.029 9.580 0.882 0.023 15.066 0.991 0.029

λ=3e-1, λTV=3.8e-1, μ=1.75 λ=3e-2, λTV=9e-2, μ=7e-1 λ=9e-3, λTV=9e-3, μ=1.5e-1

ADSpLRU
2.674 0.383 0.038 4.944 0.615 0.024 12.407 0.935 0.032

λ1=1e2, λ2=3e-2, μ=13 λ1=19, λ2=4e-2, μ=3.3e-1 λ1=12, λ2=4e-3, μ=6e-1

WNLTDSU
6.073 0.655 0.042 9.982 0.913 0.037 14.342 0.989 0.024

λ=5e-4, λTV=0.1,λWT=2.5e-2,μ=5e-1 λ=1e-4, λTV=1e-2,λWT=5e-4,μ=1e-1 λ=6e-4, λTV=5e-3,λWT=2.5e-6,μ=4e-1

LGSU
      16.5564 0.9809 0.0265

1, 5 e-1 5e-2, 1e-2 e-2, 5e-4

LSU
      19.7385 1 0.0242

1 e-3 5e-3 1e-2

Our Method
6.820 0.714 0.024 12.236 0.977 0.022 20.427 1.000 0.019

λ=2e-4, λTV=1e-1,τ=8e-3, μ=6e-1 λ=5.5e-4, λTV=4e-2,τ=1e-4,μ=5e-1 λ=1.5e-2, λTV=4e-4,τ=8e-6, μ=4e-1

True abundances SUnSAL-TV

SU-ATV ADSpLRU

WNLTDSU LGSU

LSU Our Method

Fig. 5. True abundances of endmember5 and abundance maps estimated by these methods and the difference maps between them and true abundances at 20dB
in synthetic SD1
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True abundances SUnSAL-TV

SU-ATV ADSpLRU

WNLTDSU LGSU

LSU Our Method

Fig. 6. True abundances of endmember5 and abundance maps estimated by these methods and the difference maps between them and true abundances at 20dB
in synthetic SD2

Fig. 7. True abundances (leftmost column) and abundance maps (rightmost columns) estimated by these algorithms for each endmember material in the A
spectral library for 100 pixels in SD1 (topmost row) and SD2 (bottommost row) simulated with SNR of 20dB.

True abundances SUnSAL-TV SU-ATV ADSpLRU WNLTDSU LGSU LSU Our Method

SD
1
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2

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2404-2417

 
______________________________________________________________________________________ 



Fig. 8. The relative error and residual plots of ATVWLRTSU in SD1 simulated with SNR=20dB.

From the parameter choices of the two experiments in
Tables II and III, we can see that in the high noise conditions
(10dB and 20dB), parameters TV and  contribute more to

the model solution relative to parameter  . In the lower
noise conditions (30dB), the contribution of parameters

TV and  to the model solution is much smaller, especially
for parameter  . This indicates that under high noise
conditions, there are more noise points in the data, and the
sparsity effect is poor. The spatial structure information
contributes significantly to the unmixing results. In the case
of low noise, sparsity can achieve better results, thereby
weakening the spatial information weight

To further illustrate the superiority of the proposed method,
we randomly choose an endmember (e.g. EM5) and compare
the EM5’s abundance images estimated by these algorithms
and their differences from the true abundances at 20dB, as
shown in Figs. 5 and 6. From the Fig. 5 we can see that these
abundances estimated by proposed method are closest to the
true abundance in SD1, followed by WNLTDSU and
SU-ATV, while the performance of LSU, SUnSAL-TV,
ADSpLRU and LGSU is poor. In the Fig. 6, these
abundances of SD2 estimated by proposed method are still
closest to the true abundance, while WNLTDSU, SU-ATV,
LGSU, LSU and ADSpLRU have large differences, and
SUnSAL-TV has poor result. Therefore our proposed method
has the closest results to the true values, which is the best
unmixing results.

Fig. 7. shows that the true abundance maps and
approximate abundance maps estimated by these methods for
each endmember material in A spectral library. These
experimental results are simulated with SD1 and SD2 at 20db.
Due to the large number of pixels in the abundance, we
randomly selected 100 pixels for display. We use this
experiment to compare the unmixing results for each
endmember in A spectral library. Comparing with the true
abundance, we can see that in the SD1 experiment,
SUnSAL-TV, LGSU, LSU and ADSpLRU have explicit
errors (marked in the red rectangles), while SU-ATV,
WNLTDSU and our method work better. In the SD2
experiment, except for our method, there were detailed errors
in all other methods (marked in the red rectangles). These
experiments have proved that the proposed method has a
good unmixing effect.

Since it is difficult to verify the convergence of
ATVWLRTSU, we indirectly represent the convergence of
the algorithm by the relationship between residual

( A31  tt  ) versus the iterations and relative error

( ttt /  1 ) versus the iterations [27]. Fig. 8 shows

the residual and relative error plots of ATVWLRTSU in SD1
simulated with SNR=20dB. It can be seen in the figure that
the two plots converge quickly, and the relative error is lower
than 0.01 after 40 iterations, the residual is less than 1 after 60
iterations, and both values are close to 0 after 80 iterations.
Therefore, it can be indirectly obtained from the figure that
our proposed algorithm is convergent.

B. Experiments with real data
We use the root-mean-square error (RMSERD) and the

signal-reconstruction-error of real data (SRERD) to evaluate
the unmixing effect of real hyperspectral data.

2

RD
1 ˆRMSE .

Fl n
 


Y AX (37)

22
RD 10 2 2

ˆSRE =10 log [E( ) / E( )]. Y Y AX (38)

Lower RMSERD or Higher SRERD values mean better
unmixing effect.

In this subsection, the widely used AVIRIS Cuprite dataset
is used to verify the performance of the ATVWLRTSU
methods. A partial subset of 250×191 pixels from the
AVIRIS Cuprite dataset was chosen for the experiments. The
scene consists of 224 spectral bands between 0.4 and 2.5 µm
with a spectral resolution of 10 nm. The spectral library A is
still used for the experiments with real data. Prior to the
analysis, bands 1-2, 105-115, 150-170, and 223-224 were
removed from A due to water absorption and low
signal-to-noise ratio leaving a total of 188 spectral bands. Fig.
9 shows a mineral map produced in 1995 by USGS, in which
the Tricorder 3.3 software product [47] was used to map
different minerals present in the Cuprite mining district.
Since the true abundances of the measured hyperspectral data
are unknown, we can only qualitatively analyse their
performance by comparing the mineral maps with the
abundances estimated by these unmixing methods.

Fig. 10 shows the visualization comparison of the
fractional abundance maps of Alunite, Buddingtonite, and
Chalcedony estimated by SUnSAL-TV, SU-ATV,
ADSpLRU, WNLTDSU, LGSU, LSU and ATVWLRTSU
methods using A library, and the regularization parameters of
these methods are shown in TABLE IV.
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Fig. 9. USGS map showing the location of different minerals in the Cuprite
mining district in Nevada.

TABLE IV
Regularization parameters of the unmixing methods

Algorithms Regularization Parameters

SUnSAL-TV 0.001, 0.005, 0.05TV    

SU-ATV 0.01,  0.01, 0.1TV    

ADSpLRU 1 210,  0.005,  0.5,    

WNLTDSU
0.001,  0.005,TV  
0.00001 0.0005,WT  

LGSU 21 0.01,  0.005  

LSU 0.01 

ATVWLRTSU
0.01,  0.001,TV  
0.000001, 0.5  

From the results of unmixing in Fig. 10, it can be seen that
the abundance maps estimated by these unmixing methods
are very close to the true abundance maps. However, the
abundance maps estimated by SUNSAL-TV, SU-ATV, and
WNLTDSU are too smooth (for example, the unmixing
results of Chalcedony are too smooth, losing a lot of detailed
information), while the abundance maps estimated by
ADSpLRU are significantly different from true abundance
maps (such as Buddingtonite). For Alunite mineral, the
abundance maps estimated by SUNSAL-TV and SU-ATV
are too smooth, and the abundance maps estimated by
ADSpLRU and WNLTDSU have some details lost. For
Chalcedony mineral, the unmixing results of LGSU and LSU
have larger errors. Our proposed ATVWLRTSU algorithm
has good robustness and performs well in the unmixing
results of three minerals. Therefore, we can conclude that the
proposed ATVWLRTSU has good potential in improving

unmixing results in real scenes.
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Fig. 10. Abundances of cuprite data estimated by these unmixing methods

Table V shows the quantitative comparison results used for
experiments with Cuprite real hyperspectral data. From the
results we can see that the algorithm proposed in this paper
has the best results for both RMSERD and SRERD values. This
shows that the proposed algorithm has some advantages over
several other algorithms.

V. CONCLUSIONS

At present, most sparse unmixing methods do not consider
the spatial correlation between image features in the
unmixing process. To overcome this limitation, we propose
an adaptive total variation regularization for weighted
low-rank tensor sparse unmixing method. This method first
proposes an adaptive TV weighted term in the unmixing
model to fully explore the spatial information of
hyperspectral data. Then, a weighted nuclear norm of
abundance tensor is introduced in unmixing model to further
improve the denoising performance of the unmixing method.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2404-2417

 
______________________________________________________________________________________ 



Furthermore, the ADMM is used to effectively solve the
proposed method. Extensive experiments on both synthetic
and real data confirm the effectiveness of the proposed
method, and compare with other related state-of-the-art
unmixing methods, the effectiveness of the proposed method
is demonstrated. The future work is the derivation of more
computationally efficient schemes to further reduce
computing costs.

TABLE V
RMSERD and SRERD of the unmixing methods

Algorithms RMSERD SRERD

SUnSAL-TV 0.0137 28.123

SU-ATV 0.0054 35.315

ADSpLRU 0.0064 31.888

WNLTDSU 0.0052 37.117

LGSU 0.0066 31.995

LSU 0.0056 34.753

ATVWLRTSU 0.0046 39.787
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