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Abstract—We propose to study a solution approach for an

inventory model regarding the use of the algebraic method to
solve inventory problems. His process is more straightforward
than other analytic methods based on calculus. However, there
are questionable results contained in his approach. The purpose
of this paper is threefold. First, we point out the problems
included in his process. Second, we prepare our corrected
solution approach by the algebraic method. Third, for
completeness, we list the questionable results in his paper.

Index Terms—The complete squares method, Analytic
process, Non-convex, Lost sales, Backorders, Inventory models

I. INTRODUCTION
ECENTLY, there has been a tendency to solve inventory
system problems by adopting only the algebraic method

without referring to calculus so that inventory models may be
present to high school students. Grubbström [1] is the first
author to derive the optimal solution for the EOQ model
without using calculus. Following this trend, Leung [2],
Minner [3], Sphicas [4], Chang et al. [5], Ronald et al. [6],
Cardenas-Barron [7], and Grubbström and Erdem [8] studied
inventory models by the algebraic approach. The purpose of
this paper is threefold. First, we review the algebraic method
of Leung [2] for a deterministic inventory model with a
mixture of backorders and lost sales of Montgomery et al. [9].
We provide three simple examples to illustrate that Leung [2]
neglected the sign of two terms to make his approach
efficient in obtaining the minimum value. Second, according
to the sign of two terms, we divide the problem into three
cases, and then we present our revised patchwork to solve the
inventory model of Montgomery et al. [9]. Third, we afford
some further discussions with Leung [2] to demonstrate that
(a) he was not aware of the non-convex property of the
objective function mentioned in his paper; (b) he had quoted
a questionable result of Chu and Chung [10] that was already
improved by Yang [11]; (c) for the perticular case where the
shortage cost per backorder per year is assumed to be zero,
then his replenishment policy is false.

II. ASSUMPTIONS AND NOTATION

We use the same notation and assumptions as Montgomery
et al. [9] and Leung [2] for the EOQ model with partial
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backorders.
D Demand per year.
Q Order quantity (units per cycle, a decision variable).

 SUK , Average annual cost as a function of U and

S (dollar per year, the objective function).
V Maximum inventory level, bSQV  (units per

cycle, a decision variable).
S Total demand per cycle during the stockout period

(units per cycle, a decision variable).
U Total demand per cycle,  SbQU  1 (units

per cycle, a decision variable).
b A fraction of the demand is backordered during the

stockout period, while the remaining fraction   bb 1 is
lost.

0 Profit per unit (dollar per order).
 Fixed penalty cost per unit short (dollar per unit).
 Shortage cost per backorder per year (dollar per unit

per year).
I Inventory carrying cost per year, as a percentage

ofC .
C Unit cost of each item (dollar per unit).
A Fixed ordering cost per inventory cycle (dollar per

order).

III. REVIEW OF PREVIOUSWORKS

Motivated by Montgomery et al. [9], Leung [2] expressed

the average annual cost as
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 , (3.1)

Using the complete square method, Leung [2]rewrites

Equation (3.1) as
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where
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and
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


 0
3 , (3.5)

are three auxiliary expressions to simplify the expression, and

then Leung [2] derived that
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Leung [2] mentioned that  SUK , attains its minimum

when the two quadratic non-negative terms, depending on

U and S , are made equal to zero so that the optimal values
of the two decision variables are determined by
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After *U and *S , Leung [2] also derived some other
results for some exceptional cases that we will discuss in
Section 5.

IV. THE HIDDEN PROBLEMS IN HIS SOLUTION APPROACH

Let us provide several familiar problems in two variables, x,

and y, to highlight Leung's approach's hidden problem. First,

we assume that for 0x and 0y to find the minimum of

    612345, 2 
x

xy
x

yxf , (4.1)

Following the solution procedure of Leung [2], we rewrite

Equation (4.1) as

   245,  y
x

yxf

18123
2






  xx , (4.2)

Based on the expression of Equation (4.2), Leung’s approach

is workable to imply that

4* y , (4.3)

and

2* x . (4.4)

Second, we assume another example that for 0x and

0y to find the minimum of

    67345, 2 



x

xy
x

yxg , (4.5)

then his approach will imply that

     73245, 2  y
x

yxg

673
2






  xx , (4.6)

so that the optimal solutions proposed by Leung [2] will be

4* y , (4.7)

and

3
7* x . (4.8)

Third, we assume the last example that for 0x and 0y

to find the minimum of

    67345, 2 



x

xy
x

yxh , (4.9)

then his approach will imply that

    645, 2  y
x

yxh

 73273
2






  xx , (4.10)

so that the optimal solutions proposed by Leung [2] will be

obtained as

4* y , (4.11)

and

3
7* x . (4.12)

The above three examples show that
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02 a , (4.13)

and

  00  bDICU  , (4.14)

was implicitly assumed by Leung [2].

Moreover, inequalities in Equations (4.13) and (4.14)
generally do not always hold. Therefore, Leung [2] only
considered some partial conditions, ignoring more general
cases. Hence, we reveal that the algebraic method proposed
by Leung [2] contains questionable results.

V. OUR IMPROVEMENT

We reconsider Equation (3.2) to divide the domain of U ,

from 0U , into two cases: (a)
  00 
 U
IC

bD 
, and

(b)
 
IC

bDU 0 
 .

For case (a), motivated by Equation (4.10), we know that

0* S and then plug 0* S into Equation (3.1) to obtain

that

  UIC
U
ADSUK

2
0, * 

=
222

2
ADICUIC

U
AD 





  , (5.1)

Based on Equation (5.1), we assume that

IC
ADU 2#  , (5.2)

We know that #U is the minimum solution for

 0, * SUK without considering the condition of (a)

  00 
 U
IC

bD 
.

We compare
 
IC

bD 0 
and #U , then divide case (a) into

two sub-cases: (a1)
  #0 U
IC

bD



and (a2)

 
IC

bDU 0#  
 .

For case (a1)
  #0 U
IC

bD



, it yields that #U

satisfying the condition of (a), so that #U is indeed the

minimum solution under the condition (a). We summarize

our findings abstractly for later application in the following

Lemma 1 and Corollary 1.

Lemma 1.We assume that  
x
bxaxf  for 0 xc

with 0a and 0b , if cab  , then ab is the

minimum solution.

Corollary 1. We assume that  
x
bxaxf  for

0 dx with 0a and 0b , if dab  , then

ab is the minimum solution.

For case (a2)
 
IC

bDU 0#  
 , we will show that

 0, * SUK is a decreasing function of U .

For the later application, we abstractly handle this problem to

assume that

 
x
bxaxf  , (5.3)

for 0 xc , with 0a and 0b , under the condition

cab  .

First, for the domain 0 xc , we assume two points x

and x , with 0 xxc  where 0 , and then

our goal will prove that   )(xfxf  . It shows that

 xf   xf

   



 


 


 xx

a
b

xx
a

2
, (5.4)

Under the condition cab  , and 0 xxc  ,

we obtain   xx
a
b0 to verify that  xf is a

decreasing function. Therefore,  xf attains its minimum at

c . We derive the next lemma.

Lemma 2. We assume that  
x
bxaxf  for
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0 xc with 0a and 0b , if cab  , then c is
the minimum solution.

Based on a similar argument, we know the next corollary to

show the objective function is an increasing function.

Corollary 2.We assume that  
x
bxaxf  for 0 dx

with 0a and 0b , if dab  , then d is the

minimum solution.

We summarize the results for Lemmas 1 and 2 in the next

theorem.

Theorem 1. If  
x
bxaxf  for 0 xc with 0a

and 0b , then the minimum solution is  cab ,min .

We are applying Theorem 1 to yield the following.

Corollary 3. For case (a)   00 
 U
IC

bD  , the objective

function  SUK , attains its minimum at 0* S , and
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IC
ADU 0* ,2min  .

Next, we consider the case (b)  
IC

bDU 0 
 . It yields that
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bIC

bDICU





 0 is a non-negative number such that we

take
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bDICUUS



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
 0* , (5.5)

to clearly indicate that  US * is a function of U . We

simplify the objective function

   3
2

1
*, a

U
aUaUSUK  , (5.6)

with

 bIC
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


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21 , (5.7)

    
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, (5.8)

and

 
bIC
bICDa







 0
3 , (5.9)

are three auxiliary expressions to simplify the results. It

follows that 01 a , and 03 a . Owing to the sign of 2a ,

we divide case (b) into two sub-cases: (b1) 02 a , and (b2)

02 a .

We summarize the results for Corollary 1 and Corollary 2 in

the next theorem.

Theorem 2. If  
x
bxaxf  for 0 dx with 0a

and 0b , then the minimum solution is  dab ,max .

We are applying Theorem 2 to yield the following.

Corollary 4. For case (b1), 02 a , the objective function

  USUK *, attains its minimum at  ** USS  , and

 






 


IC

bD
a
aU 0

1

2* ,max  .

Next, we consider the case (b2) with 02 a . We assume

two points, U , and U , with 0 and a relationship

 
IC

bDUU 0 
 and then we compute

   USUK *,   USUK *,

  02
1 








UU
aa . (5.10)

Based on Equation (5.10),   USUK *, is an increasing

function to attain its minimum at the boundary point

 
IC

bD 0  for case (b2).

For convenience, we summarize our findings in the above

table 1.
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Table 1. Summary of our results
cases Domain of U 2a *U *S
(a)   00 

 U
IC

bD   






 

IC
bD

IC
AD 0,2min  0

(b1)  
IC

bDU 0 


02 a  






 

IC
bD

a
a 0

1

2 ,max     
bIC

bDICUUS






 0

*
**

(b2) 02 a  
IC

bD 0 

VI. A LIST OF QUESTIONABLE RESULTS IN THE PREVIOUS
PAPER

Leung [2] only derived one pair minimum solution for *U
and *S in Equations (3.7) and (3.8), respectively. In his paper,
he mentioned “The non-convex cost function.” He realized
that  SUK , is not a convex function, but still derived only
one minimum solution. Let us recall Table 1: when

 
IC

bD
IC
AD 02  

 and  
IC

bD
a
a 0

1

2  
 both

happen, there is a local minimum at IC
AD2 for the domain

  00 
 U
IC

bD  , and there is another local minimum at

1

2
a

a for the domain  
IC

bDU 0 
 . It points out that

the non-convex property of  SUK , .
Leung [2] also discussed the comparison between
ADIC2 and  0 D when ADIC2  0  D .

Leung [2] claimed that based on Chu and Chung [10], pages
290-291, "no inventory system exists because this condition
implies that the incurring the lost sales all the time,
 0 D is less than operating an EOQ system with cost

ADIC2 ." However, Yang ([11], pages 867-868) already
pointed out that the statement in Chu and Chung [10] is false
and then revised them into three cases. Consequently, his
discussions for the condition ADIC2  0  D
cannot be supported by Chu and Chung [10].
We want to mention another questionable result in Leung

[2]. For a particular case of ADIC2  0  D and

0 , he derived that *U and *S such that his
optimum strategy is to partially backorder everything.
However, *U and *S are mathematically
acceptable solutions but *U and *S are not feasible

solutions in the real world. If *U , then the cost to buy
the product will be beyond the limit of the business budget.
We may advise researchers referring to Yang ([11], page 867)
to buy the total demand, U , as large as capital allowed, and
then to extend the shortage period as long as possible, with

 
IC

bDUS 0 
 . It points out that the inventory carrying

period always exists with time length   ICb0  .
Therefore, his procedure of partial backorder everything is
false.

VII. A RELATED PROBLEM
We study the paper of Hua et al. [12] to examine their

arrangement of locations for car sensors under a network
consideration. In the past, many researchers aimed to
construct such plans, setting the traffic information of
connected transit models on all paths within a network by
personal on-site surveys or sophisticated transit sensor
approaches. However, in the natural environment, this
assumption of having sensors installed on all links is often
not applicable owing to budgetary considerations. This
limitation highlights the motivation to predict transit currents
on all paths of a transit network according to the estimation of
path currents relying on only a subfamily of paths equipped
with proper detective sensors. Our paper pays attention to
discussing the arrangement of locations for the least amount
of sensors to predict all transit information within the
network. To achieve this goal, Hua et al. [12] applied an
algebraic method to find the minimum base for the transit
matrices that contained the maximum amount of transit
information.
It is supposed that there are 1C , nCC ,...,2 column vectors,

where the weight of iC is denoted as iw for ni ,...,1 . We
predict that the assumption should be added as non-zero
column vectors. In Hua et al. [12], they assumed that let 
be the collection of all independent subsets of
 niCi ,...,2,1:  , and then their goal is to find












Aw
Aw

i
i

:max . (7.1)

The method in Hua et al. [12] is to rearrange the order of
 niCi ,...,2,1:  relying on their weights such that

     nfff www  21 . (7.2)

Hua et al. [12] considered that (i)   1: jC jf , (ii)

  2,1: jC jf , ...,   njC jf ,...2,1:  in this order to

select an independent subset to derive a subset as
  mkC kg ,...,1:  then your total weight for this

independent sub-family is derived as
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 


m

k
kgw

1

. (7.3)

The goal of Hua et al. [12] is to prove that

  


m

k
kgw

1 










Aw
Aw

i
i

:max . (7.4)

In Hua et al. [12], they rearranged the column vectors
according to their weight from the largest to the smallest. If
their weight values are all different, then this procedure can
solve the problem. However, we assume that

w1 = w2 > w3 = w4, (7.5)
and then there are four possible sequences constructed by the

method proposed by Hua et al. [12]:

w1 ≥ w2 > w3 ≥ w4, (7.6)
w1 ≥ w2 > w4 ≥ w3, (7.7)
w2 ≥ w1 > w3 ≥ w4, (7.8)

and

w2 ≥ w1 > w4 ≥ w3. (7.9)
Based on the abovementioned four sequences, they may

imply different subfamilies of the maximum independent set.
Hua et al. [12] did not prove that different sequences will
result in the same optimal value. We will provide a new
solution approach to provide a patchwork for the incomplete
solution procedure proposed by Hua et al. [12].

VIII. OUR IMPROVEMENT

We can rearrange  niwi ,...,1:  in a finite community

such that in each community, iw has the same value that is, if

there are h communities to partition  niwi ,...,1:  as

 niwi ,...,1:  
h

i
i

1

 , (8.1)

such that if w and w in the same community, then

w w , if iaw  and jbw  then ba ww  if and

only if ji  such that we express  niwi ,...,1:  as

 21)(   dcba wwww

 hzy ww   . (8.2)

Hence, we define the corresponding iC as follows,

 niCi ,...,1:  
h

i
i

1

 . (8.3)

We will prove by the Principle of Finite Induction on the rank

of  niCi ,...,2,1:  .

We assume the rank of  niCi ,...,2,1:  is m .

We assume that 1m then any jC is a base for

 niCi ,...,1:  . By the approach of Hua et al. [12],

  11 fC and then

  max1 fw  niwi ,...,1:  jw , (8.4)

for any jC being a base for  niCi ,...,1:  to prove that

based on our proposed approach we can attain the maximum.

We assume that our approach is valid for km ,...,2,1 , and

then we assume that the rank of  niwi ,...,1:  is 1k .

For the subspace generated by   1,, ba CC , we assume

that the rank of 1 is 0k with 10  kk .

By our approach, there is a subset consisting of 0k

independent vectors that is a base for the subspace generated

by 1 .

We assume that there is a base, denoted by Π that is selected

from 
h

i
i

1

 . For any other selection of base, denoted as Y, for

 niCi ,...,1:  , we may denote the base as 1 union other

vectors in 
h

i
i

2

 , with 1 1 .

We denote the cardinal of 1 as  1#  . Owing to  1# 

must less than the rank of 1 to imply the  1#  0k . We

will divide into two cases: Case (a)  1#  0k and Case (b)

 1#  0k .

For case (a), we derive that


iw

iw 0k aw 



1iw
iw . (8.5)

The cardinal of “Y 1 ” must be less than or equal to k so

we can apply the result that our approach is valid for

km ,...,2,1 to derive that









 


1:max
1

Bww
Bw

i
w

i
ii





1Yw
i

i

w , (8.6)

where 1 be the collection of all independent subsets of

 niCi ,...,2,1:  1 .

Hence, we show that


iw

iw 
 1iw
iw 0k aw
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



Yw

i
i

w  
 1Yw

i
i

w 0k aw . (8.7)

For case (b), we derive that


Yw

i
i

w  1#  aw 



1Yw
i

i

w , (8.8)

with  1#  0k .

Owing to those changing base theorem, we know that there

are 0k  1#  independent vectors in 1 that those

independent vectors can be selected to join Y to form a new

base, denoted as H, when there are 0k  1#  independent

vectors in 
h

i
i

2

 which are kicked off from the base, Y.


Hw

i
i

w 0k aw  
 1Hw
i

i

w


Yw

i
i

w  1#  aw 



1Yw
i

i

w , (8.9)

Owing to those newly joined vectors with weights

1aw that are greater than those weights in 
h

j
j

2

 .

Our method presented in this study proves to be valuable for

path-based applications in transit networks and long-term

planning. Strategically selecting sensor locations on a limited

number of links allows for cost-effective yet accurate flow

estimation on the entire network, under budget constraints.

IX. A SECOND APPROACH

Based on the values of wk: k = 1,2, …, n , we may rename
the index system such that

wk: k = 1,2, …, n = tk: k = 1,2, …, n , (9.1)

under our new index system that ti ≥ tj if and only if i < j.

Our new approach is to slightly modification of tk , for k =

1,2, …, n, from tk to tk + εk such that

tk + εk > ti + εi, (9.2)

if and only if i < k.

We assume the family of all non-empty subsets of tk: k =
1,2, …, n as ∇. If the cardinal number of tk: k = 1,2, …, n is
n, then the cardinal number of ∇ is 2n − 1, because we only
consider non-empty subsets. We express the total weight,
denoted as f K , of an element, denote as K, in ∇ as follows,

f K = tj∈K tj� . (9.3)
We define a new number as follows,

δ = min f K − f J : K, J ∈ ∇, f K ≠ f J . (9.4)

Owing to ∇ is a finite, we imply that f K : K ∈ ∇ is also a
finite set, such that

f K − f J : K, J ∈ ∇, f K ≠ f J , (9.5)
is also finite. The minimum value of a finite family of
positive numbers is a positive number. Hence, we show that

δ > 0. (9.6)
For convenience, we assume a new expression, denoted as ε,
where

ε = δ 2n2. (9.7)

Based on tk: k = 1,2, …, n , we construct a new sequence
tk + n − k + 1 ε: k = 1,2, …, n . (9.8)

We know that
tj ≥ tj+1, (9.9)

for j = 1,2, …, n − 1. Consequently, we derive that
tj + n − j + 1 ε > tj+1 + n − j ε. (9.10)

Based on Equation (9.10), we construct a new sequence of
weights that are all distinct.
Using our new sequence of Equation (9.8), we can apply the
solution procedure proposed by Hua et al. [12] to find a base,
denoted as B, that attains the maximum value.

In the following, we will prove that
tj: tj + n − j + 1 ε in B� , (9.11)

attains the maximum of Equation (7.4).
By way of contradiction, we assume that there is another base,
denoted as C, such that

ti: ti in C� > tj: tj + n − j + 1 ε in B� . (9.12)
Owing to B attains the maximum value of Equation (7.4), we
derive that

tj + n − j + 1 ε: tj + n − j + 1 ε in B� ≥,
ti + n − i + 1 ε: ti in C� . (9.13)

We show that
tj + nε: tj + n − j + 1 ε in B� > ti: ti in C� . (9.14)

Based on Equation (9.14), we derive that
n2ε ≥ nε: tj + n − j + 1 ε in B

≥ ti: ti in C� − tj: tj + n − j + 1 ε in B� , (9.15)
where from Equation (9.12), the right-hand side of Equation
(9.15) is a positive number.
Recalling Equation (9.15), we obtain that

n2ε ≥ δ. (9.16)
The finding of Equation (9.16) is violated to Equation (9.7),
and then we prove that the assertion of Equation (9.12) is
false to finish our proof.
Based on our above discussion, we provide a patchwork for

Hua et al. [12].

X. APPLICATION OF OUR DISCUSSION

In this section, we will show that our previous discussion
can be apply to other inventory models to indicate its
effectiveness. In the following, we begin to review Li et al.
[13] that developed an inventory system with a retailer and a
manufacturer such that the retailer decided the retail price to
customers and the manufacturer decided the quality of the
product item and the wholesale price.

XI. APPLICATION OF OUR DISCUSSION

In the following, we provide notation for the inventory
system proposed by Li et al. [13].
r is the cost coefficient with respect to quality.
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w is the wholesale price of one unit for the produced item, a
decision variable.

x is the quality level of the produced item, a decision
variable.

p is the retail price for the produced item.
 is sensitivity of the demand for the produced item with the

quality.
b is sensitivity of the demand to price of the retailer.
c is the production cost of one unit item for the

manufacturer.
a is the expected value of stochastic market base for the

retailer, with ac 0 .
2 is the variance of the stochastic market base for the
retailer.

r is the risk aversion coefficient of the retailer.

m is the risk aversion coefficient of the manufacturer.

  pU rr  is the profit of a retailer.
  pxwU mm ,, is the profit of a manufacturer.

XII. OUR ALGEBRAIC APPROACH

In this section, we demonstrate that we can apply algebraic

method to solve the maximum problem studied by Li et al.

[13] that tried to find the maximum solution for utility

function of a retailer and a manufacturer,

     xbpawppU rr 
 

2

22 wpr 
 , (12.1)

and
     xbpacwpxwU mm  ,,

  222

22
 cwxr m  . (12.2)

We will use algebraic method to find the optimal solution.
We rewrite Equation (12.1) in the descending order of p to
imply that

   2
2

2
2 pbpU r

rr 





 pwxbwa r
2 







  22

2
wwxwa r  , (12.3)

and then we complete the square for Equation (12.3) to derive
that

  
2

2

22

22
2






















r

rr
rr b

wxbwapbpU

 
 2

22

22 


r

r

b
wxbwa












  22

2
wwxwa r  . (12.4)

Owing to the coefficient of
2

2

2

2 















r

r

b
wxbwap is

denoted as
2

2 2


 rb that is a negative number, to obtain the

maximum value for the utility function of the retailer, we
should take that

2

2

2 


r

r

b
wxbwap




 . (12.5)

We plug Equation (12.5) into Equation (12.2) and to simplify
the expression with a expression,

cwy  , (12.6)
in the descending order of x to yield that

     x
b

ybxrxyU
r

r
mm 2

2
2

22
,









   cyba
b
by

r
r




 2
22




22

2
yya m 

 . (12.7)

We complete the square for x in Equation (12.7) to find that

    
 

2

2

2

22
, 
















r

r
mm br

ybxrxyU

  
 22

22

22 


r

r

br
yb




 22

2
yya m 



   cyba
b
by

r
r




 2
22




. (12.8)

Because the coefficient of
 
 

2

2

2

2 















r

r

br
ybx is

denoted as 0
2


 r

, we know that the maximum value will

occur when
 
  ybr
bx

r

r
2

2

2 





 . (12.9)

We plug the findings of Equation (12.9) into Equation (12.8)
to obtain that

    yU mm
 

 22

2222

22 


r

r

br
yb



 22

2
yya m 



   
2

2

2 


r

r

b
cybaby




 . (12.10)

We rewrite Equation (12.10) in the descending order of y ,
and to simplify the expression, we assume that

   222222
3 2  rrm bbrA 

  22 22  rr bbbr  , (12.11)

 22
4 22 rbrA  , (12.12)

432 AAA  , (12.13)
and
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    22
1 2  rr bbbcaA  , (12.14)

to yield
   yU mm yAyA 1

2
2  . (12.15)

Based on Equation (12.15), we rewrite Equation (12.15) as

   yU mm
4

2
1

2

2

1
2 42 A

A
A
AyA 








 (12.16)

to derive that

2

1

2A
Aycw  . (12.17)

Li et al. [13] did not check whether or not 03 A and

bca  to guarantee the well-defined of the solutions of
(12.5), (12.9), and (12.17).
In the numerical example of Li et al. [13], we recall that

500a , 10b and 3c such that
0 bca , (12.18)

is supported by the numerical example mentioned in Li et al.
[13].
In the numerical example of Li et al. [13], we recall that

100r , 60 , 10b to imply that
   22

3 36001064360020360000 rrmA  

  rr  3600203600102000  . (12.19)

When 02.0m , to run a sensitivity analysis on r , Li et

al. [13] assumed the value of r is 10  r .
Owing to

64360000 m , (12.20)
and

   22 360010360020 rr   , (12.21)
we derive that

03 A , (12.22)
is supported by the numerical example.
On the other hand, 02.0r , to run a sensitivity analysis

on m , Li et al. [13] assumed the value of m is

10  m .
We observe that

642000  , (12.23)
and

rr  360010360020  , (12.24)
we still obtain that

03 A , (12.25)
is supported by the numerical example mentioned in Li et al.
[13].

XIII. DIRECTION OF FUTURE RESEARCH
In this section, we begin to review some important papers

that were recently published. Sulistiawanti et al. [14] used
multivariate exponentially weighted moving variance charts
and multivariate exponentially weighted moving averages to
deal with monitoring water quality under residual XGBoost
regression. Using naive Bayes classifier and Bayesian
logistic regression, Yanuar et al. [15] classified death risk for
those COVID-19 patients. Cheng and Chen [16] studied
contradictory pairwise comparison matrices in the analytic
hierarchy process to show that those improvements contained

questionable findings. According to an improved Salp swarm
algorithm, Long et al. [17] considered the optimal allocation
of DGs in radial distribution networks. Wu [18] constructed a
new inventory model under fuzzy restriction and fuzzy
demand to derive a formulated optimal solution. Wang et al.
[19] considered the consistency test in the analytic hierarchy
process to point out several questionable results in previously
published papers. For the flooded passenger vehicles,
Al-Qadami et al. [20] examined a 3-dimensional numerical
study on the critical orientation. Aripin et al. [21] amend
compound emotional text classification performance in the
multichannel convolutional neural network model. Chen and
Cheng [22] developed a simple algorithm to evaluate the
order time duration for inventory models with a linear
demand. Referring to COVID-19 cases, Novianti et al. [23]
developed geographically weighted logistic regression
models with spatial binomial data to examine the weather
non-stationarity. Prasetyo et al. [24] examined the fuel
subsidies in Indonesia using clustering large applications,
partitioning around medoids, and K-Means. Wang and
Chiang [25] examined the ordered weighted averaging
operator to provide a further study. According to our above
referring, we can assume that practitioners will locate several
hot research topics to help them obtain their research
directions.

XIV. CONCLUSION
Leung [2] considered the inventory model of Montgomery

et al. [9] using algebraic methods to obtain the minimum
solution, so that inventory systems may introduced to high
school students without the knowledge of calculus. However,
his approach overlooked the sign of two terms, so it obtained
questionable results. Our improvement provides a sound
patchwork for his shortcomings.
On the other hand, we also provide a new solution

procedure to solve the optimal problem of Hua et al. [12].
At last, not least, we apply our algebraic method to deal

with a supply chain problem with one manufacturer and one
retailer. We point out that there are two necessary condition
that must be hold to guarantee the well-defined of the optimal
solution. Referring to numerical examples in Li et al. [13], we
show that both conditions are valid to provide a sound
foundation for our algebraic process.
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