
 

  

Abstract— Understanding protection from SARS-CoV-2 

infection and severe COVID-19 induced by natural SARS-

CoV-2 infection versus vaccination is essential for informed 

vaccine mandate decisions. In this article, we construct a 

system of reaction-diffusion-integral equations to describe the 

development of vaccinated population, not previously infected, 

and pre-infected population, vaccinated or not, subject to 

continued exposure to coronavirus leading to possible re-

infection. The model accounts for the differences in induced 

immunity in the two populations and the spread of infection 

due to movements of various populations in space. To 

realistically describe the nature of immunity, which has been 

found to decline with time following vaccination or infection, 

the rate of infection is expressed here as an integral of a 

function of the specific rate of infection that increases 

exponentially with time, depending on how long it is after the 

subjects have been infected with, or vaccinate against, the 

virus. The model is analyzed for its stability, and the contour 

plot is presented. The analytical solutions of the model system 

are derived in the form of traveling waves, using the modified 

extended hyperbolic tangent method. Inspection and 

interpretation of the different shapes of these plots yield 

valuable insights.  

 
Index Terms—SAR-CoV-2 infection, infection-induced vs 

vaccination-induced immunity, reaction-diffusion-integral 

equations, travelling wave solutions.  
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I. INTRODUCTION 

EVER since the outbreak of SAR-CoV-2, we have seen an 

exponential growth in research and publications devoted to 

its detection, for example in [1], the use of models and other 

advanced techniques to analyze its spread and prevalence, 

such as those reported in [2], [3] and [4], as well as utilizing 

Bayesian Logistic Regression and Naive Bayes Classifier 

[5] to classify death risk for COVID-19 patients.  

Nations all across the globe have developed and 

mandated numerous public health measures to bring down 

the rate of transmission and control the pandemic [6]. Apart 

from the effort of the scientific research community to find 

better treatment strategies for the disease, intense research 

has been directed toward developing a safe and effective 

vaccine to reign in the spread of the disease [6].  

According to Chemaitelly et al. [7], whether a person has 

been previously infected or not, vaccination still provides 

the safest and the best protection against infection and 

COVID-19-related hospitalization and death. In their recent 

report, Chemaitelly and his co-workers [7] went on to say 

that previous natural infection was correlated with lower 

incidence of coronavirus infection, whatever the variant, 

than mRNA primary-series vaccination. Although COVID-

19 vaccines induce immunity against coronavirus infection 

and COVID-19-related hospitalization and morbidity, 

natural infection with the virus also induces immunity 

against renewed infection as well as COVID-19-related 

hospitalization and morbidity. An increasing number of 

investigations suggest that differences are evident in the 

level and persistence of protection provided by natural 

infection in comparison to vaccination [7] – [10]. Even more 

perplexing is the discovery that moderate to severe 

coronavirus infection induces immunity from vaccination 

more effectively than infection that is mild or asymptomatic 

[11]. 

In addition, it was concluded in [12] that immunity 

provided by vaccination or prior infection against SARS-

CoV-2 infection wanes with time. Specifically, the 

immunity induced by vaccination against symptomatic 

coronavirus infection reduces to a quarter to a third of the 

original level within 6 months. On the other hand, the 

protection against symptomatic reinfection induced by pre-

infection wanes at a slower rate, only slight declines being 
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observed one year later. Moreover, protection provided by 

both vaccination and prior infection against symptomatic 

infection was found to wane more rapidly than protection 

against severe, critical, or fatal infection [12].  

  However, there is still conflicting evidence in this regard, 

as voiced by Hernandez-Suarez in [13] that there are 

indications that protection provided by prior infection lasts 

longer only when compared to those patients who did not 

fulfill the complete dose.    

Because of these conflicting reports, it becomes important 

for policy making purposes to be able to characterize how 

waning immunity affects the spread of SARS-CoV-2 

infection over time and space, especially in choosing 

optimal vaccination strategies, testing policy, and readiness 

of health care facilities at the right time and location. 

Due to insufficient empirical data and lack of conclusive 

evidence, mathematical modelling can play a crucial role in 

driving and testing policies. Models that reflect observed 

infection characteristics, such as the difference in immunity 

provided by prior infection versus vaccination, are needed to 

complement the knowledge that cannot be gleaned from 

data accumulation and analysis alone.  

We therefore propose a model system of reaction-

diffusion-integral equations to track the densities of 

infective individuals and those who are susceptible to 

infection, each divided into 2 groups, namely, those who 

have been vaccinated and those who have been previously 

infected. To model the decline in immunity, the rate of 

infection is written as an integral involving the specific 

infection rate that increases exponentially with time. The 

model will be analyzed for its stability, and the contour plot 

will be presented. The analytical solutions of the model 

system are then derived in the form of traveling waves, 

using the modified extended hyperbolic tangent method. 

The results of our analysis and simulations are interpreted to 

shed light onto how pre-infection and vaccination impact in 

varying degrees on subsequent infections and how waning 

immunity plays a role in the spread of SARS-CoV-2 

infection over time and space. 

II. MODEL SYSTEM 

In order to discover the different manners in which 

SARS-CoV-2 infection spread through time and space 

within the population of susceptible individuals who have 

been vaccinated and that of individuals who have been 

previously infected, we divide the susceptible population 

into two groups, one of which consists of those individuals 

who have been vaccinated but have never been infected, and 

the other consists of those who have been previously 

infected, vaccinated or not, expected to have some infection-

induced immunity. The infectious population is similarly 

divided into two groups. One of them consists of those 

individuals who get infected after they have been 

vaccinated, but have not been infected previously. The other 

group consists of those individuals who get infected after 

having been infected beforehand. Namely, we let 

( , )  density of population of infected individuals 

               derived from those having been vaccinated, but not 

               previously infected,

vI x t =

( , )  density of population of infected individuals

               derived from those who have been infected 

               previously, whether having been vaccinated or not,

iI x t =

( , )  density of susceptibles vacinated at least once,

               not having been infected,

vS x t =
 

( , )  density of susceptibles having been infected, 

               vaccinated or not,

iS x t =
 

0 ( , )  density of population of infected individuals who

               are not members of either  or  population,v i

I x t

I I

=
 

0 ( , )  density of susceptibles having never been 

                vacinated or infected,

S x t =
 

0( , ) ( , ) ( , ) ( , )i vI x t I x t I x t I x t= + + , 

where t denotes the time, and x denotes the spatial radial 

distance measured from a point of reference at the center of 

the infected area. We then arrive at the following model 

equations.  
2
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 The first term on the right of (1) is the rate of change of 

infected population density 
vI  due to spatial movement or 

migration of infected individuals, with diffusion constant 
v  

representing the strength of contribution from such 

migration. The second term corresponds to the rate of 

increase in the infected population 
vI  due to the contact 

between the infectious individuals I and the susceptible 

individuals Sv, in which the integral term 

  ( )

1
0

( , ) (1 ) ( , )v
t

t

vG x t e S x d
   − −

−         (7) 

accounts for the decline in immunity of ( , )vS x t  the longer 

after they have been infected. When t is further from  , 

t −  is larger and the specific rate of infection, per unit of 

density of the infectious individuals per unit of density of 

susceptible individuals, 
( )

1 v t
e

 − −
− , is larger, which means 

the susceptible individuals ( , )vS x t  get infected more. On 

the other hand, when the elapsed time is small, 
( )

1 v t
e

 − −
−  

becomes smaller, which means the susceptible individuals 

( , )vS x t  get infected less. Thus, (7) accounts for the waning 

in vaccine-induced immunity observed in clinical data. 
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Similarly, the expression 

2
0

( )
(( , ) (1 ) , )i t

t

iG x t e S x d
  − −

−         (8) 

accounts for the decline in infection-induced immunity of 

( , )iS x t . Such rate integrals representing exponential decline 

of this form have been described and utilized in earlier 

models in which the transmission strength declines with 

time [14], [15]. The coefficients 
v  and 

i  of these integral 

represent the strengths of the contributions from such 

infection from ( , )vS x t  and ( , )iS x t , respectively, while 
v  

and 
i  are the corresponding decay constants. The last 2 

terms in (1) are the removal rates due to death and recovery 

with specific rates 
vd  and 

vr , respectively. 

The terms on the right of (2), including the definitions of 

,i id  and 
ir , follow in the similar manner as those in (1).  

The first term on the right of (3) is the rate of change of 

susceptible population density 
vS  due to spatial movement 

or migration of susceptible individuals, with diffusion 

constant 
v  representing the strength of contribution from 

such migration. The second term corresponds to the rate of 

removal in 
vS  due to infection, and the last term is its 

increase due to infection of the population 
0S , taken to vary 

directly as its current density with constant of variation  . 

The first 2 terms on the right of (4) and the coefficient 
i  

follow in the similar manner as those in (3), while the last 3 

terms are the rate of increase of
iS due to recovery from 

infection of 
0 , ,  and v iI I I , with specific rates 

0 , ,vr r  and 
ir  

respectively. 

In (5) and (6), 
0I  and 

0S  increase due to migration, with 

strength coefficients  and I S  , respectively, and decrease 

due to death (
0 0d I ), recovery (

0 0r I ) or new infection (
0S ), 

where 
0 0,d r  and   are the respective specific rates of 

change. With equation (5), we assume that strict isolation is 

enforced once an individual, who has not been vaccinated or 

pre-infected, is infected, so that no movement is observed, 

so that we may put 0I = . It is then straightforward to 

show that 
0 0I → , as t →  . For 

0S  in (6), those who have 

not been vaccinated or infected are expected to observe 

strict isolation, not moving around, since they cannot be 

assured of any immunity. We may then put 0S = , in 

which case we also have 
0 0S → , as t →  .  We shall then 

consider the development in the levels of 
vI , 

vI , 
vS , and 

iS , in the situation where 
0I  and 

0S  have been depleted, 

and carry out our analysis on the model which consists of 

the following equations. 
2
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where equations (15) and (16) have been derived from 

differentiating vG  and iG , respectively, with respect to 

time, assuming no contribution from migration. 

 In the next section, we shall carry out a stability analysis 

on the model system (11) – (16) to determine whether there 

exist some conditions under which the solution to our model 

remains close to, or tends asymptotically, to some steady 

state value. 

III. STABILITY ANALYSIS 

To determine dynamic or asymptotic behavior of the 

solutions to (11) – (16), we introduce the travelling wave 

coordinate, x ct = − , which transforms (11) – (16) into the 

following system of ordinary differential equations. 

( ) ,v v v v v i v v v v vci i i i g d i r i  − = + + − −        (17)  

( ) ,i i i i v i i i i i ici i i i g d i r i  − = + + − −         (18) 

( ) ,v v v v v i vcs s i i g  − = − +            (19) 

( ) ,i i i i v i i v v i ics s i i g r i r i  − = − + + +        (20) 

2 ,v v v v vc g cg s  = +               (21)  

2 ,i i i i ic g cg s  = +               (22) 

where ( )  stands for the derivative of the specific state 

variable with respect to  , and 

( ) ( ), ,v vi I x t = ( ) ( ), ,i ii I x t = ( ) ( ), ,v vs S x t =

( ) ( ), ,i is S x t = ( ) ( ), ,v vg G x t = ( ) ( ), .i ig G x t =  

The above system of second order differential equations 

can be transformed into a system of first order equations by 

letting 

1 1 2 2 3 3

4 4 5 5 6 6

, , , , , ,

, , , , , ,

v v i i v v

i i v v i i

y i x i y i x i y s x s

y s x s y g x g y g x g

  = = = = = =

  = = = = = =
 

which yields 

1 1y x = ,                   (23)  

2 2y x = ,                   (24)  

3 3y x = ,                   (25) 

4 4y x = ,                   (26)  

5 5y x = ,                   (27) 

6 6y x = ,                   (28)  

( )1 1 1 1 2 5 1
v v v

v v v v

d r c
x y y y y y x



   
 = + − + − ,     (29) 

( )2 2 2 1 2 6 2
i i i

i i i i

d r c
x y y y y y x



   
 = + − + − ,     (30) 
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( )3 1 2 5 3
v

v v

c
x y y y x



 
 = + − ,           (31) 

( )4 1 2 6 1 2 4
i v i

i i i i

r r c
x y y y y y x



   
 = + − − − ,     (32) 

5 3 52

v vx y x
cc

 
 = + ,               (33) 

6 4 62

i ix y x
cc

 
 = + .               (34) 

Equating the right hand sides of (23) – (34) to zero, we 

find steady states 1 21 (0,...,0, , ,0,...,0)y y = , distributed on 

the 
1 2( , )y y -plane, and 5 62 (0,...,0,0,0, , )y y = , distributed 

on the 
5 6( , )y y - plane, where 1,y  2 ,y  5 ,y  and 6y  can be 

any arbitrary positive values.  

 To discover the stability behavior of the system near a 

steady state 1 , for some fixed values 
1c  of 

1y  and 
2c  of 

2y , we find the Jacobian matrix of the model system about 

1  to obtain the eigenvalues , 1,2,3,...,12i i = , as follows, 

the detail of whose derivation being omitted for being 

straight forward. 

1 =
v

c


− ,

2 =
i

c


− , 

3  =
v

c


− , 

4 =
i

c


−  ,

5 v

c


= , 

6 = i

c


, 7 8,v v i id r d r

c c
 

+ +
= = , 9 10

1
,

c
 = = −

11 12 0 = = . 

Since some of the eigenvalues are positive and some are 

negative, the steady state 1  is unstable, behaving like a 

saddle point on each phase plane. 

Corresponding to 2 , for some fixed values 
5c  of 

5y  

and 
6c  of 

6y , one finds the Jacobian matrix about 2  to 

have the eigenvalues , 1,2,3,...,12i i = , which are identical 

to the corresponding eigenvalues of the Jacobian matrix 

about 1 , except for 
7  and 

8 , which are 

5

7 ,v v vd r c

c




+ −
=  

( )
6 5 6

8

5

i i i v i

v v v

d r c c c

c c d r c

  




+ −
= +

+ −
.  

Thus, again some of the eigenvalues are positive, while the 

others are negative and hence, the steady state 2  is also 

unstable and behaves like a saddle point on each phase 

plane. 

 
Fig. 1. Contour plots in the 

1, 1( , ) phase planex y . The steady state at the 

origin is seen to be a saddle point. 

 In Fig. 1. we show the contour plots in the 

1, 1( , ) planex y − , where (0,0)  is a saddle point as predicted. 

State variables are seen to initially approach 0 along each 

trajectory, but eventually get repulsed away from the saddle 

point (0,0)  as time passes.    

In the next section, we derive the analytical solution to the 

model system (11) – (16) in the form of traveling wave 

fronts by utilizing the extended hyperbolic tangent method 

based on the work of Taghizadeh and Mirzazadeh [10].  

IV. TRAVELING WAVE FRONTS 

In this section, we shall employ the modified extended 

tanh method [16] to acquire analytical solutions in terms of 

the traveling wave coordinate x ct = − . This method has 

been utilized in many pieces of research work [16], [17], 

[18] concerning important phenomena of great interest, and 

we refer the readers to these articles for more detailed 

background, development as well as its applications.  

A. Analytical Solution 

To this end, we attempt to find the solution of the model 

system (11) – (16) expressed as a finite series of hyperbolic 

tangent functions in the form 

0

K
k

v k

k

i a 
=

=   , (35) 

0

L
l

i l

l

i b 
=

=  , (36) 

0

M
m

v m

m

s c 
=

=  , (37) 

0

N
n

i n

n

s d 
=

=  , (38) 

0

P
p

v p

p

g e 
=

=  , (39)  

0

Q
q

i q

q

g f 
=

=  , (40) 

where , , , ,k l m n pa b c d e  and qf  are constants, and 

( ) ( )tanh  =  satisfies the Riccati equation  

( )21 .   = −   

Equating the highest orders of    in (17), we are led to 

2    K K P L P+ = + = + ,           (41) 

which gives   ,    2K L P= = . Equating the highest orders 

of in (18) leads to 

2    L K Q L Q+ = + = + ,           (42) 

which gives   ,    2K L Q= = . Equating the highest orders 

of    in (19) gives 

2    M K P L P+ = + = +  ,           (43) 

which gives   M K= . Equating the highest orders of    in 

(20) yields 

  2        ,N L Q K Q+ = + = +          (44) 

which gives   N K= . Equating the highest orders of    in 

(21) leads to 
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2P M+ = ,                 (45) 

which yields 4M = . Finally, equating the highest orders of 

   in (22) leads to 

2Q N+ = ,                 (46) 

which yields 4N = . Thus, we have discovered that 

 4, 4, 4, 4, 2K L M N P= = = = =  and 2.Q =     (47)  

Substituting (47) into (35) – (40), we are led to the 

following expressions  
2 3 4

0 1 2 3 4vi a a a a a   = + + + + ,         (48) 

2 3 4
0 1 2 3 4ii b b b b b   = + + + + ,         (49) 

2 3 4
0 1 2 3 4vs c c c c c   = + + + + ,         (50) 

2 3 4
0 1 2 3 4is d d d d d   = + + + + ,        (51) 

2
0 1 2vg e e e = + + ,              (52)  

2
0 1 2ig f f f = + + .              (53) 

Substituting ( ) ( )tanh  =  and the Riccati equation in 

equations (11) – (16), with the aid of (48) – (53), and 

equating the coefficients of terms of equal powers of   on 

both sides of each of the equations, we are led to the 

following system of algebraic equations that relate the 

coefficients in the series (48) – (53) together. Upon further 

manipulations, we are able to express all of the coefficients 

in terms of 3a , 3b  and 4 ,b  as follows: 

2 2
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4
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( 1)
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+
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where 
1 ,v vd r = +  

2 1v

v





= − , 3 i id r = + , 

4 1i

i





= − , 

with 0e  and 0f  arbitrary, under the condition 
i v

i i v v

 

   
= . 

 Thus, with the help of these equations, once we fix the 

values of 0 2 4, ,b b b , the values of the remaining coefficients 

are automatically set. Then, the coefficient values obtained 

in this manner can be substituted into the expressions for the 

state variables , , , , ,v i v i vi i s s g  and ig  in (48) – (53), the 

plots of which provide us with the view of the wave fronts 

of infected and susceptible populations traveling  through 

space and time.  

B. Traveling Waves 

In Fig. 2 and Fig. 3, we show the plots of the state 

variables modeled by equations (11) – (16) derived in terms 

of the traveling wave coordinate x ct = − .  

For each state variable, if we would like to see the 

distribution of infected individuals along different spatial 

locations at a certain point in time, we fix t at a constant 

value and vary x. For example, the graph of (48) obtained 

from plotting Iv against x describes a single wave front along 

which curve t is fixed. By plotting a series of wave fronts for 

different values of t, we obtain the picture of waves of 

infection front traveling with time, as t increases. 

In Fig. 2, the plots of Iv, and Ii, are shown in 2a) and 2b), 

respectively, while in Fig. 3, plots of Sv and Si are shown in 

Fig. 3a) and 3b), respectively, with t ranging from 0 (blue) 

to 80 (green), in steps of 20 units of time. For each fixed t, a 

front is obtained, which then travels from right to left as t 

increases from 0 to 80.  

Fig. 4. shows 3-dimensional pictures of the state variables 

plotted against both temporal dimension t and spatial 

dimension x. With a 3-dimensional view, it can be clearly 

observed how the levels would rise or fall as we move along 

the direction in which both time and distance are changing 

simultaneously. 
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2a)    

 
           2b) 

Fig. 2 Traveling wave fronts for a) 
vI  and b) 

iI , plotted against spatial 

distance x for time increasing from 0 to 80, in steps of 20 units of time. 

 
           3a)  

    
3b) 

Fig. 3 Traveling wave fronts for a) 
vS  and b) 

iS , plotted against spatial 

distance x for time increasing from 0 to 80, in steps of 20 units of time. 

 
4a) 

 
4b) 

 
4c) 

 
4d) 

 

Fig. 4 Three dimensional plots of the analytic solution of the model 

equations (11) – (16), showing  a) vI , b) iI , c) vS , and d) iS , against 

time t and distance x, using the same parametric values as in Fig. 2 and 3. 
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In Fig. 2 – 4, 0.04,v =  0.02,i =  0.025
i

 = , 

0.05v = , 0.5v = , 0.1i = , 0.8v = , 0.2
i

 = , 

0.15 = , 0.04,ic = −  0.0175rv = , 0.0005dv = , 

0.9999ir = , and 0.0004id = .  

The infection dynamics modeled by (1) – (6) using the 

above parametric values, evident in the graphs shown in Fig. 

2 – 4, will be analyzed and interpreted in the next section. 

V. EVALUATION AND DISCUSSION 

A. Clinical Interpretation 

Note that we have used the value of 0.04,v =  which is  

bigger than 0.02,i =  and 0.025
i

 =  which is smaller than 

0.05v = , so that the individuals that have been infected 

previously exhibit better immunity to reinfection in that it 

declines more slowly with time and they are infected at the 

smaller specific rate of infection. The values of 
i  and 

v  

are set lower than those of 
i  and 

v , respectively, since 

those individuals who are infectious should keep themselves 

relatively isolated and reduce their movement and the 

chance to contact and infect others, while those who have 

been vaccinated might feel they could be going about their 

business more freely than those who have not been infected 

previously. Those who have been infected before are 

expected to exhibit faster recovery from re-infection than 

those who have been vaccinated but not having been 

infected previously. Thus, 0.0175rv =  is much smaller than 

0.9999ir =  in the scenario shown in Fig. 2 – 4. On the other 

hand, the re-infected individuals should have a much lower 

morbidity than those who have not been infected before, and 

thus 0.0004id =  is smaller than 0.0005dv =  in this 

scenario. 

In such a scenario the analytical solution seen in Fig. 2. – 

3. is expected to reflect the infection progression that takes 

into account the clinical observation that persons who have 

been infected with SARS-CoV-2 acquire infection-induced 

immunity which results in reduction in severe symptoms 

leading to higher recovery rate and less morbidity than those 

not having been previously infected although vaccinated.   

Closer inspection of the wave fronts in Fig. 2 and Fig. 3 

allows us to make some interesting observations. Upon 

comparing the graphs of 
vI  and 

iI  in Fig. 2,  we see that, 

near to the center of infection (x small), the number of 

infected cases 
vI , derived from those vaccinated without 

prior infection, drops at first. This is perhaps due to the fact 

that, at this point in time, the number of susceptible 

vaccinated individuals 
vS  is small so that the number of this 

population getting infected is smaller than the number of 

those who have recovered. As time passes, however, the 

density of the susceptible vaccinated population 
vS  

increases, as seen in Fig. 3a), so that they give rise to more 

infections and 
vI  eventually increases to a high level as a 

result.  

On the other hand, the level of infection of individuals 
iI , 

who have been previously infected, increases monotonically 

as time progresses, since 
iS starts off high in this scenario, 

there being many who have been infected previously. 

Eventually, both 
vI  and 

iI  tend asymptotically to more or 

less that same level. 

Upon comparing the graphs of 
vS  and 

iS  in Fig. 3, we 

observe that, 
vS  starts off small since not many people have 

been vaccinated, but 
v  is high and this mobility causes the 

initial increase in 
vS . However, due to weaker and waning 

immunity, its level eventually decreases to close to zero. On 

the other hand 
iS  decreases monotonically but at a slower 

rate than 
vS  because it takes more time to reach zero than 

vS . In this particular scenario, therefore, it appears that pre-

infection provides better protection against new infection 

than vaccination-induced immunity.  

Following the above inspection of the derived analytical 

solutions, we are assured that our model can reflect 

relatively well the realistic progression of SARS-CoV-2 we 

might wish to use the model to simulate. Experimenting 

with different parametric values would be able to elucidate 

other scenarios of interest, which can shed more lights onto 

the progression dynamics of this disease. 

B. Predictive Power 

To further illustrate the predictive power of our model when 

a key parameter takes up different values to reflect various 

scenarios we might encounter in the future, we first 

investigate the effect that different values of v  may have 

on the maximum value attained by the density of susceptible 

vaccinated population vS , and the effect on the minimum 

value reached by the density of infected population vI , 

derived from those who have been vaccinated.  

In Fig 5, the highest level Max vS  to which vS  rises as 

time progresses is plotted against the value of v  used in the 

simulation. We observe that vS  increases to a higher level, 

the higher v  gets. We recall that a higher value of v  

indicates that immunity provided by pre-vaccination wears 

off faster, and hence, there are more vaccinated people 

susceptible to the infection in comparison to the case when 

v  is low. This highest value of the density vS , Max vS , is 

seen here to increase to approximately 39.15 10−  as v  

ranges from 0.05 to 0.07. 

 
Fig. 5 The plot of Max vS , the highest level reached by the density of 

population of individuals susceptible to infection, derived from those 

having been vaccinated but not previously infected, against v . 
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In Fig. 6, we see that we can expect the lowest level 

Min vI  to which the density of infected vaccinated 

population, vI , drops, to also increase with larger v , 

because the immunity provided by vaccination drops faster 

with bigger v , at least up to a certain value of v . After 

such a point, the increase in the susceptible population 

recovered from infection means less people in the vS  pool 

to be infected. This could give rise to less infection cases 

arising from individuals who have not been infected earlier, 

and hence the observed drop in Min vI . 

 
Fig. 6 The plot of Min vI , the lowest level reached by the density of 

population of individuals infected by the virus, derived from those having 

been vaccinated but not previously infected, against v , ranging from 0.05 

to 0.07. 

 

Next, we evaluate the model’s performance through 

varying i , which is the parameter that reflects how fast the 

immunity effect, provided by prior infection, wears off. Fig. 

7 shows the plot, against i , of the difference iI , in iI , 

(0,80) (0,0)i i iI I I − . 

Thus, iI  tells us how much iI  drops from its value at the 

time 0t =  to its value at the time 80t = , at the point 0x =  

is space. We observe that as i  increases, iI  decreases 

monotonically, which is as we expect, since the higher i  

gets, the immunity wears off faster, and hence the density of 

infected population iI  drops more slowly. Over the same 

period of 80 units in time, the drop iI  in iI  is smaller for 

larger i . 

 
Fig. 7 The plot of iI , the drop, at 0x = over the period of 80 units in 

time, in the density of population of individuals infected by the virus, 

derived from those having been infected earlier, against i , ranging from 

0.015 to 0.025. 

 In Fig. 8, the difference iS  in iS , the density of 

previously infected susceptible population, is plotted against 

i , ranging from 0.015 to 0.025, where 

(0,0) (0,80)i i iS S S − . 

If 0iS  , it tells us that after 80 units in time have passed, 

(0,0) (0,80)i iS S , and hence the density becomes smaller 

at t = 80 than at the start t = 0. 

 Now, this difference iS  is seen to be still positive but 

decrease as i  increases in Fig. 8, which means the level 

(0,80)iS , after 80 units in time, is still smaller than the 

beginning level (0,0)iS  but the gap between these levels 

becomes smaller due to the fact that the immunity provided 

by prior infection wears off faster with larger i , resulting 

in more people becoming susceptible to infection at this 

position in space. Thus, our model appears to behave as it 

should. 

 
Fig. 8 The plot of iS , the difference, at 0x =  over the period of 80 units 

in time, in the density of population of susceptible individuals, earlier 

infected by the virus, against i , ranging from 0.015 to 0.025. 

 

We can experiment, in a similar manner, with several 

other key parameters in our model to discover such 

complicated dynamics which the model is able to capture. 

Such complexity appears to be inherent in our model which 

renders it a useful and valuable tool able to provide much 

needed information to the decision makers in a timely 

fashion concerning the progression of the pandemic in the 

absence of vaccination or when a great deal of the 

population has already been infected.  

 

VI. CONCLUSION 

There is no dispute that COVID-19 pandemic has turned 

out to be an unprecedented global health crisis, growing in 

its economic, social and health impact. According to [19], 

mathematical models have played a crucial role in the 

COVID-19 crisis. Public policy decision makers have been 

relying on discoveries arising from mathematical modeling 

to inform public policies. Conclusions reached by the 

utilization of models have been instrumental in many of the 

social distancing measures that were adopted to various 

degrees by nations globally. 

Epidemiology models of COVID-19 have seen 

widespread use in the efforts of decision makers to respond 

to a wide range of policy problems. As explained in [19], 

generally the type and form of models chosen in 

epidemiology depends on what phase the society is, in the 
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epidemic. Early on before it became a full-blown epidemic, 

models have been used for planning appropriate responses 

in the event of the pandemic. Decision makers would be 

interested to know where and how the pandemic started, 

what is the risk of its spread in the region, as well as basic 

understanding of the virus and its biomedical characteristics. 

As the pandemic grabbed hold, epidemiologists began to 

discover various strategic options of intervention and 

control. Moreover, greater scrutiny was paid to the forecast 

of the epidemic incidence rate, hospitalization rate and 

mortality rate, which are important information for efficient 

allocation of medical resources and service Once the 

pandemic begins to abate, modelers now turn their attentions 

to developing models related to recovery and long term 

impacts of the instituted policies during the pandemic, such 

as comparative benefits or limitations related to vaccination 

policy, long term comorbidity symptoms, economic 

downfall and so on. 

However, forecasting has been leaning heavily on the 

utilization of data driven methods. Short term forecasts have 

been generally reasonable, as Adiga et al. claimed in their 

review [19] of some of the consequential mathematical 

models in usage to support the continued planning and 

response endeavor. Although there is still intense interest in 

the pandemic, and a lot of data has recently become 

available for modelers to use in validating some of their 

models further, it remains very difficult to obtain real-time 

data on behavioral adaptation and compliance so that this is 

still one of the principle modeling challenges faced by 

modelers of the pandemic [19].  

Yet, dynamic modeling, such as that described here, is 

valuable in the forecasting effort since the models can be 

used to answer, in a qualitative manner, the “what if” 

questions, that is, to investigate scenarios that do not 

currently occur or exist.  

Ongoing and future investigation involves further varying 

of the parametric values in our model to fit with 

observations reported in literature concerning the dissimilar 

responses and immunity to coronavirus, and modification of 

the model to incorporate other influential factors, which will 

provide new and insightful information that should be 

valuable for many concerned parties, whether it was the 

policy makers or frontline responders in the field.  

With rapidly evolving pandemic and unprecedented need 

for fast response reactions, modelers face challenges related 

to availability of data. Despite these challenges, however, 

we are certain that mathematical models can provide much 

needed information to the decision makers in a timely 

fashion concerning the progression of the pandemic as well 

as long term symptoms experienced by recovered patients, 

in order to make informed decisions on the design of public 

health measures and investigate various what-if scenarios. 

ACKNOWLEDGMENT 

The authors would like to thank Professor Andrea de 

Gaetano of the BioMathematics Lab, CNR IASI, Rome, 

Italy, and Dr. Permyos Ruengsakulrach, MD, of the 

Bangkok Heart Hospital, Thailand, for their valuable advice 

and insightful suggestions.  

REFERENCES 

[1]  S. Nurmaini, A. E. Tondas, R. U. Partan, M. N. Rachmatullah, A. 

Darmawahyuni, F. Firdaus, B Tutuko, R. Hidayat, A. I. Sapitri, 
“Automated detection of COVID-19 infected lesion on computed 

tomography images using faster-RCNNs,” Engineering Letters, vol. 
28, no. 4, pp. 1295-1301, 2020. 

[2] M. Lamlili E.N., M. Derouich, A. Boutayeb, “A SIAR model of 

COVID-19 with control,” Engineering Letters, vol. 30, no. 1, pp. 98-
107, 2022.  

[3] C. Zhang, “Supporting decision-making for COVID-19 outbreaks 

with the modified SEIR model,” IAENG International Journal of 
Computer Science, vol. 48, no. 1, pp. 86-95, 2021. 

[4] N. Yudistira, “COVID-19 growth prediction using multivariate long 

short term memory,” IAENG International Journal of Computer 
Science, vol. 47, no. 4, pp. 829-837, 2020. 

[5] F. Yanuar, M. O. Shobri, R F. Mabrur, I.H. Putri, A. Zetra, 

“Classification of death risk for COVID-19 patients using Bayesian 
Logistic Regression and Naive Bayes Classifier,” IAENG 

International Journal of Computer Science, vol. 50, no. 3, pp. 915-

920, 2023. 
[6] A. A. Syed, F.L. Gaol, W. Suparta, E.  Abdurachman, A. Trisetyarso, 

T. Matsuo, “Prediction of the impact of COVID-19 vaccine on public 

health using Twitter,” IAENG International Journal of Computer 
Science, vol. 49, no. 1, pp. 19-29, 2022. 

[7] H. Chemaitelly, H. H. Ayoub, S. AlMukdad, P. Coyle, P. Tang, and 

H. M. Yassine, “Protection from previous natural infection compared 

with mRNA vaccination against SARS-CoV-2 infection and severe 

COVID-19 in Qatar: a retrospective cohort study,” The Lancet 

Microbe, vol. 3, no. 12, pp. 944-995, 2022. 
[8]  N. Kojima, N. K. Shrestha, and A. Klausner, “A systematic review of 

the protective effect of prior SARS-CoV-2 infection on repeat 
infection,” Eval Health Prof., vol. 44, no. 4, pp. 327-332, 2021. 

[9]  S. Pilz, V. Theiler-Schwetz, C. Trummer, R. Krause, and J.P.A. 

Ioannidis, “SARS-CoV-2 reinfections: overview of efficacy and 
duration of natural and hybrid immunity,” Environ Res., vol. 209, pp. 

1-10, 2022.   

[10]  L. J. Abu-Raddad, H. Chemaitelly, and R. Bertollini, “Severity of 
SARS-CoV-2 reinfections as compared with primary infections,” N. 

Engl. J. Med., vol. 385, pp. 2487-2489, 2021. 

[11]  K. A. Holder, D. P. Ings, D. O. A. Harnum, R. S. Russell, and M. D. 
Grant, “Moderate to severe SARS-CoV-2 infection primes vaccine-

induced immunity more effectively than asymptomatic or mild 

infection,” npj Vaccines, vol. 7, no. 1, pp. 1-13, 2022. 
[12]  N. Pooley, S. S. A. Karim, B. Combadiere, E. E. Ooi, R. C. Harris, C. 

E. G. Seblain, M. Kisomi, and N. Shaikh, “Durability of vaccine-

induced and natural immunity against COVID-19: a narrative 
review,” Infect. Dis. Ther., vol. 12, no. 2, pp. 367-387, 2023.  

[13]  C. Hernandez-Suarez, and E. Murillo-Zamora, “Waning immunity to 

SARS-CoV-2 following vaccination or infection”, Front. Med., vol. 
9, 2022. 

[14]  H. Sun, editor, Advanced Production Decline Analysis and 

Application, Science Direct, 2015. Available: 
https://doi.org/10.1016/C2014-0-01693-0. 

[15] J. Suksamran, Y. Lenbury, P. Satiracoo, and C. Rattanakul, “A model 

for Porcine Reproductive and Respiratory Syndrome with time-
dependent infection rate: traveling wave solution,” Advances in 

Difference Equations, vol. 2017, no. 215, pp. 1-11, 2017. 

[16]  N. Taghizadeh, and M. Mirzazadeh, “The modified extended tanh 
method with the Riccati equation for solving nonlinear partial 

differential equations,” Math. Æterna, vol. 2, no. 2, pp. 145-153, 

2012. 
[17]  M. A. Abdou, “The extended tanh method and its applications for 

solving nonlinear nonlinear physical models,” Appl. Math. Comput. 

vol. 190, no. 1, pp. 988-996, 2007. 
[18]  H. A. Zedan, “New approach for tanh and extended-tanh methods 

with applications on Hirota-Satsuma equations,” Comput. Appl. 

Math., vol. 28, no. 1, pp. 1-14, 2009. 
[19]  A. Adiga, D. Dubhashi, B. Lewis, M. Marathe, S. 

Venkatramanan, and A. Vullikanti, “Mathematical models for COVID-

19 pandemic: a comparative analysis,” J. Indian Inst. Sci., vol. 100, no. 
4, pp. 793-807, 2020. 

 

 

 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 2, February 2024, Pages 223-231

 
______________________________________________________________________________________ 

https://www.sciencedirect.com/author/57196714212/mohamed-aly-abdou
https://pubmed.ncbi.nlm.nih.gov/?term=Adiga%20A%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Dubhashi%20D%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Lewis%20B%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Marathe%20M%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Venkatramanan%20S%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Venkatramanan%20S%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Vullikanti%20A%5BAuthor%5D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596173/



