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An Approximation Method of Nonlinear Mapping
for a Modified General Equilibrium and System of
Variational Inequality Problems

Pimpawee Khumsup and Atid Kangtunyakarn

Abstract—In this article, we present a new iteration for ap-
proximating the solutions to generalized equilibrium problems,
fixed point problems of x-strictly pseudononspreading mapping,
and modifications of the system of variational inequality. The
variational inequality problem and the general split feasibility
problem were then solved using our primary theorem. Addition-
ally, we provide a numerical example to support our primary
theorem.

Index Terms—fixed points, variational inequalites, equi-
librium problems, x-strictly pseudononspreading mapping,
inverse-strongly monotone.

I. INTRODUCTION

ET K be a nonempty closed convex subset of H and

let H be a real Hilbert space for the purposes of this

article. Assume O : K — H. Making a point j € K to the
extent that

(0j,h—j) >0 (1)

for all h € K referred to be the variational inequality
problem (VIP).

The set of solutions to (1) is indicated by VI(K, O). With
numerous applications in business, economics, and the pure
and applied sciences, VIP has evolved as a captivating and
intriguing subfield of mathematics and engineering [1].

In 2008, Ceng et al. [2] modified VIP to another way for
finding (I*,e*) € K x K such that

(MDye* +1* —e*,1—1*) > 0,Ve € K, o
MoDyl* +e* —1*,1—e*) > 0,V € K,

which is called a system of variational inequalities problem
(SVIP) where Dy, D, : K — H are mappings and parame-
ters A1, Ao > 0. In the case of \; = Ay, D1 = Dy, [* = e*,
SVIP is reduced to VIP.

After that, Kangtunyakarn [3] modified (2) for finding
(I*,e*) € K x K such that

(1" = (I =MD" + (L= b)e*), 1 =17 20, 4
(€ = (I = AeDg)er,l—e*) 20, )

for all [ € K which is called a modification of SVIP
(MSVIP), for every A;,Ay > 0 and b € [0,1]. If b = 0,
(3) reduces to (2). He presented the following relationship
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between the fixed point of the mapping U and solutions of
3):

Lemma 1.1: Let D1,Ds : K — H be mappings. For
every A1, A2 > 0 and b € [0, 1], the statements that follow
are interchangeable:

1) (t*,2z*) € K x K is a solution of problem (3),
2) t* is a fixed point of the mapping U : K — K, i.e.,
t* € F(U), defined by

U(t) = Pi(I — Ay Dy) (bt + (1 — b) P (I — Ay Dy)t),

where z* = PK(I — )\2D2>t*

Moreover, he proved the following strong convergence the-
orem for VIP and the fixed point problem for v-strictly
pseudononspreading mapping, which modified the Halpern
iterative method [4] generated by (4).

Theorem 1.2: For every r = 1,2,3,....,N let B, : K —
H be §,-ism mappings and let J : K — K be v-strictly
pseudononspreading mapping for some v € [0,1). Let
G, : K — K be defined by G, = Pg(I — tB,)zx for
every x € K and ¢ € (0,20,) for every r = 1,2,3,..., N,
and let §; = (9},95,94) € I x I x1I,l =1,2,3,....N,
where I = [0,1],9} + 95 + 95 = 1,9} € (0,1) for all
Il =1,2,3,...N — 1,98 € (0,1],9%,9% € (0,1] for all
l =1,2,3,..,N. Let M : K — K be the M-mappings
generated by G1, Ga, ..., Gy and 41, dg, ..., dy. Assume that
F = FJ)n N, VI(K,B,) # ¢. For every n € N,
r=1,2,3,..,N, let 71,y € K and {z,} be a sequence
generated by

where {¥,},{¢n}, {&nt, {0} C (0,1) such that 9, + (, +
& =1,¢, € [0,p] € (0,1),{0n} C (0,1 —v) and suppose
the following conditions hold:

(i) limp—e ¥y =0and > 7 (3, = oo,

(i) Yo,—1 0n < 00,
(iii) fozl |Ont1 — 0n| < 00, 2?21 |&n+1 — &nl| < 00,

220:1 U1 — ﬁnl < OO?ZZC:1 |Gyt — <n| < 0.

Then {x,,} converges strongly to zo = Pry.

In 2012, Kangtunyakarn [5] modified (1). He introduced
the combination of VIP (CVIP) by letting P,B : K — H
such that

{(r—m,(bP+ (1 —0b)B)m) >0 5)

for all m,r € K and b € (0,1). The set of CVIP is denoted
by VI(K,bP + (1 —b)B). Moreover, if P = B, then CVIP
can be reduced to VIP.
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Let L : K x K — R be a bifunction. The equilibrium
problem for L is to determine its equilibrium points and
denote

EP(L)={x e K:L(r,m)>0,Ym € K} (6)

as the set of all solutions to the equilibrium problem.
From (1) and (6), we have the following generalized
equilibrium problem, i.e., find g € K such that

for all m € K. The set of such ¢ € K is denoted
by EP(L,0). When O = 0, EP(L,O) is represented by
EP(L). In the case of L =0, EP(L,O) is also denoted by
VI(K,O).

Blum and Oettli [6] introduced equilibrium problems in
1994. Solving EP(L) is a reduction of several optimization
and economics problems (see [6]). The iterative approach for
identifying a common element between the set of solutions to
the equilibrium problems and the set of solutions to the fixed
point problem has garnered attention from several writers
recently [7].

In 2008, Takahashi and Takahashi [8] introduced a general
iterative method for finding a common element between
EP(L,0) and F(J). They defined {y,} in the following
way:

h,y1 € K, arbitrarily;

L(tn,m) + (Oyn, m — t,) + pin(m —tn,tn —Yn) >0,

Yn+1 = Mn¥n + (1 — nn)J(bnh +(1— bn)tn)a ®
for all m € K and n € N with O being an v-ism mapping
of K into H with positive real number v and {b,} €
0,1, {nm.} < [0,1],{pn} C [0,2¢], and proved strong
convergence of the scheme (8) to t € F(J) N EP(L,0),
where t = Pp(j)npph in H, given suitable constraints on
{bn}, {nn}, {pn}, and bifunction L.

The following theorem was shown by Inchan [9] by
modification of the viscosity approximation method:

Theorem 1.3: Let K £ K C K, and let J : K — H be
a v-strictly pseudo-contractive mapping with a fixed point
for some 0 < v < 1. Let V be a strongly positive bounded
linear operator on K with coefficient p and f : K — K be
a contraction with the contractive constant (0 < ¥ < 1) such
that 0 <7 < g. Let {o,} be the sequence generated by

On+1 = ﬁnnf(on) +§n0n + ((1 _gn)I_ﬁnV>PKSOn7 (9)
where 01 € K and S : K — H is a mapping defined by
So=vo+(1—-v)Jo (10)

If the control sequence {¥,}, {s,} C (0,1) satisfying

(1) lim, o ¥, =0 and lim,, .o 5, = 0,

(i) D2,y Un = 00,

(iii) 220:1 [Un41 — Ul < o0, fo;l [Snt+1 — Sn| < o0.
Then {o,} converges strongly to a fixed point ! of J, which
solves the following solution of VIP;

(V=nf)l,l—0) <0
for all o € F(J).

Furthermore, from (5) and (7), we introduce a problem
relative to CVIP and equilibrium problems, i.e., find m € K
such that

L(m,g) + ((0A+ (1 —0)B)m,g—m) >0 (11)

for all g € K and o € (0,1). The set of all solutions to such
problems is denoted by EP(L, (oA + (1 — 0)B)).
Remember that a mapping O : K — K is deemed
nonexpansive if ||Om — Os|| < |jm — s]| for all m,s € K.
The nonspreading mapping in H was presented by
Kohsaka and Takahashi [10] in 2008. It is defined as follows:

2||0Om — Os||? < ||Om — s|*> + ||m — Os]|?

for all m,s € K.

In 2011, Osilike and Isiogugu [12] introduced, using ter-
minology from Browder and Petryshyn [11], that a mapping
O : K — K is a v-strictly pseudononspreading mapping if
there exists v € [0,1) such that

|Om = Os|? < [[m = s||* + v||(I = O)m — (I — O)s|*
+2(m —Jm,s — Js)

for all m,s € K. It is evident that each nonspreading
mapping is v-strictly pseudononspreading.

A point h € C' is called a fixed point of J if Jh = h. The
set of fixed points of J is denoted by

F(J)={heK:Jh=h}

A mapping R : K — H is called 7-inverse strongly
monotone (ism), if there exists a positive real number 7 such
that

(m — s, Rm — Rs) > 7||Rm — Rs||?

for all m,s € K.

Inspired and motivated by Theorem 1.2, (11) and the simi-
lar trend of research , we prove a strong convergence theorem
for the MSVIP, generalized equilibrium problems and fixed
point problems of x-strictly pseudononspreading mapping.
In addition, we applied our main result to solving the VIP
and the general split feasibility problem. In conclusion, we
present a numerical example to validate our primary finding.

II. PRELIMINARIES

Let Px be the metric projection of H onto K i.e., for
m € H, Pxm satisfies the property

- P = mi -3
lm — Prem|| = min m — s
The following characterizes the projection Pxm.

Lemma 2.1 ([13]): Given m € H and s € K. Then
Pxm = s if and only if there holds the inequality

(m—s,s—r)y>0

for all r € K.
Lemma 2.2 ([13]): Let M be a mapping of K into H.
Let y € K. Then for v > 0,

y=Px (I -vM)yeyeVI(K,M),

where Py is the metric projection of H onto K.
Lemma 2.3 ([14]): Let {r,} be a sequence of nonnegative
real number satisfying

Tn+1 S (1 - gn)rn + M, Vn Z Oa
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where {&,} is a sequence in (0,1) and {7, } is a sequence
such that

1) Z:,ozl gn = 00,

2) limsup, o = < 0or 3577 [na] < oo.
Then lim,, ,o, r, = 0.

Lemma 2.4 ([14]): Let {r,} be a sequence of nonnegative
real number satisfying

Tnt1 < (1 - gn)sn + &, V1 2> 0,

where {£,}, {n.} satisfy the conditions

1) {fn} - [07 1]v ZZO:I 5" = O0;

2) lim SUPp 500 Tin S 0 or 2;1.0:1 |§n77n| < 00.
Then lim,,_yoo 7, = 0.

Lemma 2.5 ([15]): Let W be a uniformly convex Banach
space, K be a nonempty closed convex subset of W and
D : K — K be a nonexpansive mapping. Then, I — D is
demiclosed at zero.

For solving the equilibrium problem for a bifunction L :
K x K — R, let us assume that L satisfies the following
conditions:

(G1) L(m,m) =0, Vm € K;

(G2) L is monotone, i.e. L(m,s)+L(s,m) <0,Vm,s € K;

(G3) Vm,s,h € K, limy_g+ L(th + (1 — t)m,s) <
L(m, s);

(G4) Ym € K, s+~ L(m,s) is convex and lower semicon-
tinuous.

Lemma 2.6 ([6]): Let L be a bifunction of K x K into
R satistying (G1) - (G4). Let Il > 0 and m € H. Then, there
exists s € K such that

1
L(s,d)+7<o—s,s—m> >0,

for all m € K.

Lemma 2.7 ([7]): Assume that L : K x K — R satisfies
(G1) - (G4). For [ > 0 and m € H, define a mapping 7T; :
H — K as follows:

1
Ti(m) = {sEK:L(s,o)—Fl(o—s,s—m} ZO,VOEK}

for all m € H. Then, the following hold:
1) T; is single-valued;
2) 1T; is firmly nonexpansive i.e.,

ITi(m) = Ti(o)|* < (Ti(m) — Ti(0),m — o)

for all m,o0 € H,

3) F(T)) = EP(L):

4) EP(L) is closed and convex.

Lemma 2.8 ([16]): Let M : K — K be a v-strictly
pseudononspreading mapping with F(M) # ¢. Then
FM)=VIK,(I—-M)).

Remark 2.9: From Lemmas 2.2 and 2.8, we have
F(M)=F(Px(I—v({I—M))) for all v > 0.

III. MAIN RESULT

In this section, we prove strong convergence theorem for
approximating the solution of the modification of system
variational inequality, generalized equilibrium problems, and
fixed point problems of «-strictly pseudononspreading map-
ping by modifying Halpern iterative method.

Theorem 3.1: Let K be a closed convex subset of Hilbert
space H and let F': K x K — R be a function satisfying
(G1) - (G4), let A, B, A", B" : K — H be & j,a",3"-
ism, correspondingly. Define G : K — K by Gg = Px (I —
& A (wg+(1—w)Pr(I—&3B")g) forall g € K with & €
(0,2¢) and & € (0,28"). Let J : K — K be k-strictly
pseudononspreading mapping with F = F(J) N F(G) N
EP(F,bA+ (1 —b)B) # ¢ for all w € (0,1). Let {g,}
and {h,} be the sequences generated by g;,h € K and

F(hn,d) + <(wﬁ+(1—w)§) gn,d—hn>
In+1 = Mmh + CGGgn
+ VP (I =&, (I —J))hn,¥n €N,
where {1}, {Ca}s {7} C[0,1],&, € (0,1 —K), 7+ Co +
Yo =1,¥n € N and {p,} C [0,27],7 = min{a, 8} satisfy;

)) Zzozl Np = 00, limy, o0 nn =0, 220:1 En < 00;
(i) 0<o0<(<p<l, 0<q< p,<m< 2y

(iV) 2211 |77n+1 - nnl < 0, Z:O:1 ‘Cn+1 - Cn| < 0.

Then {g,} converges strongly to eg = Prh.

Proof: There are seven steps in our proof: Step 1. We’ll
demonstrate that Y = wA+(1—w)B is y-ism. Let g, d € K,
we have

(Yg—Yd,g—d)

:<(wg+(1—w)§)g— (wﬁ+(1—w)§>d7g—d>
:w<ﬁgff~1d,gfd>+(1fw)<§gf§d,gfd>

> wai | Ag — Ad|| + (1~ w) BBy — Ba

> <ngg_gdH2+<1 —w) Hég—EdH2>

> (Ag — Ad) + (1~ w) (Bg — Ba)||
=7|[Yg-Yd|*. (13)

For each n € N, we obtain I — p,Y as a nonexpansive
mapping by applying the same technique as [5].

Step 2. For every b € (0, 1), we’ll demonstrate that {g,, } is
bounded. Let e € F. Deriving from Lemma 2.7, we possess

hp = Tpn (I - pnY) dn (14)
and

e=T, (I—-p,Y)e (15)

for all n € N. Based on Lemma 2.2 and Lemma 2.8, we
may obtain

e=Pr(I—&(I—J))e (16)
for all n € N. By the nonexpansiveness of (16), we have

[1Pre (I = &n (I = J)) hn — €|
=[Pk (I =& (I = J)) hy — P (I = & (I = J))ell
SN =& (I =) b = (I =& (I = D)) el . (A7)

Volume 54, Issue 2, February 2024, Pages 298-307



TAENG International Journal of Applied Mathematics

Since J is k-strictly pseudononspreading mapping and let
E =1—J, we have

I(I — B)hy — (I — E)el?

(7 — €) = (Ehy, — Ee)|®

= ||hn —e|® = 2(h, — ¢, Ehy,)

+ [ Bha|®

o = €ll* + 5 | ERa %,

| Jhn — Je||? =

IN

it suggests that

(1—k)||Ehy 2 <2(h, —e, Eh,). (18)

From (18), we have

I(I = &uE) hn — (I = &uE) e)?

= ||(hn — €) — & (Eh,, — Ee)|)?

= ”hn - 6H2 - 26, <hn - ethn> "‘5721 ”EhnH2
< b —ell* = & (1 = K) || Ehn ||* + €2 || Eha|1?
= hn —el* = & (1 = K) = &) | B

< |lhn — el (19)
From (17) and (19), we can imply that
[P (I =& (I —J)) hn —ell < ||hyn — el (20)

Since e € F, we have e = G(e) = Px (I — & A”)(be+ (1 —
b)Pr (I —&B")e). Put M, = bgy,+(1—b) P (I —&2B") gn.
Then, we have G, g, = Px (I — & A”)M,,. From definition
of g,, (20), and nonexpansiveness of GG, we have

[7n (h =€) + G (Ggn — €)
Y0 (Px (I =& (I = J)) hn —e) ||
M | — ell + Cn [|gn — ell +vn [|hn — €|
= Mllh—ell+Gullgn — el
+90 | Tp,. (I = pnY) gn — el
< mllh—ell+Gallgn —ell +mllgn — el
= mllh—el+ 1 —n)lgn — el
< max{|lg1 —ell,[[h—el}.

gnt1—ell =

IN

We can demonstrate by induction that both {g,} and {h,}
have bounded.

Step 3. We’ll demonstrate that lim,  ||gnt+1 — gnll =
0. Putting l,, = g, — PnY¢n , wWe obtain h,, = T}, (gn —
PnY gn) = Tp, L,,. From definition of h,, , we obtain

1
F (hp,d)+ —{(d—hp,hy,—1,) >0, Vd € K
Dn

ey

and

F (hpy1,d) + (d = hpt1hny1 —lpy1) >0, Vd € K.
(22)
Instead of d by h,41 and h,, in (21) and (22), correspond-

ingly, we have

Pn41

1
F(hru hn-i—l) + ;(hn-l-l - hna hn - ln> Z 0 (23)

n

and

F(hﬂ-O-la hn) +

<hn - hn+1a hn+1 - ln+1> Z 0 (24)
Pn+1

Adding (23) and (24) and using (G2) , we obtain

0

1

S - <hn+1 - hnu hn - ln>
n
1
+ <hn - hn+17 thrl - ln+1>
pn+l

hp —1
= hn - hnvu
< o Pn >

hpt1 — ln
+ <hn — Bny1, +1+1>
pn+1

hn — ln _ hn+1 — ln+1>
Pn Pn+1 -

<hn+1 - h’ru

It implies that

0

IN

<hn+1 - hn7 hn - Zn - pfn (thrl - ln+l)>
pn+l
<hn+1 - hn7 hn - thrl + thrl - ln

Pn
Pt (hn—i-l - ln+1)>-

From (25), we obtain

2
||hn+1 - hn”
Pn
S <hn+1 - hnu hn+1 - ln - (thrl - ln+1)>
Pn+1
= <hn+1 - hnu hn+1 - ln+1 + ln+1 - ln
Pn
- (hn 1 — ln 1)
Pt + + >
= <hn+1 - hna ln+1 - ln
Pn
+(1 - )Pt = lug1))
n+1
< thJrl - hn” (||ln+1 - ln”
1
+7‘pn+1 _pnl ||hn+1 - ln-‘rl”)'
pn+1
Hence
||hn+1 - hn” < ||ln+1 - ln” (25)
1
+§|Pn+1 = pul hn+1 = lnsa |-
Since I, = g, — PrY gn, We obtain
||ln+1 - ln”
= ||(gn+1 - pn+1an+1) - (gn _pann)H
= H(I _anrlY)gnJrl - (I _anrlY)gn
+(I = put1Y)gn — (I = pnY)gnll (26)
< NI = pat1Y)gnr1 — (I = pri1Y)gnll
+ H(pn - pn+1)an||
< Ngns1 = gnll + [Prsr — 2l Y gnll -
Substitute (26) into (25), we obtain
||hn+1 - hnH
1
< ||ln+1 - lnH + §|pn+1 *pn| ||hn+1 - ln—&-lH
< lgnt1 = gall + [Prt1 — pal Y gl
1
+6|pn+1 = Pulhn+1 = lnsa | (27
<

1
||gn+1 - gn” + |pn+1 - pn|L + glanrl - pnlL
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where L = maxpen {||[Ygnll, [|hn — l.]|}-
From definition of g,, and let £ = [ — J, we obtain

[gn+1— gnll
= |mh +CGgn + Vi Pr(I — £ E)hy — nn1h
—Cn-1Ggn—1 — 'YnflpK(I - fnflE)hnfl H
= ”nnh + CnGn — CGnGgn—1 + (nGgn_1
+ 9P (I = EnE)hn — Y Prc(I — §p—1E)hy—1
P (I = &n—1E)hn—1 — Nn—1h
—Cn-1Ggn—1 — 'YnflpK(I - fnflE)hnfl H
1 = 1l Al + Co |Ggn — Ggn-1|
+1Cn = Ca—1l |G gn-1ll
+ 90 | Prc(I = EnE)hn — P (1 — §n1E)hp—1 ||
v = V-1l [P (I = &n—1E)hp1]|
1 = a1l [Pl + o [[gn — Gn—1l
+¢n = Gt G gn-1 1T+ Yo ([n = B ||
+&n [|Ebn — Ehp_1|| + &0 — &n—t| | Ehn—1]|)
v = V-1 [P (I — &n—1E) hp—1]|
M = =1l 1R[] + Ga lgn — gn—1ll
¢ = a1 1Ggn-1ll + v (lgn — gn-l

1
+|pn—1 _pn‘L + glpn—l _pn|L
+§n ||Ehn - Ehn,1|| + |§n - §n71| ||Ehn71||)
Fvn = -1 (1P (I = &na E)hn o |

1 — Nn—1| Al + (1 = 70) [[gn — gn—1ll
HCn = Gt 1Ggn—1|| + [Pn—1 — Pn|O

1
+6‘pn—1 - pn|O + gn HEhn - Ehn—lH
+|€n - §n—1| ||Ehn—1||
v = V-1l 1P (I = §n1E)hn_1]|
[ = =110 + (L = 1) lgn — gn—1||

1
+|Cn - Cn—1|0 + |pn—1 _pn|0 + 6‘pn—l _pn|0
+§n0 + |§n - £n71|0 + |7n - ’7n71|0 (28)

IN

IA

IN

IN

IN

where
0 = max{||Al,|Gga-r .| Ehn = B,
[Ehp—1ll s | P (I = &n—1E)hp—1]],

From Lemma 2.3, (28), condition (i),(iii), and (iv), we obtain

lim Hgn—i-l - gn” = 0. (29)
n— oo

Step 4. We’ll demonstrate that lim, o ||gn — Ggnll = 0.
Since h,, =T, (g, — pnY gn), We obtain

2

2
”hn - €H = ||T n (I —pny)gn - Tpn (I - pny)eH
(I =pnY)gn — (I —paY)e, by —€)
1
5(”(1 —PnY)gn — (I — pny)€”2

+ 1 = ell* = 1T = puY)gn
~(I = paY)z = hn +el?)

1 2 2
5(”971 - €|| + ||hn - eH

IN

IN

2
- H(gn - hn) _pn(an - Ye)H )
1 2 2
5 Ulgn —ell™ + s — el
~llgn = hall* = P2 (Y g — Ye?
+2py <gn —hn,Yg, — Y6>)

IN

It implies that

2 2 2
[ —ell” < llgn —ell” = llgn — bl
2
_pi ||an - Y€||

Using the same technique as [5] and the nonexpansiveness
of T}, , we obtain

o = ell* < llgn — ell”. G

From definition of g,, (20) and (31), we obtain
| gn+1 —e |

= [ nu(h—e€) + Ca(Ggn —€)
9 (Prc (I = &u(I = J))hy —e) ||

< mnllh—e H2 +Cn || Ggn — € ”2
Y | Pr(I = &(I = J)hn —e ||
By | Pre(I = &u(I = J))hn — Ggn |°

< mllh—e H2 +Cn || Ggn — € ”2 +vn | hn — € ”2
—CnYn | Pr(I = &n(I = J))hy — Gy, ||2

< nllh—el? Gl gn—el* +m [l gn —e |
G || P (I = &n(I = J)) by — Gyn |*

= Mllh—elP+0=n) [ g0 —c|?
—CnYn | Pr(I = &n(I = J))hy — Gy, ||2

< mllh—el + 1l gn—el?

~Cotn | P = &I =)o — G 1%,

which implies that

CoVn | Pe(I = &u(I — J))hn — Ggn ||2

< mllh=el?+1lgn—ell> = gnt1 —cl
< llh—el? (32)
+(lgn—ell + 1l gnt1 =€) gnt1—gn || -
From (29), (32), condition (i) and (ii), we obtain

nlingo | Pc(I = &n(L = J))hn —Ggn || = 0. (33)

Since

| gns1 = Prc(I = &u(I = J))hn ||

= [[m(h = Px(I — &I —J))hy)
+Cn(Ggn — Pr(I = &u(L = J))hn) ||
M |l h = P (I = &(I = J))hy ||

+Cn | Ggn — P (I — &n(L = J))hn ],

IN

(33) and condition (i), we obtain

lim | gny1 — Px(I =& — J))hn || = 0.

n—oo

(34)
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Since

H gn — PK(I - gn(l - J))hn ”

< ” 9n — gni1 H
+ |l gnt1 = P = &I — )b ||,

(29) and (34), we obtain

lim H 9n — PK(I - gn(I - J))hn H = 0. (35)

n—oo
Since
Cn H ng —Jn H

< ” In+1 — Gn H +Mn || h — gn H
+n ” PK(I - 571(] - J))hn —On ||7
(29), (35), condition (i) and (ii), we obtain
n— oo

Step 5. We’ll demonstrate that lim, o || An, — gn ||= 0.
Using the same technique as [5] and the nonexpansiveness
of T}, , we have

I h e |12

I Ty, (I = puY )an — Ty, (I = puY)e |2
I gn —e|I?

(27 = pn) || Ygn = Ye |I* .

From (20) and (37), we have

IN

(37

| gns1 — e

= lnn(h =€) + ¢ (Ggn —€)
A9 (Pr (I = &n(I = J)hy —e) |?

< i llh—el? +6u || Ggn —e|?

9 | Px(I =& (I — J))hn — e H2
< i llh=el? +Cll gn—el? +m || hn —e |I?
< o llh=el? +6ull gn —e|?

+¥n(ll gn —€ ”2 —pn(2y —pn) | Ygn — Ye ||2)
= M llh—el* +(1=n) [ gn —el

~Pa (27 = pa) || Yo — Ye |
< i llh—el? +1lgn—el?

—Pn¥n(2Y —pn) | Ygn — Ye ||*. (38)

It implies that

PaYn(2y —pn) | Yo — Ye |?

< mlh—el?+llgn—el® = gnsr —el?

= || h—el? (39)
(g —ell + 1 gntr =€) [ gns1 = gn Il -
From (29), (39), condition (i) and (ii), we obtain
lim || Yg,—Yel| = 0. (40)
n—oo

From definition of g,, and (30), we obtain

I gnsr —e|?

= [n(h—e) + Cu(Ggn —€)
Y (P — & (I — J))hn — ) ”2

< ||h—€H2+Cn [ ng—€||2
Y | Px(I = &u(I = J))hn — e H2
< llh=el? 46l gn—el? +m |l hn —e |2
< Mullh—e H2 +Cn |l gn —€ ||2 "’%L( | gn —e ||2
1l gn = hn 1> =05 | Ygn — Ye |
+200(gn — Py Ygn —Ye})
< ||h_€H2+Cn [ gn—e||2 +n |l gn_€||2
~Yn || gn = hn ||2
+2p0Yn || gn = T [l Ygn — Ye ||
= M llh—ell® +1=n0) | gn —e|?
—n |l gn — hn ||2
200 | gn = o [l Ygn = Ye ||
< pllh=el® + 1l gn—ell®> =l g0 = hn |

+2DnYn ” gn — hn H” Yg, —Ye ”7

it suggests that

Yo ll gn = hn H2

< mllh—el?+1lgn—ell> =l gnt1—el
2000 | gn = hn ||| Yign — Ye ||

|| h—e|?

(g —ell + [l gnt1 =€ D) | gnt1 = gu |l
+2p0Yn || gn = T [l Ygn — Ye || .

IN

(41)

From (29), (40), (41), condition (i) and (ii), we obtain

lim [ go—ho || = 0. 42)
n— oo

Step 6. We’ll demonstrate that lim sup,,_, . (h — €g, gn —
eo) < 0, where eg = Prh. To show this equality, take a
subsequence {g,, } of {g,} such that

limsup(h — co, o — €0) = lim (h = o, g, — o). (43)

n—oo
Without loss of generality, we may assume that g,, — w
as k — oo where w € K .NFirst, we deinonstrate that w €
EP(F,Y), where Y = wA + (1 —w)B for all w € [0, 1].
From (42), we have h,, — w as k — oo. From (14), we
obtain

1
F(hp,d)+{Y gn,d—hp)+—{(d—hp, hn—gn) > 0, Vd € K.

Pn

From (G2), we have

1
<an;d - hn> + 7<d - hnahn - gn> Z F(d, hn)

Pn
Then
1
Ygn,,d—hp,)+ » (d=hpyyhny — gny,) = F(d, hn,,)
Ny

(44)
for all d € K. Put e; = td + (1 — t)w for all ¢ € (0,1] and
d € K. Then, we have e; € K. So, from (44), we have
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<€t — hnk 5 Y€t>

> (et — hny, Yer) — (e —

hnkaygnk>
hn. — In
(e — by, “IM) 4 F(eq, hy,)
= <€t — hnk,Yet

ngk
+(er — hny, Yhn,

—Yhy,)
- ank)
_<et - hnk7 h

%‘q"q + Fes, by ).

ng

(45)
Since || hn, — Gn,, ||—= 0, we have || Yh,, —Ygn, ||— 0.
Further, from monotonicity of Y, we obtain
(et — hn,, Yer,Yhy, ) > 0.

So, from (G4) we have

(et —w,Yes) > F(er,w)
From (G1),(G4) and (46), we also have

0

as k — oo. (46)

Fl(e, er)
tF(et,d) + (1 —t)F (e, w)

tF (e, d) + (1 —t){e; —w,Yey)
tF(e,d) + (1 —t)t(d —w,Yey)

IN A

hence

0 < F(e,d)+ (1 —t)(d—w,Yey).
Letting ¢ — 0%, we obtain
0< F(w,d)+

(d—w,Yw) Vd € K. 47)

Therefore
we€ EP(FY),

where Y = wA + (1 —

(48)
w)B for all w € [0, 1]. Since

| Prc(I = &I = J))hn — hay ||
< NP =8I = J))hn
(35) and (42), we obtain
nh_}rx;o | Pk (I —&,(I—J))hp—hynl| = 0.

From Remark 2.9, we have F'(J) = F(Pg(I—&,, (I—J))).
Assume that w # Pg(I — &,, (I — J))w. Since h,, — w
as k — oo, Opial’s property, (49) and condition (i), we obtain

—gn | + 1l gn = hn |l

(49)

liminfg oo || An,, — w ||

< hkrgmf [ By — P (I = &y (I — J))w ||

< diminf (| An, = Prc(I = &, (1= J)) o ||
+ || PK(I_ fnk(l - J))hnk
—Pr(I — & (I = D)wl)

< nklgigf( | Py = Pre(I = & (I = )P, ||
+ I hny = w | &, || (= Dby = (I = J)w || )
= liminf || Ap, —w || . (50)
k—o0
This is a contradiction. Then
we F(J). 51
From (36), we obtain
khm H Gg’ﬂk — Gny, H = 0.
— 00

From the nonexpansiveness of G, g,, — w as k — oo and

Lemma 2.5, we obtain

w e F(G). (52)

From (48), (51), and (52), we have w € F. Since g,, — w
as k — oo and w € F, we obtain

limsup(h — eg,gn, —eo) = lim (h — eq, gn, — €0)
n—o0 k—oco

<h — €p, W — 60>
< 0.

(53)

Step 7. Finally, we show that {g, } converges strongly to
eo = Pph. From definition of g,, (20) and let £ =1 — J,
we obtain

| gns1 — €0 |12

= ” nn(h - 60) + Cn(ng - 60)
+9m (P (I = En )y, — eq) ||

< [ Ga(Ggn — €0) + Y (Pr (I — EnE)hn — €o) ”2
+21,(h — €0, gny1 — €0)

< G ” Ggn — € H2 +n H PK(I_an)hn — €0 H2
+20,(h — €0, gn+1 — €o)

< Gollgn—eo l* 4 | hn —eo |I? (54)

+2n,(h — €0, gn+1 — €0)
= Gllgn—eo I? +7n | Ty, (I = puD)gn —eo |I?
+21,(h — €0, gn+1 — €0)
< (I=n) |l gn —eo ||2 +2nn(h —

From (53) and Lemma 2.4, we have {g,,} converges strongly
to eg = Prh. The proof is finished with this. ]

Remark 3.1: From Theorem 3.1, putting F(G) =
VI(K,A) N VI(K,B), we have {g,} converges strongly
to eg = Prh.

€0, In+1 — €0>-

IV. APPLICATIONS

We derive Theorems 4.5 and 4.6 in this section, which
provide solutions to the general split feasibility problem and
the variational inequality problem.

Let H; and H» be real Hilbert spaces and K, M be
nonempty closed convex subsets of H; and Hp, correspond-
ingly. Let A, B : H; — H3 be bounded linear operators with
A*, B* are adjoint of A and B, correspondingly.

Finding a point g € K and Ag € M is the split feasibility
problem (SFP). Censor and Elfving [17] introduced this
problem. A = {g € K : Ag € M} represents the
set of all SFP solutions. The split feasibility problem has
been thoroughly studied as a very potent tool in many
different domains, including resolution enhancement, signal
processing, sensor networks, medical image reconstruction,
and computer tomography (see [18]).

Many authors utilize the lemma proposed by Ceng, Ansari,
and Yao [19] in 2012 to support their findings while solving
SFP (see [20]).

After that Kangtunyakarn [21] modified SFP, he introduce
the general split feasibility problem (GSFP) which is to find
a point g* € K and Ag*, Bg* € M. The set of this solution
is denoted by A = {g € K : Ag, By € M}. In the case of
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A= E, GSFP can be reduced to SFP. In addition, he also
proved the following property of GSFP problem,

Lemma 4.1 ([21]): Let A # ¢. Then the followings are
equivalent.

(i g ed, - _

(i) Px(I — a(A*(I—QPM)A + B*(I—2PM)B))g* = g,

for all a > 0 and Ly, Ly are spectal redius of A*A

and B*B, correspondingly with a € (0,2) and L =
max{Ly, Lz}.

We derive Theorem 4.6 from these findings, and we re-
quire the following Lemma in order to demonstrate Theorem
4.5.

Lemma 4.2: Let K be a nonempty closed convex subset
of H. Let J : K — K be a nonexpansive mapping with
F(J)# ¢. Then F(J) =VI(K,(I —J)).

Theorem 4.3: Let K be a closed convex subset of Hilbert
space H and let F K x K — R be a function
satisfying (G1) - (G4), let A,B,A",B" : K — H be
a, B,a”, B"-ism, correspondingly. Define G : K — K by
Gg = Pic(I — G A")(wg + (1 — w)Px (I — &B")g) for
all ¢ € K with & € (0,2) and & € (0,28”). Let
J : K — K be r-strictly pseudononspreading mapping with
F=FJ)NFG) NVIK,A)NVI(K,B) # ¢ for all
w € (0,1). Let {g,,} and {h,} be the sequences generated
by ¢g1,h € K and

In+1 = nnh + Cnng + 'VnSngnv Yn > 1. (55)

where S, = Px(I—&,(I—J)) P (I—pn(wA+(1—w)B))
and {1, }.{C:}{} € [0,1], &, € (0, 1_,ﬁ)a M+ G+ =
1,¥n € N, {pn} C [0,27],7 = min{a, 8} satisfy;

1) Do =00, limyyeonn =0, D07 &, < 00;
() 0<o0<( <p<1l,0<qg< pp, <m< 2y

(iii) limg, oo |pn+1 - pn' =0;

(iv) Z?:l |77n+1 - 7771| < 0, 27010:1 ‘Cn-&-l - Cn| < o0.
Then {g,} converges strongly to eqg = Prh.

Proof: Using F = 0 from (12) in Theorem 3.1, we

obtain

(hy = (I = pnY)gn,d—hy,) > 0, VdeK,

where Y = wA + (1 —w)B, Yw € [0, 1]. From Lemma 2.1,
we have

hyp = P (I — pnY)gn- (56)

Then, we have (55). Based on Theorem 3.1, we may arrive
to the intended result.
|
Theorem 4.4: Let K be a closed convex subset of
Hilbert space H and let I : K x K — R be a function
satisfying (G1) - (G4), let A,B,A”",B" : K — H be
a,B,a”, B"-ism, correspondingly. Define G : K — K
by Gg = Pic(I — &A")(bg + (1 — b)Px(I — &2B")g)
for all ¢ € K with & € (0,2a”) and & € (0,28”). Let
J : K — K be r-strictly pseudononspreading mapping with
F=FUJ)NF(G)NEP(F,A) # ¢ for all b € (0,1). Let
{gn} and {h,,} be the sequences generated by g1, h € K and

{ F(hnad) + <Avgn7d_hn> + i(d_ hn7hn _gn> Z 07

In+1 = Mh + G Gagn + %zPK(I - gn(I - J))hna 5
(57)

forall d € K and n > 1 with {n, },{¢.}.,{7} € [0,1],&, €
(0,1=K), M +Cu+vn =1,¥n € N and {p,} C [0,27],y =
min{a, B} satisfy;
)] chzl N = 00, limy, o0 7y =0, Zzozl &n < 00;
(i) 0<o<(<p<1l 0<qg< pp<m<2y;
(111) 1iInn—>oo |pn+1 - pn' - 0;
(1V) Z;.Lo:l |77n+1 - 77n| < o0, Zzozl ‘Cn+1 - Cn' < 00.
Then {g,,} converges strongly to eq = Prh.
Proof: By using A = B, we may get the intended result
from Theorem 3.1.
|
Theorem 4.5: Let K be a closed convex subset of Hilbert
space H and let F': K x K — R be a function satisfying
(G1) - (G4), let S, S’ : K — K be nonexpansive mapping
and let A", B"” : K — H be ", "-ism, correspondingly.
Define G : K — K by Gg = Px(I — & A" )(wg + (1 —
w)Pr (I — &B")g) for all g € K with & € (0,2¢”) and
& € (0,28"). Let J : K — K be k-strictly pseudonon-
spreading mapping with F' = F(J)NF(G)NF(S)NF(S") #
¢ for all w € (0,1). Let {g,} and {h,} be the sequences
generated by g1, h € K and

In+1 = b+ GGgn + W Kngn,Vn > 1. (58)

where K,, = P(I — &, (I — T))Pr(I — po(b(I — S) +
(1=5)(I = ")) and {nab{Cu {7} € [0,1],En € (0,1~
K), M+ G+ =1,Yn €N, {p,} C[0,27],0<y <1
satisfy;
() Zzozl Tln = OO, lim,, s o0 Nn =0, Zzozl gn < 003
(i) 0<0<C<p<l, 0<qg< pp<m <2y
(iv) ZZO:1 |77n+1 - 77n| < 0, Ziozl ‘Cn+1 - <n| < 0.
Then {g,} converges strongly to eqg = Prh.
Proof: The result is obtained by using Lemma 4.2 and
Theorem 4.3.
|
Theorem 4.6: Let K,M be a closed convex subset of
Hilbert space H, Hy respectively and let F': K X K — R
be a function satisfying (G1) - (G4) , let A", B” : K — H;
be o', 3"-ism, correspondingly. Let A;, B; : Hy — H be

bounded linear operator with A}, B} are adjoint of A; and

B;, correspondingly and L = maxz{L4,,Lp,} where Ly,
and Lp, are spectal radius of A} A; and B} B; with i = 1, 2.
Define G : K — K by Gg = Px(I — §A")(wg + (1 —
w)Pr (I — &B")g) for all g € K with & € (0,2¢”) and
& € (0,28"). Let J : K — K be k-strictly pseudonon-
spreading mapping. Assume that F = F(J)N F(G) N A; N
Ay # ¢, where A; = {g € K : A;g,B;g € M} for all
i=1,2and w € (0,1). Let {g,} and {h,,} be the sequences
generated by ¢g1,h € K and

In4+1 = nnh + Cnng + ’Yangn,Vn 2 1. (59)

where W,, = Pg (I — &.(I — J)) Pi (I — pp(Wy + Wa)),
Wy = w(l - Pie(l — w(AU=P04 4 B_Puby)))
Wo = (1_w)(I_PK(I_w(Az(I—sz)Az + BQ(I—ZPM)BQ)))
and {7} {Ca A} C10,1],6n € (0,1—K), mn+Cn+vn =
1,Vn € N, {pn} C[0,27],0 < v < 3 satisfy;

(1) Zf;l Np = 00, limy,_ oo 7 =0, 220:1 &n < 005

(i) 0<o0<(<p<l,0<g< pp <m< 2y

(i) limy, o0 [Prg1 — pn| =0;

(@iv) Zzo:1 |77n+1 - nnl < o0, 220:1 ‘Cn+1 - Cn| < Q.
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Then {g,} converges strongly to eq = Prh.
Proof: We obtain the required result by applying
Lemma 4.1 and Theorem 4.5. |

V. EXAMPLE AND NUMERICAL RESULTS

We provide a numerical example in this section to bolster
our primary theorem.

Example 5.1: Let R be the set of real numbers, K =
[-50,50], and H = R. Let F : K x K — R defined

by F(x,y) = —ba® + xy — 4y? for all z,y E K. Let
A,B,A”, B” : K — H defined by Az = x—i— ,Bx =
T — %,A”x = 2ztl By = 3‘7”3 T for all x € K Define

G:K — Kby Gu = Px(I-1A")(32+ 5 Px(I—-2B")x)
for all z € K. Let J : K — K defined by Jx = x for all
2 € K. It is easy to show that A, B, A”, B” are 1-ism, F is
satisfied (G1) - (G4), and J is g—strictly pseudononspreading
It is clear that F'(J)NF(G)NEP(F,wA+(1—w)B) = {0}.
Let {g,} and {h,} be the sequences generated by (12). By
the definition of F' and choose w = % € (0,1), we have

0 < F(hna d) <(wﬁ—|— (1 - w)é)gm d — hy)

= ( 5h2 + hy, d+4d2) + (gn)(d = hy)
(gnd - gnhn)

L(d = hy) (ke — g)
= ( 5h2 + hpd + 4d?) +
+ 5 (h d — gnd — h% + h,gn)
0 S pn(_5h% + hnd + 4d2) + DPn (gnd - gnhn)
+ (hnd — gnd — B2 + hygn)
= - 5pnh121 + pnhnd + 4pnd2 + pngnd
- pngnhn + hnd - gnd - h% + hngn
= 4pnd2 + (pnhn + Pngn + Ry, — gn)d
- 5pnh% - pngnhn - h% + hngn~
Let Q(y) = 4pnd2 + (pnhn + Pngn + h — gn)d - 5pnh727 -
Pngnhn — b2 + hpgn. Then Q(d) is quadratic function of d
with coefficient a = 4p,,, b = pphy + Pugn + hn — Gn, ¢ =
—5pnhfl — Pngnhn — hfl ~+ hygn. Determine the discriminant
A of @ as follow:
A = b —4dac
- 4(4pn)( 5pnh2 Prngnhn — h% + hngn)
h2 + pngnhn + pnhn DPnGnhn
+ p2gnhn + D262 + Prgnhn — Png2 + ph?

+pngnhn + h% - hngn - pngnhn - png?z
- 16pn< 5pnh pngnhn h + hngn)

= pah? +pn9nh + pnh? + p2gnhn +pngn

pngn + Pn h2 + hn hngn pngn gnhn
+ gn + 80p2 h2 + 16p%gnhn
= h2 + 18pnh2 + 81pnh2 + 18pflgnhn —2hngn

= (hn + 9pnhn)2 + g(hn + 9pnhn)(pn - 1)(971/)
+ ((pn - 1)gn)
= (hn + gpnhn + (pn - l)gn)2
For any y in R, we know that Q(d) > 0. If R has just one
solution, then A < 0, leading to the following result:

1_png
14 9p, 7"

(60)

n =

1 In—2 1 1
Put 1, = 57471 = gn y In = ﬁvfn = nmrn)Prn =

HLH Vn € N. For every n € N , from (60) we rewrite (12)

as follows:

1 h+ 3n Qng

+ SnPK<I_ n(n+1)(I J))1+9p Gn, V1 > 1.
It is clear that the sequences {n,},{¢n}, {%},{gn} and
{pn} satisfy all the conditions of Theorem 3.1. The se-

quences {g,} and {h,} converge strongly to 0, as shown
by Theorem 3.1.

gn+1

TABLE I
THE VALUES OF THE hn = un SEQUENCE AND THE zn = gn SEQUENCE
WITH INITIAL VALUES h = g1 = —10 AND h = g1 = 10 WITH n = 30.
n h=gl=-10 h=gl1=10
hn gn hn gn
1 —0.90909 —10.00000 0. 10.00000
2 —0.15615 —3.27922 0.30045 6.30952
3 —0.04558 —1.41284 0.09027 2.79847
15 —0.00000 —0.00003 0.00000 0.00005
28 —0.00000 —0.00000 0.00000 0.00000
29 —0.00000 —0.00000 0.00000 0.00000
30 —0.00000 —0.00000 0.00000 0.00000
0—p—
, -
2 ] = =xn
i =un
c
] -4 1
° 1
c
© I
c 6
x 1
ghl
I
-10 1
0 10 20 30
n
Fig. 1. The convergence of {hn} and {gn}
with initial values h = g1 = —10 and n = 30.
10y
‘ -— -
8t 1 Xn
c 1 —un
Se
c
s | |
S 1
\
21
O \} .
0 10 20 30

n

Fig. 2. The convergence of {hn} and {gn}
with initial values h = g1 = 10 and n = 30.

VI. CONCLUSION
1) We derive Remark 3.1 from Theorem 3.1.
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2) We get a new method for solve the combination of
variational inequality problem and equilibrium prob-
lem.

3) Applying our main result to solve the general split
feasibility problem.

4) The sequences {g,} and {h,} converge to 0, as Table
I, Figure 1, and Figure 2 demonstrate. Here, {0} =
F(J)NF(G)NEP(F,wA+ (1 —w)B).

5) In Example 5.1, the convergence of {g,} and {h,} is
ensured by Theorem 3.1.
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