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Abstract—Foggy images suffer from severe halo disturbances,
low brightness and low contrast, etc. In this paper, to solve these
problems, we propose a foggy image defogging method. First,
the nonSubsampled contour transform (NSCT) is employed in
this method to partition the image into low and high frequency
elements. In order to enhance the preservation of complex
information, the Retinex approach utilises a bootstrap filter
instead of a Gaussian filter. The denoising method entails the ap-
plication of a threshold to the high-frequency sub-band pictures.
This involves boosting coefficients that surpass the threshold
and attenuating coefficients that are below it. The ultimate
image is recreated following dehazing by employing the inverse
transformation of NSCT. Then, the grey wolf optimization
(GWO) algorithm is employed to optimise the regularisation
factor of the kernel in the guided filter, hence improving the
defogging process. Finally, through extensive experiments, our
proposed method outperforms recent approachs under plenty
of metrics in terms of visual quality. The method effectively
reduces halo aberrations, preserves intricate details, and sig-
nificantly enhances picture sharpness by reducing atmospheric
haze.

Index Terms—nonsubsampled contourlet transform, gray
wolf optimization algorithm, image defogging, guided filtering.

I. INTRODUCTION

HAZE is a prevalent meteorological occurrence that
is distinguished by the absorption and dispersion of

reflected light caused by particles in the atmosphere. The
aforementioned issue significantly diminishes the quality of
acquired images [1], resulting in undesirable consequences
such as object blurring, colour distortion, and decreased
contrast [2]. Consequently, these deteriorated images are
inadequate for sophisticated visual tasks, such as target
identification [3] and self-driving [4], which rely on high
resolution images. Haze reduction approaches have attracted
substantial attention in the field of image processing and are
widely recognised for their enormous practical use.

There are two commonly used defogging algorithms: the
physical model and the non-physical model. The physical
model approach involves creating an atmospheric scattering
model that is based on the principle of picture deterioration.
This model is then used to remove fog from images [5].
In the context of image defogging, the conventional air
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scattering model assumes a uniform distribution of incident
light worldwide. However, this model does not accurately
represent the actual conditions found in the real world.
Yang et al. [6] suggested an improved defogging technique
that relies on an atmospheric scattering model. This model
demonstrates superior effectiveness compared to traditional
air scattering models in terms of recovering visual details
in areas with reduced lighting conditions. Wu et al. [7]
introduced a technique in their research that tackles the
problem of picture defogging by incorporating both the
atmospheric scattering model and Retinex. The procedure
effectively resolves the problem of reduced contrast and
subtle details in images that have undergone defogging re-
covery operations. The atmospheric scattering models utilise
the conventional reduction method to accurately reconstruct
the original image by assuming the existence of a black
channel before the procedure [8]. In order to tackle the
problem of colour distortion and artefacts in the sky region,
Wang et al. [9] proposed an adaptive parametric dark channel
confidence calculation approach. This correction addresses
the difference between the actual transmittance and the
expected dark channel a priori region, effectively reducing
colour aberrations and artefacts in the reconstructed images.
Xie et al. [10] proposed a technique to improve defogging by
utilising a dark channel prior and peak signal-to-noise ratio.
The proposed methodology seeks to enhance the precision
of visual intricacies. Nevertheless, these algorithms, which
are grounded in physical models, demonstrate considerable
intricacy, hence requiring more stringent criteria.

Another form of defogging technology employs picture en-
hancing techniques to alleviate the negative impact of fog on
image quality. These approaches entail making specific mod-
ifications to current picture enhancing algorithms in order to
generate improved defogging outcomes. Presently, there exist
three primary classifications of defogging algorithms that
depend on global-scale image enhancement approaches. One
technique used is area segmentation [11], which utilises the
optimal orthogonal approximation distribution to divide re-
gions with different distribution characteristics. The template
segmentation is customised for different depth modules, and
in the end, the block overlapping histogram for the template
region is standardised. The approach for picture threshold
segmentation, known as the Jensen-Shannon divergence, was
introduced by Nie et al. [12]. The segmentation findings
have been deemed good. Empirical research indicates that
employing this practice is beneficial in improving images
with obstructed skies. However, a possible disadvantage of
using this specific approach is the occurrence of the block
effect. The wavelet transform, as elucidated in the cited
reference, is an invaluable technique for mitigating noise
in indistinct photos [13]. Sreekala et al. [14] utilised a
Gaussian mixture model and wavelet transform methods in
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their research, resulting in improved image quality. However,
the existing technique lacks a strong sense of orientation and
is unable to adequately differentiate between uninterrupted
boundaries. Consequently, the photographs that have been
defogged have evident flaws in the shape of jagged borders.

Employing advanced directional selectivity is crucial for
properly enhancing photos after defogging. The nonsub-
sampled contourlet transform (NSCT) method [15] is a
transformative approach that possesses qualities such as
multi-resolution, multi-directionality, translation-invariance,
and super-completeness. These properties make it extremely
suitable for difficult image processing problems. Employing
this particular technology clearly yields advantages in reduc-
ing noise and enhancing delicate image features. Moreover, it
facilitates the seamless administration of certain regions and
objectives for enhancement. However, research suggests that
techniques based on NSCT do not significantly improve the
visual quality of images with uneven illumination [16].The
effectiveness of the third Retinex enhancement algorithm re-
sides in its capacity to efficiently reduce uneven illumination.
Nevertheless, it is important to mention that the traditional
Retinex technique, which relies on a Gaussian filter, can
lead to unwanted artefacts such as ’haloing’ and reduced
edge sharpness in the image. Wang et al. [17] proposed a
technique that combines NSCT (Nonsubsampled Contourlet
Transform) with weighted bootstrap filtering to successfully
tackle common difficulties in remote sensing imaging, such
as low brightness, blurry edges, and limited visibility.The
Retinex algorithm employs a weighted filter, as opposed to a
Gaussian filter, to obtain intricate and fundamental elements.
However, it is challenging to modify the parameter values to
match the specific features of the image. Zhang et al. [18]
devised a new method with the goal of improving the quality
of low-light photos by employing an iterative multi-scale
guided filtering Retinex technique. The procedure signifi-
cantly improves the clarity of image details, but it may result
in a disadvantage in the final image, commonly referred to
as the ’flooding grey’ phenomena. The Retinex approach,
with bootstrap filtering, showcases improved preservation
of edge details. Nevertheless, the system continues to have
difficulties in accurately representing colours, especially as
a result of the blurring of sharp differences in brightness
when estimating lighted images. Moreover, the magnitude
of the regularisation parameter has a substantial impact on
the outcomes of the filtering process. The lack of adaptability
of the regularisation factor leads to colour distortion during
the post-defogging stage of image processing.

This study presents the application of Sigmoid-guided
filter-Retinex in the NSCT domain, with the objective of
improving the bootstrap filter-Retinex technique. The opti-
misation of filtering parameters is achieved using the GWO
method. At first, when the NSCT is applied to the image,
it separates the image into both low-frequency and multiple
high-frequency components, each with various orientations.
The Sigmoid-guided filter-Retinex technique is used to im-
prove the quality of the low-frequency sub-image. In addi-
tion, the GWO method aids in optimising the regularisation
factor, resulting in the reduction of halo artefacts and preser-
vation of image features. The high-frequency component sub-
picture is subjected to a thresholding method to reduce noise
and enhance image detail. Afterwards, by employing the

NSCT, the image is restored to its initial condition, leading
to the production of a clear image. This work conducted
extensive testing on a wide range of real-world pictures
to compare both subjective visual effects and quantitative
indices of this algorithm with three recently proposed image
defogging techniques. The results unequivocally validated
the exceptional efficacy of the suggested method.

II. ALGORITHM PRINCIPLES

A. NSCT Transform

The Contourlet transform’s filter bank structure comprises
two main components: the Laplacian pyramid filter (LP)
and the directional filter bank (DFB). In order to preserve
the band splitting characteristics of the Contourlet transform
and attain translation invariance, the NSCT eliminates the
process of downsampling from the Contourlet’s two-stage
transformation and introduces a nondownsampling filter. The
structure of this filter is clearly illustrated in Figure 1. The
NSCT filter bank demonstrates improved frequency domain
selectivity and regularity, resulting in a more efficient sub-
band decomposition. Figure 2(a) demonstrates the utilisation

Fig. 1: Nondownsampling Contourlet Filter Bank Structure

of the NSCT transform on the image ’Field’, producing one
sub-image containing low-frequency components and two
sub-images containing high-frequency components. Figure
2(b) exhibits the low-frequency sub-picture, which captures
the most fine characteristics visible in the foggy sky image.

B. Retinex Based on Sigmoid and Guided Filtering

This work employs the low-frequency sub-image, which
is transformed using NSCT, to recover contour information
from the image. Afterwards, the Retinex algorithm is utilised
to enhance the overall contrast and visual impact of the im-
age. The guided filter is used because it effectively preserves
edges, allowing for accurate estimation and extraction of
the illumination component. This process enhances both the
contrast and amount of detail in the image effectively. The
Retinex hypothesis is a theoretical paradigm that explains
the mechanisms involved in how humans perceive brightness
and colour. According to the notion, the impression of
an object’s brightness is affected by both the surrounding
ambient illumination and the reflection that comes off the
object’s surface. In simpler terms, an image can be expressed
as the result of combining the light that falls on an object
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(a) Forest

(b) Low Frequency Sub-images

Fig. 2: NSCT Transformation of Forest

and the light that bounces off the object. The principle is
exemplified by equation (1).

I(x, y) = R(x, y)× L(x, y) (1)

I(x,y) is employed to denote the original image. The
variable L(x,y) denotes the incident light component of the
image. The variable R(x,y) denotes the component of the
image that corresponds to the reflected light.

The traditional approach in the Retinex algorithm for
estimating illumination involves using a Gaussian filter for
computation. However, the Gaussian filter only considers
pixel distance in determining filter weights, thus ignoring
the actual content of the filtered image. As a consequence,
the filtering effect is diminished in its efficacy. In contrast,
the guided filter excels in preserving edge details and shows
greater efficiency in processing images with large window
sizes. Therefore, within the context of the Retinex algorithm
for estimating illumination, the guided filter is considered
more advantageous than the Gaussian filter.

The guided filtering process involves two maps, the guided
map I and the original map P. These maps are filtered and
the output is a filter window ωk. The bootstrap and output
maps exhibit local linearity in terms of gradient variation,
and are modeled as such. Its principle is shown in equation
(2).

Qi = akIi + bk, ∀i ∈ ωk (2)

ak and bk are the linear coefficients corresponding to the
local window ωk;i is the pixel index.

When the lead image is the original image there is

Qi = Pi − ni (3)

ni is noise.
To obtain the coefficients of the linear model, one must

transform it into an optimisation problem using an uncon-
strained image recovery method. The first step is to determine

the loss function within the filter window. The principle is
exemplified by equation (4).

E(ak, bk) =
∑
i∈ωk

((akIk + bk − Pi)
2 + ϵa2k) (4)

ϵ is the canonical factor to avoid ak being too large.
Combining equation (2) yields the filtered output image

Q as the illumination component L(x,y) of the Retinex
algorithm.

(a) Gaussian Filtering

(b) Guided Filtering

Fig. 3: Illumination Components of Gaussian and Bootstrap
Filtering

Figure 3 demonstrates that the bootstrap filter outperforms
the Gaussian filter in terms of edge detail in the illuminance
component. Using directed filtering instead of Gaussian
filtering for illuminance estimation in the Retinex algorithm
appears to be a feasible alternative.

C. Sigmoid-Guided Filtering-Retinex Algorithm
The histogram of an image taken in foggy weather cir-

cumstances usually exhibits a significant level of clustering,
mostly as a result of the environmental factors affecting
the image. The Sigmoid function exhibits a more prominent
spreading impact in comparison to the logarithmic function.
The sigmoid function can be mathematically represented by
the following equation:

sig(x) =
1

1 + e−x
(5)

The Sigmoid function exhibits a flexible change in its point
of inflection, which is determined by the alteration of the
mean value of the input signal. The Sigmoid function has a
greater capacity for adjustment compared to the logarithmic
function, indicating a wider range of applicability. Replacing
the logarithmic function with the Sigmoid function in the
guided filter-Retinex approach yields the following outcome:

R(x, y) = sig
I(x, y)

I(x, y)⊗ F (x, y)
(6)

IAENG International Journal of Applied Mathematics

Volume 54, Issue 4, April 2024, Pages 641-650

 
______________________________________________________________________________________ 



(a) Enhanced Graphs based on Logarithmic Function (b) Enhanced Graphs based on Sigmoid Function

(c) Histograms based on Logarithmic Function (d) Histograms based on Sigmoid Function

Fig. 4: Logarithmic and Sigmoid Functions Processing Results and Histograms

The image depicted in Figure 2(a) underwent enhancement
by the use of logarithmic and Sigmoid function-based guided
filter-Retinex algorithms, as demonstrated in Figure 4.

Figure 4(c) and Figure 4(d) indicate that the histogram
of the image processed using the Sigmoid function has a
wider and more evenly distributed range of grey scale values
compared to the histogram of the image processed with the
logarithmic function.

D. Threshold Denoising

Upon using NSCT on the image, it becomes evident that
specific regions of the image, which depict high-frequency
information, unveil the intricate and subtle elements of it.
Smaller absolute values of coefficients generally suggest
a greater presence of noise components. Conversely, co-
efficients with greater magnitudes are typically associated
with reduced levels of noise and an augmentation in the
amount of information. Thus, it is possible to set a threshold,
referred to as T expressly for excluding high-frequency sub-
band coefficients. This thresholding technique significantly
reduces noise while preserving important information in the
image. In order to clarify, coefficients that are lower than a
preset threshold are adjusted to zero, effectively reducing or
eliminating unwanted disturbances. Threshold shrinkage is a
widely used approach in image processing, which involves
two main methods: hard threshold shrinkage and soft thresh-
old shrinkage. Every approach possesses unique operational

features and specific applications in the field of noise reduc-
tion. The utilisation of hard threshold shrinking has proven
to be effective in addressing the persistent deviation found
while using soft thresholding. This is particularly significant
in situations where there are high-frequency coefficients that
surpass a set threshold. The use of this technique is essential
for decreasing distortions, such as blurring at the edges,
and has the potential to enhance the image’s peak signal-
to-noise ratio, so emphasising the characteristics of edge
details. Therefore, in our investigation, we have opted to
utilise a hard threshold shrinkage function. This function
aims to reduce the high-frequency sub-band coefficients in
order to attenuate noise. The adjustment of the coefficients
is performed using equation (7).

Cj′

k =

{
Cj

k |Cj
k| > T

0 otherwise
(7)

Cj
k with Cj′

k are the coefficient of high frequency before
and after processing and T is the threshold value.

If a uniform threshold is applied to analyse each subband,
it may not yield a precise estimation of the noise and
edge regions inside each subband. The determination of
the threshold is contingent upon the subband coefficients
with high frequency, resulting in the selection of distinct
thresholds for varying scales and directions. Additionally, the
threshold is set proportionally to the standard deviation of the
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transform coefficients [19], i.e.

T =
1

2

√√√√ 1

M ×N

M∑
x=1

N∑
y=1

(Cj
k(x, y)−meanc)2σ (8)

Cj
k(x, y) is the coefficient of the kth subband at (x,y) at the

jth scale, meanc is the mean value of the coefficients within
that subband. M and N are the dimensions of the image, σ
is calculated from the empirical formula for wavelet noise
estimation shown in equation (9) obtains.

σ2 = Median[hj
k/0.6745] (9)

The process of applying threshold denoising to the high-
frequency sub-band pictures was executed, and the outcomes
are visually presented in Figure 5. This method introduces

(a) First HF Sub-image Threshold Denoising

(b) Second HF Sub-image Threshold
Denoising

Fig. 5: High Frequency Processing Results

a novel strategy for estimating the threshold value, building
upon the conventional hard thresholding shrinkage technique.
Instead of employing a static thresholding technique, the
proposed method operates under the assumption that the
transformation coefficient exhibits proportionality with the
threshold value. The method attains a balance in denoising
various regions by choosing the threshold value according to
the transformation coefficient. Figure 5 illustrates the efficacy
of the proposed methodology in enhancing the level of detail
in foggy sky images while simultaneously reducing noise.

E. Grey Wolf Algorithm Optimization Process

The regularisation parameter of the bootstrap filter kernel
has a considerable impact on the results of the defogging
process. By reducing the regularisation factor, the elimination
of the reflecting component of the halo can be enhanced.
Nevertheless, this results in a decrease in the range of
grey values. On the other hand, increasing the regularisation
factor intensifies the halo phenomena, while simultaneously
expanding the dynamic range of the grey values.

Figure 6 demonstrates that a reduced regularisation factor
successfully reduces the occurrence of halo phenomena. On
the other hand, increasing the regularisation factor worsens
the halo effect, hence reducing the visual quality of the
image. In order to further evaluate the filtering impact, one

(a) Original Image

(b) ϵ =0.05

(c) ϵ =0.08

(d) ϵ =0.1

Fig. 6: Filtering Results for Different Values of ϵ

can modify the parameter value and review the resulting
smoothed image using the average gradient as the criterion
for evaluation. This assessment is based on the possibility for
improving the picture quality through bootstrap filtering. The
equation (10) represents the mathematical formula employed
for calculating the mean gradient.

AG =
1

M ×N

M∑
x=1

N∑
y=1

√
(∂f(x,y)∂x )2 + (∂f(x,y)∂x )2

2
(10)

M ×N indicates the size of the image, ∂f
∂x ,

∂f
∂y indicating

the horizontal and vertical gradients respectively.
Figure 6(a) was chosen to calculate the average gradient

AG after smoothing with different regularisation factors ϵ, as
shown in Figure 7.

Figure 7 demonstrates that the level of smoothing escalates
logarithmically as it becomes more pronounced. However,
it is important to recognise that this process does have its
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Fig. 7: Trends in AG at Different ϵ

drawbacks, including the occurrence of halos and colour
distortion.

To enhance the efficiency of defogging by the modification
of the regularisation factor, it is essential to develop an
appropriate fitness function that enables quantitative assess-
ment.This study employs the multiplication of contrast and
information entropy as the fitness function to evaluate the
quality of the defogged image, taking into account both
the contrast and information entropy assessment indices.
The choice of the grey wolf algorithm as the regularisation
factor is based on its ability to overcome local optima
during parameter optimisation and its efficient execution
time. Equations (11) and (12) illustrate the calculation of
contrast and entropy.

Constract =
1

M ∗N

i=1∑
m

j=1∑
n

E2(i, j)−| 1

M ∗N

i=1∑
m

j=1∑
n

E(x, y)|2

(11)

Entropy = −
i=0∑
L−1

D(i)log2D(i) (12)

Fitness = Constract× Entropy (13)

M and N are the width and height of the image respectively,
(i,j) denoting the pixel positions, and E(i,j) are the pixel grey scale
values. D(i)is the ratio of the number of pixels N(i) with a grey
scale value of i to the total number of pixels N in the image, i.e.
P (i) = N(i)/N.

The fitness function, denoted as equation (13), is defined as the
multiplication of contrast and entropy.

The fundamental principle of the GWO algorithm [20] involves
simulating the hierarchical leadership structures and collective
hunting activities observed in packs of grey wolves. Grey wolf
packs in their native habitat exhibit a strict social hierarchy, in
which all pack members are classified into four distinct classes.
The alpha designation is bestowed upon the individual with the
utmost fitness value, whilst the beta and gamma designations are
bestowed upon individuals with the second and third greatest fitness
values respectively. The remaining persons are classified as delta.
The grey wolves from each class work together closely to efficiently
locate the most appropriate prey source through repeated cyclical
processes, aiming to establish the best search criteria, as described
in the stated research article. The main goal of this algorithm
is to gain a deeper understanding of the dynamics of grey wolf
populations in relation to their prey.

D = |C ·Xp(t)−X(t)| (14)

X(t+ 1) = Xp(t)−A ·D (15)

X(t) and X(t + 1) denote the position of the grey wolf at
the (t)th and (t + 1)th iteration, respectively, Xp(t) denote the
position of the prey at the (t)th iteration, is the distance between the
individual grey wolf and the prey, A and C are coefficient vectors,
calculated from equations (16) and (17).

A = 2αr1 − α (16)

C = 2r2 (17)

r1 with r2 are [0,1] random vector; α is a convergence factor
that decreases linearly from 2 to 0.

In wolf packs, other grey wolves usually use the position of the
wolf to locate prey and keep updated on.{

Dα = |C1 ·Xα −X| X1 = Xα −A1 ·Dα

Dβ = |C2 ·Xβ −X| X2 = Xβ −A2 ·Dβ

Dδ = |C3 ·Xδ −X| X3 = Xδ −A3 ·Dδ

(18)

X(t+ 1) =
X1 +X2 +X3

3
(19)

III. ALGORITHM FLOW IN THIS PAPER

The grey wolf method is employed in conjunction with the NSCT
domain improvement algorithm to effectively explore the best value
of the regularisation factor and ultimately complete the process of
image defogging. The steps of the algorithm are as follows.

(1) To study the image, it is imperative to break it down into sub-
images with high-frequency and low-frequency components using
NSCT (Non-Subsampled Contourlet Transform). After decompos-
ing the image, the sub-images with high frequencies undergo
denoising using equations (7) and (8).

(2) The starting population is defined as N = 50, the maximum
number of iterations is defined as 100, and the search dimension is
defined as 2. Furthermore, the range of the regularisation factor for
the kernel of the bootstrap filter is set to [0.01, 1].

(3) Initialize the population orientation of the wolves, i.e. ϵ .The
initial value of the Sigmoid-guided filtering-Retinex enhancement
of the low-frequency part of the image using this parameter.

(4) The adaptation value is calculated according to equation (13)
to evaluate the defogging effect, α β δ wolves are selected based
on the fitness value, their positions are the optimal, superior and
sub-optimal solutions. The wolves evaluate the current position of
the prey and the remaining wolves evaluate their own position and
follow.

(5) To update the position of the grey wolf population, equation
(15) is utilised.

(6) Once the wolf scouted the location of the prey during hunting
in the grey wolf population, they directed the wolves to approach
the prey until it was captured, according to the α ,A,C value updated
in equations (16) and (17).

(7) After completing 100 iterations, the best answer at a global
level is identified as the most advantageous value for the enhance-
ment parameters examined in this research study. The Sigmoid-
guided filter-Retinex outputs the ideal parameter values to enhance
the image of a foggy sky and reduce the foggy effect. The resultant
outcome is subsequently combined with the high-frequency sub-
image that underwent processing in step (1), and then subjected to
an inverse transformation to produce the dehazed image.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental and simulation results were computed using a
personal computer. The simulation environment utilised was Matlab
2019a. The computer’s CPU was an Intel i5-12490F, with a memory
capacity of 16 GB. The operating system employed was Windows
10.

To assess the efficacy of the algorithm proposed in this research
paper for enhancing defogging, a comparative analysis is conducted
with the single-scale Retinex (SSR), multi-scale Retinex (MSR),
and guided filtering algorithms. The algorithm in question is eval-
uated from both subjective and objective perspectives.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 4, April 2024, Pages 641-650

 
______________________________________________________________________________________ 



Fig. 8: Framework Diagram for This Article

Field

City

Park

Sky

(a) Original image (b) SSR (c) MSR (d) Proposed

Fig. 9: Defogging Images Obtained by Different Algorithms
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A. Subjective Aspects
Figure 9 analysis demonstrates that the SSR algorithm enhances

image features to a considerable extent. Nevertheless, this im-
provement is accompanied by significant colour distortion and a
minor halo effect. Conversely, the MSR algorithm demonstrates a
superior benefit in terms of colour preservation when compared
to the SSR algorithm. However, it continues to experience issues
with colour distortion and the halo effect. Moreover, the incapacity
to handle various images in separate ways exacerbates colour
distortion, leading to bad visual outcomes for cloudy images.
This study showcases the algorithm’s capacity to augment image
edge detail information and boost image contrast. Nevertheless, it
fails to demonstrate substantial enhancements in image luminosity.
Moreover, the algorithm possesses the capability to improve the
visual clarity of the image and effectively reduce the halo effect
that frequently arises following the application of the conventional
Retinex algorithm for fog elimination. This achievement is credited
to the optimisation of the guide filter parameters.

B. Objective Aspect
The grey wolf algorithm optimizes the bootstrap filter parameters

ϵ for each of the six images, and the iterative diagram of the
optimisation process is shown in Figure 10.

As can be seen from Figure 10, the functions all reach conver-
gence when the number of iteration is 20. In this paper, the guided
filter parameter of the unoptimized algorithm is taken as ϵ=0.01,
and the final parameter values after the grey wolf algorithm seeking
optimization are shown in Table 1.

As seen in Table 1, the grey wolf algorithm determines the
optimal bootstrap filtering parameters for each image, resulting in
the highest quality image outcomes. As depicted in Table 1, the

Fig. 10: Iteration Diagram of the Grey Wolf Algorithm for
Finding the Best Process

TABLE I: PARAMETER VALUES BEFORE AND
AFTER BOOTSTRAP FILTERING OPTIMIZATION

Parameter Not optimised Value of search results

Field City Park Pavilion Town Sky
ϵ 0.01 0.04 0.04 0.05 0.04 0.01 0.08

grey wolf algorithm effectively determines the optimal bootstrap
filtering settings for individual images, resulting in superior image
outcomes.

When assessing the quality of an image, objective indicators
tend to be more persuasive. To ascertain the credibility of an
image, it is often more persuasive to rely on objective signs during
the evaluation process. To ascertain the efficacy of the method
proposed in this paper for addressing the issues of halo artefacts
and inconspicuous details inherent in the conventional Retinex
defogging algorithm, the authors have incorporated the parameter

of Spatial Frequency (SF) in addition to employing contrast and
information entropy, as defined in equations (13) and (14), as
evaluation metrics for the algorithm. The inclusion of SF enables
an effective assessment of image clarity. As the spatial frequency
increases, the image becomes more distinct.

RF =

√√√√ 1

mn

M−1∑
i=1

N−1∑
j=1

(F (i, i)− F (i, j + 1))2 (20)

CF =

√√√√ 1

mn

M−1∑
i=1

N−1∑
j=1

(F (i, i)− F (i+ 1, j))2 (21)

SF =
√

RF 2 + CF 2 (22)

RF and CF indicate the row frequency and column frequency of
the image respectively. The results displayed in Table 2 demonstrate
that the image, which was subjected to the algorithm suggested in
this research, demonstrates higher performance in terms of contrast,
information entropy, and spatial frequency in comparison to both
the SSR algorithm and MSR method. Nevertheless, it is important
to acknowledge that the subjective assessment of Figure 9 indicates
that the image, which underwent processing by the SSR method,
has evident colour distortion. Moreover, the algorithm presented in
this work exhibits superior performance in terms of information
entropy data when compared to guided filtering. This indicates
that the suggested technique produces more complex results after
removing fog from the image. Moreover, the methodology described
in this academic paper effectively reduces the halo effect and colour
aberration commonly observed in traditional Retinex algorithms
when processing photographs influenced by air haze. Furthermore,
it displays an improved ability to retain specific information.
Furthermore, the approach outlined in this research study showcases
improved visual outcomes in terms of excessive augmentation when
compared to the conventional Retinex algorithm.

In order to further verify the generalization of the model and
the superiority of the proposed algorithm, this paper introduces the
peak signal-to-noise ratio(PSNR) and structural similarity(SSIM) as
objective indexes for measuring the algorithm’s defogging perfor-
mance. The principles are shown in equation (23) and (24). In the
equation, MSE is the mean square error of the two images, n is
255; µx and µy are the average of all pixels in the image, δx and
δy are the standard deviations of all image pixels. A higher PSNR
value indicates better image reconstruction quality, although it may
not accurately represent the subjective perception of human eyes; A
higher SSIM value corresponds to a smaller difference between the
two pictures, indicating a more effective fog removal effect. The
experimental results of the proposed algorithm and the comparison
algorithm on the O-HAZE [21] dataset are shown in Table 3.

PSNR = 10× lg| (2
n − 1)2

MSE
| (23)

SSIM =
2µxµy + C1

µ2
x + µ2

y + C1
× 2δxy + C2

δ2x + δ2y + C2
(24)

Table 3 displays the mean metrics of the algorithm employed in
this study and the comparative algorithm on the O-HAZE dataset.
The results suggest that the algorithm employed in this study
surpasses the comparative algorithm in terms of assessment metrics,
including Entropy, SF, PSNR, and SSIM. Indications are that the
algorithm put forth in this study has the potential to effectively
enhance image quality and possesses superior dehazing capabili-
ties compared to the dehazing algorithms commonly employed in
mainstream research.

V. CONCLUSION
This paper presents a new method for enhancing the Retinex

defogging algorithm by optimising it in the NSCT domain. The
suggested approach integrates the GWO algorithm with a Sigmoid-
guided filtering methodology to effectively address the difficulties
given by halo artefacts and inconspicuous details. The proposed
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TABLE II: OBJECTIVE EVALUATION RESULTS OF IMAGE QUALITY OBTAINED BY DIFFERENT
ALGORITHMS

Test images Evaluation indicators SSR MSR Guided Filtering Proposed

Contrast 78.1737 317.9633 401.2678 335.5292
Field Entropy 2.3903 3.2981 2.2766 3.5414

SF 6.7847 18.0188 13.9495 18.7784
Contrast 162.1129 345.8684 399.0024 367.2635

City Entropy 3.8458 4.5284 2.3467 4.9037
SF 20.4672 22.9323 16.4799 23.6436

Contrast 101.0305 279.3230 316.0348 288.3645
Park Entropy 4.2713 4.3895 2.3714 4.4815

SF 18.3124 19.3259 16.1513 21.8546
Contrast 88.0305 298.6611 340.7963 314.3645

Pavilion Entropy 3.8458 4.2332 2.3084 5.1231
SF 8.3694 19.8079 16.5714 20.1259

Contrast 108.9536 250.9001 275.5428 260.9148
Town Entropy 2.6789 4.9141 2.3147 4.9580

SF 15.5047 19.1020 19.0416 20.0612
Contrast 94.3469 228.1476 230.6086 150.1077

Sky Entropy 2.5986 3.1295 2.9068 3.1479
SF 8.9103 13.5108 12.2813 13.7936

TABLE III: THE EXPERTIMENTAL RESULTS OF
EACH MODEL IN O-HAZE DATASET

Parameter
Model SSR MSR Proposed

Contrast 105.21 286.10 286.93
Entropy 3.27 4.08 4.36

SF 13.05 18.78 19.71
PSNR 15.24 17.11 22.06
SSIM 0.82 0.67 0.86

approach offers significant advantages in enhancing both image con-
trast and information entropy. In addition, the grey wolf algorithm is
used to automatically determine the optimal regularisation factor in
the guided filtering process, hence enhancing the program’s inherent
adaptability. This feature enables the system to automatically find
the optimal boosting parameters for different images taken in foggy
situations, resulting in the most efficient defogging result. The
experimental results indicate that the defogging image generated
by this study successfully reduces halo artefacts while maintaining
the fine characteristics of the image. Furthermore, the defogging
effect exceeds that of often employed defogging algorithms, thereby
greatly improving the image quality. The results demonstrate that
the technique suggested in this research is highly feasible and has
significant relevance for practical applications.
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