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Abstract—This article introduces a novel generalization of
the Hurwitz-Lerch Zeta function, which is precisely reducible
to several remarkable extensions of the Hurwitz-Lerch Zeta
function. Our new version of the Hurwitz-Lerch Zeta function
is defined with the help of the generalized Beta function. Ana-
lytical characteristics such as differential formulas, generating
functions, and multiple integral representations have been stud-
ied in further detail. We study the pathway fractional integral
formulas for our newly generalized formation of the extended
Hurwitz-Lerch Zeta functions. We attain several particular and
limiting cases of our main results. We additionally look at some
statistical uses of our defined Hurwitz-Lerch Zeta function in
probability distribution theory.

Index Terms—Extended Hurwitz-Lerch Zeta function,
Mittag-Leffler function, Generating functions, Generalized beta
function, Pathway fractional integral operator, Probability den-
sity function.

I. INTRODUCTION

THE Hurwitz-Lerch Zeta function (HLZf) and all
of its extended forms are substantially used in numerous

branches of mathematics and physics. Răducanu and Sri-
vastava [4], in their extensive study of numerous analytic
functions Classes in the theory of geometric functions in
complex analysis, utilized the HLZf Φ(z, s, a) to derive a
special linear convolution operator. Gupta et al. [13] also
discussed their research on statistical inference, reliability
characteristics, and structural characteristics of the widely-
known HLZ distribution. Recalling the HLZf [1]

Φ(ξ, t, w) =
∞∑
j=0

ξj

(j + w)t
, (1)

(w ̸= 0,−1,−2, ...; t ∈ C when |ξ| < 1),

and its integral representation is given as

Φ(ξ, t, w) =
1

Γ(t)

∫ ∞

0

zt−1e−wz

1− ξe−z
dz (2)

(ℜ(t) > 0; ℜ(w) > 0 when |ξ| < 1).
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Goyal et al. [17] introduced the HLZf as follows:

Φ∗
ϑ(ξ, t, w) =

∞∑
j=0

(ϑ)j
j!

ξj

(j + w)t
, (3)

(ϑ ∈ C; w ̸= 0,−1,−2, ...; t ∈ C when |ξ| < 1),

in which the Pochhammer symbol (ϑ)j characterises as [7]

(ϑ)j =

{
ϑ(ϑ+ 1) . . . (ϑ+ j − 1) if j ≥ 1, ϑ ∈ C,
1 j = 0, ϑ ∈ C \ {0}

The following integral representation of (3) is given as:

Φ∗
ϑ(ξ, t, w) =

1

Γ(t)

∫ ∞

0

xt−1e−wx

(1− ξe−x)ϑ
dx (4)

(ℜ(w) > 0;ℜ(t) > 0 when |ξ| < 1).

Firstly, Parmar et al. [15] made use of beta function to
generalize the HLZf. Further, Rahman et al. [6] define the
HLZf’s extension in the following way:

Φζ,χ
ϱ,ϑ,α(ξ, t, w) =

∞∑
j=0

(ϑ)j
j!

Bϱ,α(ζ + j, χ− ζ)

B(ζ, χ− ζ)

ξj

(j + w)t
, (5)

(ϱ ≥ 0, α > 0, ϑ, ζ ∈ C, χ, w ∈ C\Z−
0 ; t ∈ C when |ξ| < 1)

where Bϱ,α(χ1, χ2) represents the extension of beta function
established by Shadab et al. [9] and defined in the following
way:

Bϱ,α(χ1, χ2) =

∫ 1

0

zχ1−1(1− z)χ2−1Eα

(
−ϱ

z(1− z)

)
dz, (6)

where ℜ(χ1) > 0,ℜ(χ2) > 0,ℜ(ϱ) ≥ 0. and In [5], the
Mittag-Leffler function Eα(.) is described as

Eα(z) =
∞∑
j=0

zj

Γ(αj + 1)
.

Further, Panwar et al. [18] define the generalized form of
extended beta function in the following manner:

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(χ1, χ2) =

∫ 1

0

zχ1−1(1− z)χ2−1

× E
(µ,ν)r1
α,κ;(β,κ)r2

(
−ϱ

zλ(1− z)λ

)
dz, (7)

where, α,κ, µl, νl, βn, κn ∈ C with min
ℜ(α,κ, µl, νl, βn, κn) > 0 for l = 1, . . . r1;n = 1, . . . , r2,
r1 + r2 = m − 2, where m ∈ Z+ and
ℜ(χ1) > 0,ℜ(χ2) > 0,ℜ(ϱ) ≥ 0,ℜ(λ) > 0, and
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E
(µ,ν)r1
α,κ;(β,κ)r2

(z) is the m-parameter Mittag-Leffler function
created by Agarwal et al. [14] as follows:

E
(µ,ν)r1
α,κ;(β,κ)r2

(z) =
∞∑
j=0

(µ1)ν1j(µ2)ν2j . . . (µr1)νr1
j

Γ(αj + κ)(β1)κ1j . . . (βr2)κr2
j
zj (8)

where α,κ, µl, νl, βn, κn ∈ C with min
ℜ{α,κ, µl, νl, βn, κn} > 0 for l = 1 . . . , r1 and
n = 1 . . . , r2 with r1 + r2 = m − 2, the complex
variable z and any positive integer m.
In [18], they also defined the generalized hypergeometric
function as follows:

F
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(χ1, χ2;χ3;w)

=
∞∑
j=0

(χ1)j
B

ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(χ2 + j, χ3 − χ2)

B(χ2, χ3 − χ2)

wj

j!
, (9)

where α,κ, µl, νl, βn, κn ∈ C with min
ℜ(α,κ, µl, νl, βn, κn) > 0 for l = 1, . . . r1;n =
1, . . . , r2; r1 + r2 = m − 2, where m ∈ C and
ℜ(χ3) > ℜ(χ2) > 0,ℜ(ϱ) ≥ 0,ℜ(λ) > 0 and |w| < 1.

Recently, Nair et al. [19] introduced a novel fractional
integral operator known as the Pathway fractional integral
operator. This operator has numerous applications in various
fields of science (for more details, see [8], [3]) and is
defined as follows:

(P η,Υ
0+ f)(y1)

= yη1

∫ [
y1

a1(1−Υ)

]
0

(
1− a1(1−Υ)x1

y1

) η
(1−Υ)

f(x1) dx1, (10)

where f is a Lebesgue measurable function, η ∈ C,ℜ(η) >
0, a1 > 0 and Υ < 1, represents a pathway parameter. The
pathway model for scalar random variables and a real scalar
Υ is shown by the probability density function [2] as follows:

f(y1) =
c

|y1|1−v
[1− a1(1−Υ)|y1|ϑ]

a2
1−Υ , (11)

where y1 ∈ (−∞,∞); ϑ > 0; a2 ≥ 0; 1− a1(1−Υ)|y1|ϑ >
0; v > 0 and c, Υ stand for the normalizing constant, pathway
parameter, respectively. For Υ ∈ R , the normalizing constant
articulated in the following way:

c =


1
2

ϑ[a1(1−Υ)]
v
ϑ Γ( v

ϑ+
a2

1−Υ+1)

Γ( v
ϑ )Γ(1+

a2
1−Υ )

, if (Υ < 1),

1
2

ϑ[a1(Υ−1)]
v
ϑ Γ(

a2
Υ−1 )

Γ( v
ϑ )Γ(

a2
Υ−1−

v
ϑ )

, if ( 1
Υ−1 − v

ϑ > 0,Υ > 1),

1
2
ϑ[a1 a2]

v
ϑ

Γ( v
ϑ ) , if (Υ → 1)

For Υ < 1 and 1−a1(1−Υ)|y1|ϑ > 0, the pathway density
function in (11), includes the uniform density, the triangular
density, and lots of more p.d.f. For Υ > 1, and put (1−Υ) =
−(Υ− 1) in (10) yields

(P η,Υ
0+ f)(y1) = yη1

×
∫ [

y1
−a1(Υ−1)

]
0

(
1 +

a1(Υ− 1)x1
y1

) η
−(Υ−1)

f(x1) dx1,

and

f(y1) =
c

|y1|1−v
[1 + a1(Υ− 1)|y1|ϑ]

a2
−(Υ−1) , (12)

where y1 ∈ (−∞,∞); ϑ > 0; a2 ≥ 0;Υ > 1 describes
the generalized type 2 beta model for real values of x1. For
Υ → 1, (10) reduces to the Laplace integral transform.
Also, Υ = 0, a1 = 1 and for η−1 in place of η in (10), then
we get the Riemann-Liouville fractional integral operator(

P η−1,0
0+ f

)
(y1) = Γ(η)

(
Iη0+f

)
(y1), (ℜ(η) > 1). (13)

The Riemann-Liouville fractional derivative operator Dh
z is

defined by

Dh
z {g(z)} =

1

Γ(−h)

∫ z

0

(z − t)−h−1g(t) dt, (14)

(ℜ(h) < 0)

and
Dh

z {g(z)} =
ds

dzs
{Dh−s

z {g(z)}}, (15)

(s− 1 ≤ ℜ(h) < s, s ∈ N).

Also, we have

Dh
z {zs} =

Γ(s+ 1)

Γ(s− h+ 1)
zs−h, (ℜ(s) > −1). (16)

We have the Fox-Wright function lψr(z) (l, r ∈ N0) with l
upper and r lower parameters where w1, w2, . . . , wl ∈ C and
y1, y2, . . . , yr ∈ C \ Z−

0 (see [7])

lψr

[
(w1, x1), . . . , (wl, xl);
(y1, z1), . . . , (yr, zr);

z

]
=

∞∑
m=0

Γ(w1 + x1m) · · ·Γ(wl + xlm)

Γ(y1 + z1m) · · ·Γ(yr + zrm)

zm

m!
, (17)

where the coefficients x1, . . . , xl, z1, . . . , zr ∈ R+ are such
that

1 +
r∑

n=1

zn −
l∑

i=1

xi ≥ 0.

In this study, we employ the notion of the Hadamard product,
which allows us to decompose a recently developed function
into popular ones.

Definition I.1. Let m(y) and n(y) represent two power series,
where the radii of convergence of those series are de-
noted by rm and rn, respectively. Let

m(y) :=
∞∑
k=0

aky
k (|y| < rm)

and

n(y) :=
∞∑
k=0

bky
k (|y| < rn)

Also, the Hadamard product involving two power series,
which is again a power series, is described by( for details,
see [20])

(m ∗ n)(y) :=
∞∑
k=0

akbky
k (|y| < r), (18)

Its radius of convergence, r, fulfils

rmrn ≤ r.

Numerous extensions of the HLZf’s and their utilization
have been shown in the literature (see references [4],
[10], [13]). Recently, Pathan et al. [11] have presented
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and thoroughly examined numerous characteristics and
results of their extension of the HLZf. Motivated by the
work done above, we look into the HLZf’s generalization,
properties, and its utilization in statistical distribution theory.

This is the layout of our article: In Section II, we
present the HLZf in generalized form, along with a couple
of particular and limiting cases. In Section III, we discuss
a few of the significant characteristics, like its integral
representations, its derivatives, and its generating relations.
In Section IV, we derive the Pathway fractional integral
formulas involving the generalized HLZf. Finally, in Section
V, we conclude by discussing an application to distribution
theory.

II. A GENERALIZED HURWITZ-LERCH ZETA FUNCTION

This section defines a novel generalized form of the
extended HLZf, making use of the generalized beta function.
The generalized Hurwitz-Lerch Zeta function (GHLZf) is
defined as

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w)

=
∞∑
j=0

(ϑ)j
j!

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

ξj

(j + w)t
,(19)

where ϱ ≥ 0, λ > 0; ϑ, ς ∈ C; w,χ ∈ C \ Z−
0 ;

t ∈ C and min(α,κ, µl, νl, βn, κn) > 0 for
l = 1, . . . r1;n = 1, . . . , r2,r1 + r2 = m − 2, where
m ∈ Z+, when |ξ| < 1.

Remark: We outline the specific and limiting cases
of our newly established GHLZf here:

1) For r1 = r2 = 0,κ = 1 = λ, we get the HLZf given
by Rahman et al. [6]

Φϱ,ϑ
α,ς,χ(ξ, t, w) =

∞∑
j=0

(ϑ)j
j!

Bϱ,α(ς + j, χ− ς)

B(ς, χ− ς)

ξj

(j + w)t
,

(20)
(ϱ ≥ 0, α > 0, ϑ, ς, χ ∈ C, w ∈ C \ Z−

0 ,

t ∈ C for |ξ| < 1).

2) For r1 = r2 = 0, α = κ = λ = 1, we get the HLZf
given by Parmar et al. [15]

Φϱ,ϑ
ς,χ(ξ, t, w) =

∞∑
j=0

(ϑ)j
j!

Bϱ(ς + j, χ− ς)

B(ς, χ− ς)

× ξj

(j + w)t
, (21)

(ϱ ≥ 0;ϑ, ς ∈ C;w,χ ∈ C\; t ∈ C when
|ξ| < 1).

3) For r1 = r2 = 0 = ϱ, α = κ = λ = 1, then yield the
GHLZf introduced by Garg et al. [10]

Φϑ,ς,χ(ξ, t, w) =
∞∑
j=0

(ϑ)j
j!

(ς)j
(χ)j

ξj

(j + w)t
, (22)

(ϑ, ς ∈ C;χ,w ∈ C \ Z−
0 ; t ∈ C when |ξ| < 1).

4) The limiting case of our novel GHLZf is given by

ϕ
ϱ,λ,(µ,ν)r1 ,∗
α,κ,(β,κ)r2 ,ς,χ

(ξ, t, w)

= lim
|ϑ|→∞

{
ϕ
ϱ,λ,(µ,ν)r1 ,∗
α,κ,(β,κ)r2 ,ς,χ

(
ξ

ϑ
, t, w

)}

=
∞∑
j=0

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)j!

ξj

(j + w)t
, (23)

where ϱ ≥ 0, λ > 0; ϑ, ς ∈ C; w,χ ∈ C \ Z−
0 ; t ∈ C

and min(α,κ, µl, νl, βn, κn) > 0 for l = 1, . . . r1;n =
1, . . . , r2, r1 + r2 = m − 2, where m ∈ Z+, when
|ξ| < 1.

III. ANALYTICAL PROPERTIES OF THE GENERALIZED
HURWITZ-LERCH ZETA FUNCTION

A. Integral Representations

Theorem III.1. For ϱ ≥ 0, λ > 0, ℜ(ϑ) > 0,ℜ(t) >
0,ℜ(w) > 0 and min (α,κ, µl, νl, βn, κn) > 0 for l =
1, . . . r1;n = 1, . . . , r2, r1 + r2 = m − 2, where m ∈ Z+,
when |ξ| < 1 Thus, the integral representation shown below
is true.

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w)

=
1

Γ(t)

∫ ∞

0

xt−1e−wxF
ϱ,λ,(µ,ν)r1
α,κ,(β,κ)r2

(ϑ, ς;χ; ξe−x) dx.

Proof: We notice that the Gamma function’s Eulerian
integral is

1

(j + w)t
=

1

Γ(t)

∫ ∞

0

xt−1e−(j+w)x dx (24)

(min{ℜ(t),ℜ(w) > 0}, j ∈ N0).

Using the results noted above in equation (19) and then
inverting the summation and integration orders, under the
conditions of Theorem III.1, we attain

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) =

1

Γ(t)

∫ ∞

0

xt−1e−wx ×

( ∞∑
j=0

(ϑ)j
B

ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

(ξe−x)j

j!

)
dx (25)

utilizing the equation (9), we attained the intended result.

Remark III.2. For κ = 1 = λ and r1 = r2 = 0, we get the
Theorem(3.1) in [6].

Theorem III.3. For ϱ ≥ 0, λ > 0, ℜ(ϑ) > 0,ℜ(t) >
0,ℜ(w) > 0 and min (α,κ, µl, νl, βn, κn) > 0 for l =
1, . . . r1;n = 1, . . . , r2, r1 + r2 = m − 2, where m ∈ Z+,
when |ξ| < 1 Thus, the integral representation shown below
is true.

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) :=

1

Γ(ϑ)

∫ ∞

0

(xϑ−1e−x

×ϕϱ,λ,(µ,ν)r1 ,∗α,κ,(β,κ)r2 ,ς,χ
(ξx, t, w)) dx (26)

where ϕϱ,λ,(µ,ν)r1 ,∗α,κ,(β,κ)r2 ,ς,χ
(ξx, t, w) is the limiting case in (23).

Proof: We have the following Pochhamer symbol’s
integral representation:

(ϑ)j =
1

Γ(ϑ)

∫ ∞

0

xϑ+j−1e−x dx. (27)
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Using this integral representation in (19) and then inverting
the summation and integration orders, under the conditions
of Theorem III.3, we attain

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) =

1

Γ(ϑ)

∫ ∞

0

xϑ−1e−x

×
∞∑
j=0

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

(ξx)j

j!(j + w)t
dx (28)

Now, using (23), we arrive at the intended result.

Remark III.4. For κ = 1 = λ and r1 = r2 = 0, we get the
Theorem(3.3) in [6].

Theorem III.5. The following integral representations hold
true:

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) :=

Γ(χ)

Γ(ς)Γ(χ− ς)

×
∫ ∞

0

uς−1

(1 + u)χ
E

(µ,ν)r1
α,κ;(β,κ)r2

(
−ϱ(1 + u)2λ

uλ

)
×Φ∗

ϑ

(
ξu

1 + u
, t, w

)
du (29)

and

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) :=

Γ(χ)

Γ(t)Γ(ς)Γ(χ− ς)

×
∫ ∞

0

∫ ∞

0

uς−1e−wxxt−1

(1 + u)χ

×E(µ,ν)r1
α,κ;(β,κ)r2

(
−ϱ(1 + u)2λ

uλ

)(
1− ξue−x

1 + u

)−ϑ

dxdu (30)

where ϱ ≥ 0, λ > 0; ℜ(t) > 0,ℜ(w) > 0,ℜ(χ) > ℜ(ς) > 0,
and min(α,κ, µl, νl, βn, κn) > 0 for l = 1, . . . r1;n =
1, . . . , r2, r1 + r2 = m − 2,m ∈ Z+ , when |ξ| < 1,
assuming that (29) and (30)’s integrals on their right-hand
sides converge.

Proof: By taking χ1 = ς + j and χ2 = χ − ς in the
subsequent representation of Bϱ,λ;(µ,ν)r1

α,κ;(β,κ)r2
(χ1, χ2) (see [18])

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(χ1, χ2) =

∫ ∞

0

uχ1−1

(1 + u)χ1+χ2

×E(µ,ν)r1
α,κ;(β,κ)r2

(
−ϱ(1 + u)2λ

uλ

)
du, (31)

we get

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς) =

∫ ∞

0

uς+j−1

(1 + u)χ+j

×E(µ,ν)r1
α,κ;(β,κ)r2

(
−ϱ(1 + u)2λ

uλ

)
du, (32)

when considering the above relationship and applying the
definition (19), equation (3), clearly gives the first statement
of Theorem. III.5
Furthermore, we derive the requisite result (30) by utilising
the integral representation (4) in equation (29).

Remark III.6. For κ = 1 = λ and r1 = r2 = 0, we get the
Theorem(3.2) in [6].

Theorem III.7. The following integral representations hold
true:

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) :=

(b− a)1−χΓ(χ)

Γ(ς)Γ(χ− ς)∫ b

a

(u− a)ς−1(b− u)χ−ς−1

×E(µ,ν)r1
α,κ;(β,κ)r2

(
−ϱ(b− a)2λ

(u− a)λ(b− u)λ

)
×Φ∗

ϑ

(
ξ

(
u− a

b− a

)
, t, w

)
du (33)

and

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) :=

(b− a)1−χΓ(χ)

Γ(ς)Γ(χ− ς)Γ(t)∫ b

a

∫ ∞

0

(u− a)ς−1(b− u)χ−ς−1e−wxxt−1

×E(µ,ν)r1
α,κ;(β,κ)r2

(
−ϱ(b− a)2λ

(u− a)λ(b− u)λ

)
×
(
1− ξ

(
u− a

b− a

)
e−x

)−ϑ

dxdu (34)

where ϱ ≥ 0, λ > 0; ℜ(t) > 0,ℜ(w) > 0,ℜ(χ) > ℜ(ς) > 0,
and min(α,κ, µl, νl, βn, κn) > 0 for l = 1, . . . r1;n =
1, . . . , r2, r1 + r2 = m − 2,m ∈ Z+ , when |ξ| < 1,
assuming that (33) and (34)’s integrals on their right-hand
sides converge.

Proof: By taking χ1 = ς + j and χ2 = χ − ς in the
subsequent representation of Bϱ,λ;(µ,ν)r1

α,κ;(β,κ)r2
(χ1, χ2) (see [18])

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(χ1, χ2) = (b− a)1−χ1−χ2

×
∫ b

a

(u− a)χ1−1(b− u)χ2−1

×E(µ,ν)r1
α,κ;(β,κ)r2

(
−ϱ(b− a)2λ

(u− a)λ(b− u)λ

)
du, (35)

we get

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς) = (b− a)1−j−χ

×
∫ b

a

(u− a)ς+j−1(b− u)χ−ς−1

×E(µ,ν)r1
α,κ;(β,κ)r2

(
−ϱ(b− a)2λ

(u− a)λ(b− u)λ

)
du, (36)

when considering the above relationship and applying the
definition (19), equation (3), clearly gives the first statement
of Theorem. III.7
Furthermore, we derive the requisite result (34) by utilising
the integral representation (4) in equation (33).

B. Derivative Formula

Theorem III.8. The following differential formula for
ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) holds true:

dj

dξj
{
ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w)} =

(ϑ)j(ς)j
(χ)j

×

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ+j

α,κ,(β,κ)r2 ,ς+j,χ+j(ξ, t, w + j). (37)

where j ∈ N.
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Proof: Taking into consideration the derivative of equa-
tion (19) with respect to ξ, we obtain

d

dξ

{
ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w)

}
=

∞∑
j=1

(ϑ)j
(j − 1)!

×

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

ξj−1

(j + w)t
. (38)

Replacing j by j+1 in equation (38) and utilizing the identities

B(χ1, χ2 − χ1) =
χ2

χ1
B(χ1 + 1, χ2 − χ1),

(ϑ)s+1 = ϑ(ϑ+ 1)s, (39)

we have
d

dξ

{
ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w)

}
=
ϑς

χ
×

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ+1

α,κ,(β,κ)r2 ,ς+1,χ+1(ξ, t, w + 1). (40)

repeating the process j times, we attain the required result.

Remark III.9. For κ = 1 = λ and r1 = r2 = 0, we get the
Theorem(3.4) in [6].

C. Fractional Derivative of ϕϱ,λ,(µ,ν)r1 ,ϑα,κ,(β,κ)r2 ,ς,χ
(ξ, t, w).

For Riemann-Liouville fractional derivative operator
Dh

z {zs} of order h, as stated above by (14). We now create
the following relation.

Theorem III.10. Let {(ς−l), (ϑ−l), (χ−l)} ̸= Z−
0 , l ∈ N0.

Then

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) =

(−1)l(1− χ)l
(1− ϑ)l(1− ς)l

Dl
ξ

{
ϕ
ϱ,λ,(µ,ν)r1 ,ϑ−l

α,κ,(β,κ)r2 ,ς−l,χ−l(ξ, t, w − l)
}
. (41)

Proof: Taking R.H.S and denote it by K . Then, using
(16) and (19), we get

K =
(−1)l(1− χ)l
(1− ϑ)l(1− ς)l

∞∑
j=0

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j − l, χ− ς)

B(ς − l, χ− ς)

(ϑ− l)j
(j − l)!

ξj−l

(j + w − l)t

Now, by letting j = j + l and utilizing the identities

B(χ1 − l, χ2 − χ1) =
(1− χ2)l
(1− χ1)l

B(χ1, χ2 − χ1) (42)

and

(x)−r =
(−1)r

(1− x)r
(43)

we get

=
∞∑
j=0

(ϑ)j
j!

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

ξj

(j + w)t
, (44)

We get the left side of (41).

Remark III.11. It is easy to reduce the fractional relation
mentioned above to the results found in [11], by selecting
the appropriate parameters,.

D. Generating Functions

Theorem III.12. For p ≥ 0, λ > 0, ϑ ∈ C and |x| < 1,
Then, the generating function given below is true:

∞∑
j=0

(ϑ)jϕ
ϱ,λ,(µ,ν)r1 ,ϑ+j

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w)

xj

j!
= (1− x)−ϑ ×

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ

(
ξ

1− x
, t, w

)
(45)

Proof: Taking into consideration the L.H.S of Theorem
III.12 and denoted by X and using (19), we get

X =
∞∑
j=0

(ϑ)j

{ ∞∑
l=0

(ϑ+ j)l
B

ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + l, χ− ς)

B(ς, χ− ς)
×

ξl

(l + w)tl!

}
xj

j!
. (46)

Inverting the summation order’s under the above conditions
and after simplification, we have

=
∞∑
l=0

(ϑ)l
B

ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + l, χ− ς)

B(ς, χ− ς)

×
{ ∞∑

j=0

(ϑ+ l)j
xj

j!

}
ξl

l!(l + w)t
, (47)

Now, using the binomial expansion

(1− x)−(ϑ+l) =
∞∑
j=0

(ϑ+ l)j
xj

j!
, |x| < 1. (48)

and using (19), we attain the intended result.

Remark III.13. For κ = 1 and r1 = r2 = 0, we get the
Theorem(4.2) in [6].

Theorem III.14. For ϱ ≥ 0, λ > 0, ϑ ∈ C and |x| < |w|;
t ̸= 1. Then, the generating function given below is true:

∞∑
j=0

(t)j
j!
ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t+ j, w)xj

= ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w − x). (49)

Proof: Using the (19) in the R.H.S of Theorem III.14,
we get

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w − x) =

∞∑
l=0

(ϑ)l

×
B

ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + l, χ− ς)

B(ς, χ− ς)

ξl

l!(l + w − x)t
, (50)

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w − x)

=
∞∑
l=0

(ϑ)l
B

ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + l, χ− ς)

B(ς, χ− ς)

ξl

l!(l + w)t

×
(
1− x

l + w

)−t
(51)

using the binomial expansion (48) and after some simplifi-
cation, we get the intended result.

Remark III.15. For κ = 1 = λ and r1 = r2 = 0, we get
the Theorem(4.3) in [6].
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IV. GENERALIZED HURWITZ-LERCH ZETA FUNCTION
AND PATHWAY FRACTIONAL INTEGRAL OPERATOR

In this section, we obtain the Pathway fractional integral
formulae involving the generalized HLZf.

Theorem IV.1. For ϱ ≥ 0, λ > 0; ϑ, ς ∈ C; w,χ ∈ C \Z−
0 ;

, ℜ(ϖ) > 0,ℜ(η) > 0;ℜ( η
1−Υ ) > −1,Υ < 1, θ ∈ R; t ∈ C

and min (α,κ, µl, νl, βn, κn) > 0 for l = 1, . . . r1;n =
1, . . . , r2, r1 + r2 = m − 2, where m ∈ Z+, when |ξ| < 1.
The following formula holds true:

P η,Υ
0+

(
xϖ−1
1 ϕ

ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(θx1, t, w)

)
(y1)

=
yϖ+η
1 Γ

(
1 + η

1−Υ

)
[a1(1−Υ)]ϖ

× ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ

{
θy1

a1(1−Υ)
, t, w

}
× 2ψ1

[
(ϖ, 1), (1, 1);

(ϖ + η
1−Υ + 1, 1);

θy1
a1(1−Υ)

]
. (52)

Proof: Using the definition (10) of Pathway fractional
integral operator , we have

K = yη1

∫ [
y1

a1(1−Υ)
]

0

xϖ−1
1

[
1− a1(1−Υ)x1

y1

] η
1−Υ

×

∞∑
j=0

(ϑ)j
j!

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

(θx1)
j

(j + w)t
dx1. (53)

By inverting the summation and integration orders, we have

K = yη1

∞∑
j=0

(ϑ)j
j!

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

θj

(j + w)t

×
∫ [

y1
a1(1−Υ)

]

0

xϖ+j−1
1 [1− a1(1−Υ)x1

y1
]

η
1−Υ dx1.

Utilizing the substitution Z = a1(1−Υ)x1

y1
, we get

K =
yϖ+η
1

[a1(1−Υ)]ϖ

∞∑
j=0

(ϑ)j
j!

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

× θj

(j + w)t

(
y1

a1(1−Υ)

)j

×
∫ 1

0

Zϖ+j−1[1− Z]
η

1−Υ dZ. (54)

Using the Beta function [7], we have

K =
yϖ+η
1

[a1(1−Υ)]ϖ

∞∑
j=0

(ϑ)j
j!

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

× θj

(j + w)t

(
y1

a1(1−Υ)

)j

×
Γ(ϖ + j)Γ(1 + η

Υ−1 )

Γ(ϖ + j + η
Υ−1 + 1)

(55)

Using equation (17) and the Hadamard product completes
the theorem’s proof.

Corollary IV.2. If a1 = 1,Υ = 0, η − 1 in place of η in
Theorem IV.1, we have

Iη0+
(
xϖ−1
1 ϕ

ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(θx1, t, w)

)
(y1)

= yϖ+η−1
1 ϕ

ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
{θy1, t, w}

× 2ψ1

[
(ϖ, 1), (1, 1);
(ϖ + η, 1);

θy1

]
. (56)

Remark IV.3. For κ = 1 = λ and r1 = r2 = 0, we get the
Theorem(2.1) in [12].

Theorem IV.4. For ϱ ≥ 0, λ > 0; ϑ, ς ∈ C; w,χ ∈ C \Z−
0 ,

ℜ(ϖ) > 0,ℜ(η) > 0;ℜ( η
1−Υ ) > −1,Υ > 1, θ ∈ R; ; t ∈ C

and min (α,κ, µl, νl, βn, κn) > 0 for l = 1, . . . r1;n =
1, . . . , r2, r1 + r2 = m − 2, where m ∈ Z+, when |ξ| < 1.
The following formula holds true:

P η,Υ
0+

(
xϖ−1
1 ϕ

ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(θx1, t, w)

)
(y1)

=
yϖ+η
1 Γ

(
1− η

Υ−1

)
[−a1(Υ− 1)]ϖ

× ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ

{
θy1

−a1(Υ− 1)
, t, w

}
× 2ψ1

[
(ϖ, 1), (1, 1);

(ϖ − η
Υ−1 + 1, 1);

θy1
−a1(Υ− 1)

]
. (57)

Proof: Using the equation (12) of Pathway fractional
integral operator, we have

K = yη1

∫ [
y1

−a1(Υ−1)
]

0

xϖ−1
1

[
1 +

a1(Υ− 1)x1
y1

] η
−(Υ−1)

×
∞∑
j=0

(ϑ)j
j!

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

(θx1)
j

(j + w)t
dx1. (58)

By inverting the summation and integration orders, we have

K = yη1

∞∑
j=0

(ϑ)j
j!

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

θj

(j + w)t

×
∫ [

y1
−a1(Υ−1)

]

0

xϖ+j−1
1 [1 +

a1(Υ− 1)x1
y1

]
η

−(Υ−1) dx1,

using the substitution W = −a1(Υ−1)x1

y1
, we get

K =
yϖ+η
1

[−a1(Υ− 1)]ϖ

∞∑
j=0

(ϑ)j
j!

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

× θj

(j + w)t

(
y1

−a1(Υ− 1)

)j

×
∫ 1

0

Wϖ+j−1[1−W ]
η

−(Υ−1) dW, (59)

using the Beta function [7], we have

K =
yϖ+η
1

[−a1(Υ− 1)]ϖ

∞∑
j=0

(ϑ)j
n!

B
ϱ,λ;(µ,ν)r1
α,κ;(β,κ)r2

(ς + j, χ− ς)

B(ς, χ− ς)

× θj

(j + w)t

(
y1

−a1(Υ− 1)

)j

×
Γ(ϖ + j)Γ(1− η

Υ−1 )

Γ(ϖ + j − η
Υ−1 + 1)

(60)
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Using equation (17) and the Hadamard product completes
the theorem’s proof.

Remark IV.5. For κ = 1 = λ and r1 = r2 = 0, we get the
Theorem(2.5) in [12].

V. APPLICATIONS TO THE PROBABILITY DISTRIBUTION

In the following section, we investigate a general
probability distribution using the generalized Hurwitz
distribution, where the probability density function is
described as

If a random variable Υ’s probability density function
is as follows, it is considered to be the generalized Hurwitz
distribution

fΥ(w) =


tϕ

ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2
,ς,χ

(ξ,t+1,w)

ϕ
ϱ,λ,(µ,ν)r1

,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ,t,1)

if w ≥ 1,

0 otherwise
(61)

where it is implicitly presumed that the arguments
ξ, t and parameters α,κ, χ, ς, ϱ, λ, µl, νl, βn, κn for l =
1, . . . r1;n = 1, . . . , r2, are fixed as well as appropriately
restricted. Hence, the probability density function fΥ(w)
continues to be non-negative.

Theorem V.1. The probability density function of the con-
tinuous random variable Υ is provided by (61). The moment
generating function M(x) of Υ (random variable) is therefore
given by

M(x) = Et[e
Υx] =

∞∑
m=0

Et[Υ
m]
xm

m!
, (62)

where the moments Et[Υ
m] of order m are given by

Et[Υ
m] =

m∑
l=0

m!

(m− l)!

Γ(t− l)

Γ(t)

×
ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t− l, 1)

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, 1)

. (63)

Proof: The assertion in (62) can be simply inferred via
the series expansion of eΥx. In order to prove (63), we note
that

d

dw
{ϕϱ,λ,(µ,ν)r1 ,ϑα,κ,(β,κ)r2 ,ς,χ

(ξ, t, w)}

= −tϕϱ,λ,(µ,ν)r1 ,ϑα,κ,(β,κ)r2 ,ς,χ
(ξ, t+ 1, w), (64)

which simply follows from (19), and from the definition of
Et[Υ

m], we have

Et[Υ
m] =

∫ ∞

1

wmfΥ(w) dw

=
t

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, 1)

×
∫ ∞

1

wmϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t+ 1, w) dw,

=
−1

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, 1)

×
∫ ∞

1

wm d

dw
{ϕϱ,λ,(µ,ν)r1 ,ϑα,κ,(β,κ)r2 ,ς,χ

(ξ, t, w)} dw, (65)

=

[−wmϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w)

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, 1)

]∞
w=1

+
m

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, 1)

×
∫ ∞

1

w(m−1)ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) dw, (66)

= 1− lim
w→∞

{wmϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w)

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, 1)

}
+

m

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, 1)

×
∫ ∞

1

wm−1ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) dw, (67)

Et[Υ
m] = 1 +

m

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, 1)

×
∫ ∞

1

wm−1ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w) dw

(m ∈ N). (68)

We have employed the following limit formula,

lim
w→∞

{
wmϕ

ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, w)

}
= lim

w→∞

{
wm

Γ(t)

∫ ∞

1

xt−1e−wx

F
ϱ,λ,(µ,ν)r1
α,κ,(β,κ)r2

(ϑ, ς;χ; ξe−x) dx

}
,

=
1

Γ(t)

∫ ∞

1

(
xt−1 lim

w→∞
{wme−wx}

×F ϱ,λ,(µ,ν)r1
α,κ,(β,κ)r2

(ϑ, ς;χ; ξe−x) dx

)
, (69)

= 0.
As a result, we have the following reduction formula for
Et[Υ

m]

Et[Υ
m] = 1 +

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t− 1, 1)

ϕ
ϱ,λ,(µ,ν)r1 ,ϑ

α,κ,(β,κ)r2 ,ς,χ
(ξ, t, 1)

× m

(t− 1)
Et−1[Υ

m−1] (70)

by iterating the recurrence (68) , we get the intended result.

Remark V.2. A particular case of Theorem V.1, when r1 =
r2 = 0, α = κ = λ = 1, was taken into consideration by
Parmar et al. [15].

VI. CONCLUSION

Numerous researchers have examined the fractional cal-
culus formulas of various special functions due to their
extensive use in modelling and applied sciences. We look
into the composition of our newly established HLZf and
the pathway fractional integral operator that S.S. Nair pre-
sented. Further, in this work, we investigate the analytical
properties of our newly interpreted HLZf, which involves
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the beta function, in its generalized form. A probability
distribution application is also taken into account. The main
conclusions are specific cases for a couple of previously pub-
lished and novel findings. Further, we can also develop
various series relations for our generalized HLZf, which
involve other special functions.
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