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Abstract—In graph-based modelled networks, connectivity
and toughness are two types of parameters to measure the
robustness of graphs (corresponding networks), and recent
studies have shown that these variables are explicitly associated
with the existence of H-factors in specific settings, where the
latter is inner connected to the feasibility of data transmission in
networks. However, the previous contributions presented in the
form of several surfaces of connectivity and toughness (isolated
toughness or sun toughness) lead to a “choice dilemma” for
decision-makers in the network designing stage. In this work,
to overcome this problem, we propose a new approach in terms
of knee point identification to determine the best combination
of connectivity and toughness related parameters. The family of
knee points on curves are implemented which vary with respect
to m or k.

Index Terms—network, connectivity, toughness, knee point
identification (KPI), decision making (DM)

I. INTRODUCTION

AMONG many network models, the graph model (sites
and channels are modelled by vertices and edges

respectively) can effectively describe the topology of the
network. Throughout this paper, only simple, undirected and
finite graph G (corresponds to a network) with vertex set
V (G) and edge set E(G) is discussed. Denote κ(G) as
the connectivity of G which implies how many vertices are
deleted at least to make G disconnected. Toughness and its
related variables are celebrated graph-based parameters in
networks to measure the vulnerability of networks, which
are summarized by Gao et al. [1] and presented in Tab.
I. It is noteworthy that if G is a complete graph, then
t(G) = τ(G) = I(G) = I ′(G) = s(G) = s′(G) = +∞
since there is no vertex subset meeting the restriction.

Let H be the set of connected graphs. An H-factor of
graph G is a spanning subgraph such that each component is
isomorphic to an element of H. A graph G is a (H, k)-factor
critical graph (resp. (H,m)-factor deleted graph) if removing
any k vertices (resp. m edges) from G, the resulting subgraph
still admits H-factor. For instance, if H is the set of paths
with the length at least 3, then we denote H = P≥3.

Several recent contributions (cf. Gao et al. [1], [9] and
[10]) studied the tight bounds of toughness related pa-
rameters (variables) for the existence of H-factor, and it
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is found that there are massive influences among multiple
parameters. For example, the combination of toughness and
connectivity conditions, if the toughness condition is en-
hanced, the connectivity condition is weakened; conversely,
if the connectivity condition is increased, the toughness
condition is weakened. This reveals that the multi-parameter
tight bound of H-factor is imperative to treat these graph-
based variables as a dynamic system, and the change of
one will cause the synergistic changes of other variables.
In order to characterize the dynamic changing relationship
between various parameters, they look at this problem from
the perspective of high-dimensional space, i.e., express the
combination of various parameters as a vector in high-
dimensional space, and then multi-dimensional surfaces are
utilized to describe such implicit correlation. Gao et al.
[1], [9] and [10] studied the parametric conditions for the
existence of H-factors in specific settings, where the surfaces
of the combination of parameters such as toughness, isolated
toughness, binding number and connectivity are obtained.

The yardstick multi-objective optimization problem
(MOP) can be formulated as

minF(x) = (f1(x), · · · , fr(x))T

s.t.x ∈ Ω

where x = (x1, · · · , xd)
T is a decision vector (regarded as

a candidate solution of MOP) and Ω is a decision space.
If r = 2, then MOP is called a bi-objective optimization.
For two solutions x1,x2 ∈ Ω, we say x1 dominates x2

(denoted by x1 ⪯ x2) if and only if fi(x
1) ≤ fi(x

2) for
all i ∈ {1, · · · , r} and fi(x

1) < fi(x
2) for at least one

i ∈ {1, · · · , r}. A solution x ∈ Ω is Pareto optimal if there
isn’t exist a solution x′ ∈ Ω such that x′ ⪯ x, the set of all
Pareto optimal solutions is called the Pareto set (PS) and the
set of their corresponding values {F(x)|x ∈ PS} is called
the Pareto front (PF).

As a follow-up to Gao et al. [1], [9] and [10], this paper
considers the selection of multiple parameters in the network
construction process from the perspective of a decision
maker. From the perspective of MOP, the last two dimensions
of the given surfaces are regarded as the PF obtained by bi-
objective optimization, and a novel knee point identification
(KPI) approach is designed for this specific application
problem to obtain the knee points of the corresponding
curves (cross-sections).

The difference between the KPI approach presented in this
article and the KPI algorithms in extant MOP algorithms is
reflected in the following two key points:
(1) Since κ can be infinitely large, the corresponding PF
involves infinite points. In this case, there is theoretically no
extreme point, and hence the traditional KPI methods cannot
be applied to the application scenarios in this article.
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TABLE I
PARAMETERS IN TOUGHNESS FAMILY [1].

parameter notation formulation restriction reference

toughness t(G) min
{

|S|
ω(G−S)

}
S ⊂ V (G) and ω(G− S) ≥ 2 Chvátal [2]

variant of toughness τ(G) min
{

|S|
ω(G−S)−1

}
S ⊂ V (G) and ω(G− S) ≥ 2 Enomoto et al. [3]

isolated toughness I(G) min
{

|S|
i(G−S)

}
S ⊂ V (G) and i(G− S) ≥ 2 Yang et al. [4]

variant of isolated toughness I ′(G) min
{

|S|
i(G−S)−1

}
S ⊂ V (G) and i(G− S) ≥ 2 Ma and Liu [5]

sun toughness s(G) min
{

|S|
sun(G−S)

}
S ⊂ V (G) and sun(G− S) ≥ 2 Zhou et al. [6]

variant of sun toughness s′(G) min
{

|S|
sun(G−S)−1

}
S ⊂ V (G) and sun(G− S) ≥ 2 Zhu et al. [7]

binding number bind(G) min
{

|NG(X)|
|X|

}
∅ ̸= X ⊆ V (G) and NG(X) ̸= V (G) Woodall [8]

(2) Since the value of κ varies with the value of m or k, there
are infinitely PFs (each PF corresponding to a cross-section
of the given surface). This setting is beyond the consideration
of traditional MOP problems.

Overall, based on the above two facts, the KPI problem
discussed in this article is much more complex than tradi-
tional KPI problems in the corresponding MOP settings, and
therefore, a new parameter ε is introduced for this problem.

The remainder of this article is organized as follows. We
elaborate on the contributions in Gao et al. [1], [9] and
[10] in the next section, and then the motivation for this
work is stated in the third section. After that, we propose
our main KPI approach to determine the knee points of
corresponding cross-sections. As supplementary results, we
added a remark section. In this remark, we assume that
dimensionality reduction operator is utilized to map high-
dimensional graph data to real numbers, so that the functions
g and f can be represented on a two-dimensional plane.
On this basis, we consider the embedding problem of p, the
restrained embeddings are proposed, as well as in the high
dimensional space setting. Finally, the future study topics are
discussed.

II. RELATED WORKS

What Gao et al. [1], [9] and [10] have in common is to
present multi-parameter (multi-variable) conditions for the
existence of H-factor in vertex removing or edge deleting
settings. Hence, before starting a formal motivation, we
must elaborate on the main results of these three papers.
In what follows, let m, k ∈ N, and κ be the lower bound
of connectivity of G which is the function of m or k (i.e.,
κ ≥ m+1 in factor deleted graph setting, and κ ≥ k+1 in
factor critical graph setting).

Let Itight(≥3,m)−FD (resp. I∗,tight(≥3,m)−FD) be the sharp I(G)

(resp. I ′(G)) bound for a graph G with κ(G) ≥ κ
to be (P≥3,m)-factor deleted, where Itight(≥3,m)−FD (resp.
I∗,tight(≥3,m)−FD) is a function of m and κ. We call
(m,κ, Itight(≥3,m)−FD) (resp. (m,κ, I∗,tight(≥3,m)−FD)) as “isolated
toughness (P≥3,m) factor deleted surface” (resp. “iso-
lated toughness variant (P≥3,m) factor deleted surface”),
in short, IT-(P≥3,m)-FDS (resp. ITV-(P≥3,m)-FDS). Gao
et al. [9] determined that the exact expression of IT-
(P≥3,m)-FDS and ITV-(P≥3,m)-FDS are (m,κ, 3κ+1−m

2κ+1−m )

and (m,κ, 3κ+1−m
2κ−m ), respectively. The functions of curves

induced by the last two dimensional parameters of the above
two surfaces are denoted by f1

m and f2
m respectively.

Let ttight(≥3,m)−FD (resp. t∗,tight(≥3,m)−FD) be the sharp t(G)

(resp. τ(G)) bound for a graph G with κ(G) ≥ κ
to be (P≥3,m)-factor deleted, where ttight(≥3,m)−FD (resp.
t∗,tight(≥3,m)−FD) is a function of m and κ. We call
(m,κ, ttight(≥3,m)−FD) (resp. (m,κ, t∗,tight(≥3,m)−FD)) as “tough-
ness (P≥3,m) factor deleted surface” (resp. “toughness vari-
ant (P≥3,m) factor deleted surface”), in short, TP3mFDS
(resp. TVP3mFDS). One of the main results in Gao et
al. [10] determined that the exact expression of TP3mFDS
and TVP3mFDS are (m,κ, κ

2κ−m+1 ) and (m,κ, κ
2κ−m ),

respectively. The functions of curves induced by the last
two dimensional parameters of the above two surfaces are
denoted by f3

m and f4
m respectively.

Let Itight(≥3,k)−FC (resp. I∗,tight(≥3,k)−FC) be the sharp I(G)

(resp. I ′(G)) bound for a graph G with κ(G) ≥ κ
to be (P≥3, k)-factor critical, where Itight(≥3,k)−FC (resp.
I∗,tight(≥3,k)−FC) is a function of m and κ. We call
(k, κ, Itight(≥3,k)−FC) (resp. (k, κ, I∗,tight(≥3,k)−FC)) as “isolated
toughness (P≥3, k) factor critical surface” (resp. “isolated
toughness variant (P≥3, k) factor critical surface”), in short,
ITP3kFCS (resp. ITVP3kFCS). Gao et al. [10] determined
that the exact expression of ITP3kFCS and ITVP3kFCS
are (k, κ, 3κ−2k+1

2κ−2k+1 ) and (k, κ, 3κ−2k+1
2κ−2k ), respectively. The

functions of curves induced by the last two dimensional
parameters of these two surfaces are denoted by f5

k and f6
k

respectively.
Gao et al. [1] studied the existence of H-factor whose

necessary and sufficient condition can be stated by

i(G− S) ≤ q|S|, (1)

where q ≥ 1 is a half-integer (i.e., q ∈ {1, 3
2 , 2,

5
2 , · · · }),

S ⊆ V (G) and i(G− S) is the number of isolated vertices
in G − S. Let P be a specific parameter described in Tab.
I and Ptight

(H,k)−FC be a tight P bound (which is a function
of q, k and κ) for a graph G to be (H, k)-factor critical.
The 4-dimensional surface (q, k, κ,Ptight

(H,k)−FC) implies that
G is a (H, k)-factor critical graph if κ(G) ≥ κ and P >
Ptight
(H,k)−FC , where the existence of H-factor is characterized

by (1). The first main theorem in Gao et al. [1] argued
that under the mild condition on κ − k and qk, the above
4-dimensional surface can be determined by (q, k, κ, κ

Θ ) if
P(G) ∈ {t(G), s(G), I(G), bind(G)} and by (q, k, κ, κ

Θ−1 )
if P(G) ∈ {τ(G), s′(G), I ′(G)}, where

Θ(q, k, κ) =

{
⌈q(κ− k)⌉, if q(κ− k) is not an integer,
q(κ− k) + 1, if q(κ− k) is an integer.
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The functions of curves induced by the last two dimensional
parameters of the above two surfaces are denoted by f7

k and
f8
k respectively.

Let Ptight
(H,m)−FD be a tight P bound (which is a function

of q, m and κ) for a graph G to be (H,m)-factor deleted.
The 4-dimensional surface (q,m, κ,Ptight

(H,m)−FD) reveals that
G is a (H,m)-factor deleted graph if κ(G) ≥ κ and P >
Ptight
(H,m)−FD, where the existence of H-factor is characterized

by (1). The second main result in Gao et al. [1] stated that
under the mild condition on q, m and κ, this 4-dimensional
surface can be formulated by
(1) (q,m, κ, κ

Γ−m ) if P(G) = t(G);
(2) (q,m, κ, κ

Γ−m−1 ) if P(G) = τ(G);
(3) (q,m, κ,

κ+⌊m
2 ⌋

Γ−⌈m
2 ⌉ ) if P(G) = s(G);

(4) (q,m, κ,
κ+⌊m

2 ⌋
Γ−⌈m

2 ⌉−1 ) if P(G) = s′(G);
(5) (q,m, κ, κ+m

Γ−m ) if P(G) = I(G);
(6) (q,m, κ, κ+m

Γ−m−1 ) if P(G) = I ′(G);
(7) (q,m, κ, κ+2m

Γ ) if P(G) = bind(G).
Here,

Γ(q, κ) =

{
⌈qκ⌉, if qκ is not an integer,
qκ+ 1, if qκ is an integer.

The functions of curves induced by the last two dimensional
parameters of the above surfaces are denoted by f9

m and f15
m

respectively.

III. MOTIVATION

The toughness-related variables in Tab. I are salient param-
eters to measure the vulnerability of the network. The larger
the parameter value, the stronger the corresponding network.
An extreme idea is to directly construct a complete graph
network, that is, any two vertices are connected by edges,
so that the corresponding parameter value will reach the
maximum value. However, due to the excessive construction
cost, such a fully connected network will not be adopted in
reality. The parameter bound obtained in [1], [9] and [10] the-
oretically yields the balance point for network construction.
For example, consider the first surface (m,κ, 3κ+1−m

2κ+1−m ) in
literature Gao et al. [9], the last parameter 3κ+1−m

2κ+1−m characters
the tight isolated toughness bound for data transmission by
path when network congestion or attack (the channel corre-
sponding to m edges is unavailable). Therefore, according
to this conclusion, it only needs to design the network with
connectivity not less than κ(G), its isolated toughness is
greater than 3κ+1−m

2κ+1−m , and there is no need to construct a
complete graph network with a heavy financial burden.

However, [1], [9] and [10] only gave the specific form
of the surface from a theoretical point of view, but didn’t
analyze the practical problems from the point of view of net-
work applications. We instantiate (m,κ, 3κ+1−m

2κ+1−m ) for actual
problems, where a cross-section of the last two parameters
is given by fixing m, and infinite points are drawn in the
corresponding curve since κ ≥ m+ 1 is an integer. That is,
take κ equal to m+1, m+2, · · · , then we get (m+1, 2m+4

m+3 ),
(m + 2, 2m+7

m+5 ), · · · . We verify that as the value of κ

increases, the value of 3κ+1−m
2κ+1−m decreases. Hence, there is a

balance between connectivity and isolated toughness, where
an increase in one leads to a decrease in the other.

For network designers, it is imperative to choose a com-
bination of connectivity and toughness related variables as a

reference for building a network. However, since there are
infinitely pairs of parameters, this leads to a choice barrier for
network designers (see Li et al. [11], Purshouse et al. [12],
Lai et al. [13], Bhattacharjee et al. [14] and He et al. [15],
[16], [17], [18] for such problems in MOP settings). How
to determine a pair of optimal combinations from infinite
pairs of parameter combinations has become a challenging
problem.

Notably, there are 15 surfaces in [1], [9] and [10], which
generate 15 families of curves from the last two parameters
of each surface. These curves from 15 families describe the
balanced relationship between connectivity and toughness-
related parameters in specific H-factor settings from different
P(G) perspectives. Studying the equilibrium point of each
curve can allow the network designer to find the optimal
balance position and avoid the choice dilemma.

Before presenting the specific method, we need to clarify
the following two statements:
(1) The values of m and k to some extent indicate the require-
ments to build a network, and their values are predetermined
under specific engineering demands. But from a theoretical
perspective, it is still necessary to consider them as variables.
(2) To facilitate the characterization of curves, we treat all
variables as continuous variables.

IV. KPI BASED IMPLEMENTATION

The main idea of this paper comes from MOP, where
each curve is regarded as a PF in a bi-objective optimization
problem, and we propose a knee point identification approach
to determine the knee point for each curve.

In MOP setting, the knee point is the point on the Pareto
front with maximum effectiveness, near which satisfying a
small increase in the value of one objective will cause a large
recession in at least one other objective [19]. And global knee
point can be denoted as

xkp = argmax
x∈Ω

Dis(F(x),H), (2)

where H is a hyperplane on the objective space, which gen-
erally consists of extreme points on the objective space, and
Dis(·) is the Euclidean distance from the feasible solution x
to H. As shown in Fig. 1, the point with maximum Dis(·)
from the H is considered as the global knee point.

Fig. 1. Selection of global knee point

Unlike traditional KPI, in this work, we focus on one of the
objective values f i

m(x) ∈ [C,+∞], so we have to determine
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the extreme points first. The KPI in this work is not to find
one or a set of knee points only on a curve, but to find
the dynamic relationship between κ and m (resp. k) under
certain qualifying conditions on a family of curves about m
(resp. k). For the above curves fn

m(x) in 15 families where
n ∈ [1, 15]−{5, 6, 7, 8} (resp. fn

k (x) where n ∈ {5, 6, 7, 8}),
we assume that Ω and the objective space are the same, i.e.,
the global knee point is a point on fn

m(x) (resp. fn
k (x)). All

curves in this paper are monotone with a lower bound, which
means that

lim
x→∞

fn
m(x) = C

or
lim
x→∞

fn
k (x) = C

where C is a constant. In order to find the extreme points
in the direction of the x-axis, we assume that for ∀ε ≥ 0 ,
there exists a positive number M on its domain of definition
[m+1,+∞] (resp. [k+1,+∞]), and when x is greater than
M there is |f(x)−C|<ε. And then we take the first positive
integer (xe2, f

n
m(xe2)) (resp. (xe2, f

n
k (xe2))) that satisfies

the requirement as an extreme point in the x-axis direction
and xe1 = m + 1 (resp. xe1 = k + 1). We pick different
values of error ε to determine the extreme points. Take curve
f1
m = 3κ+1−m

2κ+1−m as an example, where κ ≥ m + 1, m = 2
and ε = 0.01. As shown in Fig. 2, their extreme points are
indicated by black circles and pentagrams, respectively. It is
worth noting that f1

m(x) = 3
2 when m = 1.

Fig. 2. Selection of extreme points

In order to minimize the selection pressure for the decision
maker, we choose different ε to give the relationship between
m (resp. k) and κ for the global knee point of the above
curves in 15 families. In this paper, we set ε = 0.01, 0.005
and 0.001, and m ∈ [1, 100] (resp. k ∈ [1, 100]) to select
100 global knee points. Then m (resp. k) and κ are found
by polynomial fitting, and the specific results are shown in
Tab. II and Tab. III.

For a longitudinal comparison of the first six curves, we
find that the slope of fm(κ) (resp. fk(κ)) increases as ε
increases. However, by comparing horizontally, we find that
the coefficient of m (resp. k) affects fm(κ) (resp. fk(κ)) to
a large extent.

Fig. 3-8 illustrate the image of the curves and m (resp. k)
is taken from 1 to 9, where the black dots and pentagrams

ε = 0.01

ε = 0.005

ε = 0.001
Fig. 3. The curve f1

m of m ∈ [1, 9], where the black dots and pentagrams
represent the extreme points, and the red × represents the global knee point
of the function.
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ε = 0.01

ε = 0.005

ε = 0.001
Fig. 4. The curve f2

m of m ∈ [1, 9], where the black dots and pentagrams
represent the extreme points, and the red × represents the global knee point
of the function. The curves in the figure from left to right are m = 1 to 9
respectively.

ε = 0.01

ε = 0.005

ε = 0.001
Fig. 5. The curve f3

m of m ∈ [1, 9], where the black dots and pentagrams
represent the extreme points, and the red × represents the global knee point
of the function.
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ε = 0.01

ε = 0.005

ε = 0.001
Fig. 6. The curve f4

m of m ∈ [1, 9], where the black dots and pentagrams
represent the extreme points, and the red × represents the global knee point
of the function.

ε = 0.01

ε = 0.005

ε = 0.001
Fig. 7. The curve f5

k of k ∈ [1, 9], where the black dots and pentagrams
represent the extreme points, and the red × represents the global knee point
of the function.
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ε = 0.01

ε = 0.005

ε = 0.001
Fig. 8. The curve f6

k of k ∈ [1, 9], where the black dots and pentagrams
represent the extreme points, and the red × represents the global knee point
of the function.

TABLE II
THE m (RESP. k) AND κ FUNCTIONALS OF f1

m, · · · , f6
k FOR DIFFERENT ε

CASES.

fn
m (resp. fn

k ) ε fn(m) (resp. fn(k))

f1
m = 3κ+1−m

2κ+1−m

0.01 κ = 4.042m+ 2.413
0.005 κ = 5.511m+ 3.519
0.001 κ = 11.71m+ 8.491

f2
m = 3κ+1−m

2κ−m

0.01 κ = 4.036m+ 7.025
0.005 κ = 5.5m+ 10.25
0.001 κ = 11.68m+ 22.331

f3
m = κ

2κ−m+1

0.01 κ = 4.043m+ 2.372
0.005 κ = 5.511m+ 3.519
0.001 κ = 11.71m+ 8.491

f4
m = κ

2κ−m

0.01 κ = 4.038m+ 3.321
0.005 κ = 5.502m+ 4.609
0.001 κ = 11.69m+ 10.57

f5
k = 3κ−2k+1

2κ−2k+1

0.01 κ = 1.695k + 22.24
0.005 κ = 1.985k + 31.48
0.001 κ = 3.202k + 71.06

f6
k = 3κ−2k+1

2κ−2k

0.01 κ = 1.553k + 20.15
0.005 κ = 1.779k + 28.71
0.001 κ = 2.744k + 64.19

represent the extreme points, and the red × represents the
global knee point of the function. (If there is no curve with
m = 1 (resp. k = 1) in the images, it means that the function
fn
m (resp. fn

k ) is a straight line parallel to the x-axis at m = 1
(resp. k = 1).) As ε decreases, the distance between the
two extreme points will consequently become larger, which
will undoubtedly affect the position of the knee point. Fig.
9 demonstrates the location of the knee points for different
extreme point selections, from top to bottom ε is 0.01, 0.005
and 0.001.

Fig. 9. Different Knee Points

Fig. 10 shows the linear relationship between κ and m
(or, k for f5 and f6) for curves f1

m, · · · , f6
k when ε = 0.01.

It is easy to see that when the coefficient of m (resp. k) in
the curves is 1, the sampled points and the fitted curves fit
well, but when the coefficient of m (resp. k) is 2, there is a
certain degree of deviation.

Tab. III shows, for curves f7
k , · · · , f15

m , the linear relation-
ship between m (or k for f7 and f8) and κ for different q
and ε. Fig. 13-21 show curves f7

k , · · · , f15
m , where the black

pentagrams and dots represent the extreme points at each
end, and the red × represents the global knee points. In
order to showcase the knee points clearly, only up to 500
is shown on the x-axis, so it is possible that some of the
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f1(m) f2(m)

f3(m) f4(m)

f5(k) f6(k)

Fig. 10. The linear relationship between m (or parameter k for f5 and f6) and κ for curves f1
m, · · · , f6

k when ε = 0.01, where the blue points are
specific experimental results and the yellow line is the image of the polynomial-fitted function.
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TABLE III
THE m (OR PARAMETER k FOR f7 AND f8) AND κ FUNCTIONALS OF f7

k , · · · , f
15
m FOR DIFFERENT ε CASES.

fn
m (resp. fn

k ) q ε fn(m) (resp. fn(k))

f7
k = κ

Θ

1
0.01 κ = 2.125k + 35.62

0.005 κ = 2.592k + 51.23
0.001 κ = 4.572k + 115.7

1.5
0.01 κ = 1.845k + 26.3

0.005 κ = 2.199k + 37.66
0.001 κ = 3.689k + 85.31

f8
k = κ

Θ−1

1
0.01 κ = 1.79k + 26.91

0.005 κ = 2.121k + 38.22
0.001 κ = 3.513k + 85.52

1.5
0.01 κ = 1.646k + 21.82

0.005 κ = 1.916k + 31.08
0.001 κ = 3.05k + 69.82

f9
m = κ

Γ−m

1
0.01 κ = 2.125m+ 35.62

0.005 κ = 2.592m+ 51.23
0.001 κ = 4.572m+ 115.7

1.5
0.01 κ = 4.492m+ 5.185

0.005 κ = 6.106m+ 7.891
0.001 κ = 12.88m+ 18.79

f10
m = κ

Γ−m−1

1
0.01 κ = 1.79m+ 26.91

0.005 κ = 2.121m+ 38.22
0.001 κ = 3.513m+ 85.52

1.5
0.01 κ = 4.479m+ 5.128

0.005 κ = 6.088m+ 7.361
0.001 κ = 12.84m+ 16.75

f11
m =

κ+⌊m
2
⌋

Γ−⌈m
2
⌉

1
0.01 κ = 7.557m+ 6.167

0.005 κ = 10.51m+ 9.051
0.001 κ = 22.92m+ 21.68

1.5
0.01 κ = 6.375m+ 2.603

0.005 κ = 8.914m+ 4.073
0.001 κ = 19.59m+ 10.03

f12
m =

κ+⌊m
2
⌋

Γ−⌈m
2
⌉−1

1
0.01 κ = 7.538m+ 5.219

0.005 κ = 10.48m+ 7.238
0.001 κ = 22.86m+ 16.11

1.5
0.01 κ = 6.367m+ 3.324

0.005 κ = 8.905m+ 4.715
0.001 κ = 19.57m+ 10.57

f13
m = κ+m

Γ−m

1
0.01 κ = 2.605m+ 51.1

0.005 κ = 3.269m+ 72.95
0.001 κ = 6.083m+ 164.3

1.5
0.01 κ = 6.751m+ 11.13

0.005 κ = 9.292m+ 15.97
0.001 κ = 19.99m+ 36.69

f14
m = κ+m

Γ−m−1

1
0.01 κ = 2.121m+ 38.22

0.005 κ = 2.589m+ 54.01
0.001 κ = 6.007m+ 86.49

1.5
0.01 κ = 6.734m+ 8.349

0.005 κ = 9.267m+ 11.81
0.001 κ = 19.94m+ 26.42

f15
m = κ+2m

Γ

1
0.01 κ = 14.12m+ 8.069

0.005 κ = 20m+ 12.11
0.001 κ = 44.88m+ 25.48

1.5
0.01 κ = 11.51m+ 6.214

0.005 κ = 16.31m+ 9.148
0.001 κ = 36.54m+ 21.02

extreme points may not be presented in the figures. In this
paper q is chosen to be 1 and 1.5, and when q = 1.5 (an
integer plus 1

2 ), the function curve is oscillating up and down.
However, through Fig. 13-21, it can be found that when x is
large, the image tends to be smooth, so it does not affect the
selection of the knee point. Through Fig. 11 it can be found
that the trend of f9(m) and f10(m), f11(m) and f12(m),
and f14(m) and f14(m), is consistent in sampling points,
which shows that adding or subtracting a constant to the
denominator does not have a particularly large effect on the
linear relationship between m and κ. However, the difference
between sample points trends for f11(m), f12(m), f15(m)
and f9(m), f10(m), f13(m), f14(m) show that when the
coefficients in front of m are changed, the trend of the
sampling points also changes significantly.

V. REMARK ON CONSTRAINED EMBEDDING OF ALL
FRACTIONAL (g, f)-FACTORS

Lu [20] introduced all fractional factors and determined
the necessary and sufficient condition for a graph which
admits all fractional (g, f)-factors. Specifically, a graph G
has all fractional (g, f)-factors if G has a fractional p-factor
for each p : V (G) → R+ satisfying g(v) ≤ p(v) ≤ f(v)
for any v ∈ V (G). In data transmission networks, a network
graph has all fractional (g, f)-factor implying the data pack-
ets within a given capacity range which can be transmitted
at a certain moment.

Although the fractional factor, especially the all fractional
factors, has been studied in rich literature, it seems that there
is still a certain gap lying in specific network applications.
The distinguishing facet of challenges in all fractional (g, f)-
factors mainly focused on function embedding. When the
analytical expressions of the two functions g and f are
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f7(k) f8(k) f9(m)

f10(m) f11(m) f12(m)

f13(m) f14(m) f15(m)

Fig. 11. The linear relationship between m (resp. k) and κ for curves f7
k , · · · , f

15
m when ε = 0.01 and q = 1, where the blue points are specific

experimental results and the yellow line is the image of the polynomial-fitted function.

determined in terms of the characteristics of the vertices (e.g.,
the capacity of uplink and downlink of channels associated
with the site, the throughput of the site, the size of the
site model, etc.) in the network graph, theoretically any
function p between g and f is permissible. However, in
specific applications, due to the similarity between associated
vertices, there is a close correlation between the fractional
degrees of adjacent vertices, which leads the function p
satisfying a certain smoothness in continuous space, and
oscillate arbitrarily is not allowed (the detailed interpretation
will be presented in the next section).

Based on the aforementioned truths, this paper considers
the embedding problem of function p in all fractional factor
setting. Our contributions can be summarized as follows.
With the aid of the dimensionality reduction operator, the
high-dimensional graph data is reduced to 1-dimensional
value, and thus the functions g, f , and p are visualized on the
2-D plane. Under this assumption, the criterion of function
p embedding is given from a mathematical point of view.

The remainder of this paper is organized as follows.
First, we make a rationale for the assumption of graph
dimensionality reduction to ensure that the discussion of em-

beddings is meaningful. Secondly, the constraints of function
p embedding are given and analyzed. Finally, some open
problems on embedding are given.

A. Preliminary knowledge

The purpose of this section is to provide some basic con-
cepts and assumptions, and make the necessary explanation.

1) Dimensionality reduction operator on graphs: Sup-
pose that the network structure is modelled by a graph
G = (V (G), E(G)), where the vertex set V (G) expresses
the set of sites and the edge set E(G) denotes the set
of channels in the network. Due to each site involving a
lot of information in reality applications, we assume that
each vertex in the network graph is expressed by a d-
dimensional vector, then the g, f and p are functions denoted
by g, p, f : Rd → R+. From this prospect, we have to
discuss the function embedding problem in high-dimensional
space. It can be simplified into a lower dimensional problem:
assuming that there is a dimensionality reduction operator ϕ
to map the multidimensional graph data to real numbers,
i.e., ϕ : Rd → R. This operator maps the entire network
graph from a high-dimensional space to a one-dimensional
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f7(k) f8(k) f9(m)

f10(m) f11(m) f12(m)

f13(m) f14(m) f15(m)

Fig. 12. The linear relationship between m (resp. k) and κ for curves f7
k (κ), · · · , f

15
m (κ) when ε = 0.01 and q = 1.5, where the blue points are specific

experimental results and the yellow line is the image of the polynomial-fitted function.

real number axis, and mapping each vertex to a real number.
In this way, g, p, f can be regarded as a function from the real
number axis to R+, and hence g, p, f can be visualization
on the 2-D plane.

It is worth noting that dimensionality reduction operators
on graphs are ubiquitous in data representations. For instance,
in the ontology learning algorithm, the ontology topology
structure is represented by a graph, each vertex represents a
concept, edge represents the direct association between two
concepts, and all the information related to the concept is
encapsulated in a d-dimensional vector. The aim of ontology
learning is to infer an optimal ontology function ϕ : V (G) →
R in terms of ontology sample learning, that is, ϕ maps the
entire ontology graph to the real number axis, and maps each
vertex to a real number. Such ontology function is actually
a class of dimensionality reduction operator, which can be
formalized by ϕ : Rd → R. Another crucial fact lies in
that adjacent vertices are often mapped to close points on
the real axis, since these vertices have high similarities with
each other.

2) Continuous and smoothness: To derive the main idea
of this remark, we attempt to make further restrictions and

specifications on the mathematical framework. First, we
propose V ⊂ R to be limited in a certain range which serves
as a continuized space into which all vertices are mapped.
In this way, both g and f can be considered as continuous
functions on V where g(v) and f(v) for all vertices are
mapped. Hence, p is also regarded as a continuous function
on V satisfying g ≤ p ≤ f .

Second, the extant graph data reveal that for vertex func-
tions, the distribution of its values has dramatical rules to
follow. Specifically, adjacent vertices on the graph always
share close function values, so that the vertex function man-
ifests a smooth continuous distribution state without violent
jitter. Intuitively, this feature fits the characteristics of data
transmission networks. For network data transmission, large
data packets are transmitted through multiple channels after
cutting. The more adjacent vertices require the capacity and
computing ability of the corresponding sites to be similar,
and only in this way can sites meet the requirements of
smooth data transmission. It’s just like this: cities near
megacities are often economically developed areas, and there
will be no large areas of deserts or mountains. Based on this
observation, in what follows, we assume that both the g and f
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ε = 0.01 and q = 1 ε = 0.005 and q = 1

ε = 0.001 and q = 1 ε = 0.01 and q = 1.5

ε = 0.005 and q = 1.5 ε = 0.001 and q = 1.5

Fig. 13. The curve f7
k of k ∈ [1, 9], where the black dots and pentagrams represent the extreme points, and the red × represents the global knee point

of the function.
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ε = 0.01 and q = 1 ε = 0.005 and q = 1

ε = 0.001 and q = 1 ε = 0.01 and q = 1.5

ε = 0.005 and q = 1.5 ε = 0.001 and q = 1.5

Fig. 14. The curve f8
k of k ∈ [1, 9], where the black dots and pentagrams represent the extreme points, and the red × represents the global knee point

of the function.
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ε = 0.01 and q = 1 ε = 0.005 and q = 1

ε = 0.001 and q = 1 ε = 0.01 and q = 1.5

ε = 0.005 and q = 1.5 ε = 0.001 and q = 1.5

Fig. 15. The curve f9
m of m ∈ [1, 9], where the black dots and pentagrams represent the extreme points, and the red × represents the global knee point

of the function.
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ε = 0.01 and q = 1 ε = 0.005 and q = 1

ε = 0.001 and q = 1 ε = 0.01 and q = 1.5

ε = 0.005 and q = 1.5 ε = 0.001 and q = 1.5

Fig. 16. The curve f10
m of m ∈ [1, 9], where the black dots and pentagrams represent the extreme points, and the red × represents the global knee point

of the function.
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ε = 0.01 and q = 1 ε = 0.005 and q = 1

ε = 0.001 and q = 1 ε = 0.01 and q = 1.5

ε = 0.005 and q = 1.5 ε = 0.001 and q = 1.5

Fig. 17. The curve f11
m of m ∈ [1, 9], where the black dots and pentagrams represent the extreme points, and the red × represents the global knee point

of the function.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 4, April 2024, Pages 760-783

 
______________________________________________________________________________________ 



ε = 0.01 and q = 1 ε = 0.005 and q = 1

ε = 0.001 and q = 1 ε = 0.01 and q = 1.5

ε = 0.005 and q = 1.5 ε = 0.001 and q = 1.5

Fig. 18. The curve f12
m of m ∈ [1, 9], where the black dots and pentagrams represent the extreme points, and the red × represents the global knee point

of the function.
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ε = 0.01 and q = 1 ε = 0.005 and q = 1

ε = 0.001 and q = 1 ε = 0.01 and q = 1.5

ε = 0.005 and q = 1.5 ε = 0.001 and q = 1.5

Fig. 19. The curve f13
m of m ∈ [1, 9], where the black dots and pentagrams represent the extreme points, and the red × represents the global knee point

of the function.
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ε = 0.01 and q = 1 ε = 0.005 and q = 1

ε = 0.001 and q = 1 ε = 0.01 and q = 1.5

ε = 0.005 and q = 1.5 ε = 0.001 and q = 1.5

Fig. 20. The curve f14
m of m ∈ [1, 9], where the black dots and pentagrams represent the extreme points, and the red × represents the global knee point

of the function.
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ε = 0.01 and q = 1 ε = 0.005 and q = 1

ε = 0.001 and q = 1 ε = 0.01 and q = 1.5

ε = 0.005 and q = 1.5 ε = 0.001 and q = 1.5

Fig. 21. The curve f15
m of m ∈ [1, 9], where the black dots and pentagrams represent the extreme points, and the red × represents the global knee point

of the function.
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are smooth functions that do not experience violent jittering.
Since g and f are upper bound and lower bound functions

of vertex fractional degree, we can further assume that they
are “shape consistency”. Specifically, the following two
conditions are satisfied:
(1) g and f obey the same type of distribution.
(2) The peaks (or symmetry axes, or inflection points) of g
and f are close.

(a)

(b)

Fig. 22. Functions g and f with shape consistency (Figure 22(a)) and
different types of distribution (Figure 22(b)).

Both g and f in Figure 22(a) belong to Gaussian distri-
bution and this case belongs to shape consistency. In Figure
22(b), g and f do not obey the same type of distribution;
in Figure 23, although g and f share the same type of
distribution, their symmetry axes are far apart, so in this
case g and f do not satisfy shape consistency.

B. Formal statement of embedding problem

When the expressions of functions g and f are determined,
theoretically speaking, any form of p between g and f
is allowable. However, for practical applications, most of
the functions p have no real physical meaning, and they
only exist in mathematical possibilities. Imagining that the
function p randomly walks between g and f , although it is
allowed from the definition of the all fractional (g, f)-factors,

Fig. 23. Functions g and f with large gap of symmetry axes.

such a function p is meaningless for a data transmission
network. As observed and discussed before, the function p
should also present a certain regularity like functions g and
f , which reflect the dynamic change of fractional degree
between vertices (e.g., the value of p of adjacent vertices
changes smoothly).

Since function p is constrained by g ≤ p ≤ f , we call p
as an embedding of all fraction (g, f)-factors. If p fits the
requirements of specific practical applications and exhibits
certain good characteristics, we say p is a good embedding,
and otherwise p has no meaningful interpretation is called
a bad embedding. The main purpose of this remark is to
discuss the embedding problem in all fractional factor setting.
There are several thought-provoking questions: (1) What kind
of embedding is a good embedding? (2) How to formally
define embedding from a mathematical prospect?

Fig. 24. There is no embedding problem for fractional k-factor.

We first discuss these issues from intuition. Clearly, the
embedding problem does not exist if g(v) = f(v) = k
for any v ∈ V (G) in all fractional (g, f)-factors setting
(refer to Figure 24). In all fractional [a, b]-factors setting,
all embedded p functions are bounded in a band area in the
2D plane which is formed by the parallel curves of g and f .
Figure 25(a) shows two embeddings p1 (good embedding)
and p2 (seems bad). To be more general, two embeddings
p1 (good embedding) and p2 (seems bad) are embedded into
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(a)

(b)

Fig. 25. Embeddings p1 and p2 in all fractional [a, b]-factors.

2-D area formed by lower and upper functions g and f in
general all fractional (g, f)-factors setting (see Figure 25(b)).
Intuitively, under the assumption that function g and f are
smooth and have similar shapes and axes of symmetry, if the
surface shape of function h is similar to that of the g and f ,
and there are also approximate values of peaks and valleys,
then it can be considered a good embedding. If function p is
oddly shaped, or the curve oscillates wildly, it is considered
as a bad embedding.

Therefore, this remark considers key questions about the
embedding of function h: what reasonable restrictions should
be forced on the embedding, and how to characterize it math-
ematically in a formal way? We answer these questions in
the next section, and our inspiration comes from embedding
problems in 2-type fuzzy set.

C. Constrained embedding

A naive way to get the good embedding is to shift the
curve of function f down, or move up the curve of function
g function, and thus to get the embedding function h. The
advantage of this approach lies in the function h maintains
the characteristics of the g and f , which can well reflect
the characteristics of the graph topological structure. The
shortcoming is obvious, i.e., a lot of meaningful embeddings
are lost. Now, we propose some constraints on embedding

functions from a functional perspective:
(1) h is convex.
(2) h is l-Lipschitz, i.e., |h(v) − h(v′)| ≤ l|v − v′| for any
v, v′ ∈ V (G).

Suppose that f, g and h are defined in the high dimensional
space where the representation of vertex v is also in the
high-dimensional space. Then the above condition (2) can
be formulated by
(2) h is l-Lipschitz, i.e., ∥h(v)−h(v′)∥ ≤ l∥v− v′∥ for any
v, v′ ∈ V (G).
In addition, we further give the following constraint in high
dimensional settings:
(3) h is α-smooth, i.e., ∥▽h(v)−▽h(v′)∥ ≤ α∥v−v′∥ for
any v, v′ ∈ V (G).

We say that an embedding h is a well-defined embedding
if it satisfies conditions (1) and (2), and an embedding
h (in high dimensional setting) is an outstanding-defined
embedding if it satisfies conditions (1), (2) and (3). Note that
these two newly defined concepts have specific meanings
in practical applications, and the function h conforms to
the general law of adjacent vertices changing in graphs.
Accordingly, we introduce the following concepts as the
constrained all fractional (g, f)-factors.

Definition 1: A graph G has well-defined all fractional
(g, f)-factors if G has a fractional p-factor for each well-
defined embedding p : V (G) → R+ satisfying g(x) ≤
p(x) ≤ f(x) for any x ∈ V (G).

Definition 2: A graph G has outstanding-defined all frac-
tional (g, f)-factors if G has a fractional p-factor for each
outstanding-defined embedding p : V (G) → R+ satisfying
g(x) ≤ p(x) ≤ f(x) for any x ∈ V (G).
However, we currently do not know about the nature of the
above two new concepts, which awaits our further study.

D. Conclusion and discussion

In this section, we formally introduce the embedding prob-
lem in all fractional (g, f)-factors setting, and discuss what
is the good embedding we want in the reality applications.
We raise the following open questions for future studies.

Problem 1: Are there sufficient and necessary conditions
for the existence of well-defined all fractional (g, f)-factors
(even in a very specific constrained setting)?

Problem 2: Are there sufficient and necessary conditions
for the existence of outstanding-defined all fractional (g, f)-
factors (even in a very specific constrained setting)?

VI. A COUNTEREXAMPLE OF t(G) FOR FRACTIONAL
[a, b]-FACTORS

Gao et al. [21] determined the sharp toughness bound for
a graph admits a fractional [a, b]-factor, which is stated as
follows.

Theorem 1: (Gao et al. [21]) Let a, b be integers with 2 ≤
a ≤ b, and G be a graph. If G is a complete graph, then
|V (G)| ≥ a+ 1. Then, G admits a fractional [a, b]-factor if
t(G) ≥ a− 1 + a−1

b .
In order to explain the sharpness of toughness bound in The-
orem 1, the authors showcased the following counterexample
(suppose m ∈ N and 2 ≤ a ≤ b): V (G) = A ∪ B ∪ C with
|A| = |B| = (mb+1)(a−1) and |C| = m(a−1). Both A and
C are cliques in G, and B is isomorphic to (mb+ 1)Ka−1.
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Other edges in G conclude a perfect matching between A
and B, and the edges connect each pair of vertices between
B and C.

To calculate the toughness of G, let S = (A − {x}) ∪ C
where x ∈ A if a = 2, and S = (A−{x})∪{y}∪C where
x ∈ A and y ∈ B is a pair of matching in G if a ≥ 3. Then

t(G) =
|S|

ω(Gn − S)
=

{
mb+m
mb+1 , if a = 2
(mb+m+1)(a−1)

mb+2 , if a ≥ 3

Clearly, we have limm→∞ t(G) = a− 1 + a−1
b .

It can be seen that if we select S = C and T = B, then

b|S|−a|T |+dG−S(T ) = mb(a−1)− (mb+1)(a−1) < 0,

which implies G has no fractional [a, b]-factor by the suffi-
cient and necessary condition of fractional [a, b]-factor.

Now, we present another counterexample to explain the
sharpness of toughness bound in Theorem 1. Suppose m ∈ N
and 2 ≤ a ≤ b. V (G) = A ∪ B ∪ C with |A| = |B| =
(mb− 1)(a− 1) and |C| = m(a− 1)− 1. Both A and C are
cliques in G, and B is isomorphic to (mb− 1)Ka−1. Other
edges in G conclude a perfect matching between A and B,
and the edges connect each pair of vertices between B and
C.

To calculate the toughness of G, let S = (A − {x}) ∪ C
where x ∈ A if a = 2, and S = (A−{x})∪{y}∪C where
x ∈ A and y ∈ B is a pair of matching in G if a ≥ 3. Then

t(G) =
|S|

ω(G− S)
=

{
mb+m−3
mb−1 , if a = 2

(mb+m−1)(a−1)−1
mb , if a ≥ 3

Obviously, we get limm→∞ t(G) = a− 1 + a−1
b .

It can be seen that if we select S = C and T = B, then

b|S|−a|T |+dG−S(T ) = mb(a−1)−b−(mb−1)(a−1) < 0,

which implies G has no fractional [a, b]-factor by the suffi-
cient and necessary condition of fractional [a, b]-factor.

VII. CONCLUSION

In this paper, we address KPI problem of connectivity and
toughness-related parameters for the existence of H-factor in
the case where one of the objective values is infinite, alleviate
the decision maker’s selection pressure for network construc-
tion by finding a family of knee points on curves varying with
respect to m (resp. k), and then determining the dynamics
of the relationship between κ and m (resp. k) under certain
conditions through the knee points. Since these toughness-
related variables characterize the needs of the network from
different application perspectives, the knee point calculation
approach given in this article facilitates network designers
directly to obtain relevant network construction indicators.

The following issues can be considered as the future
works:
• It is imperative to further infer the relationship between κ
and m (resp. k) under different ε situations and generalize
it to more realistic problems.
• Since H-factor is a special family of fractional factors,
the surfaces and balanced parameters for fractional factors
in various settings are meaningful to be deeply studied, and
the knee points of these settings also need to be calculated.
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